Formal manipulation of financial
contracts and evaluation models

University Finance Seminar
Cambridge, Judge Institue of Management Studies
21 January 2000

Jean-Marc Eber
Société Générale, Infi/Dir, Paris
jean-marc.eber@socgen.com

Simon Peyton Jones
Microsoft Research, Cambridge
simonpj@microsoft.com

Implementation and industrial use is
very slow, compared to "research”

Industrial users (trading-rooms) needs the methods
applied to "real” financial products (micro precision).
Institutional calculation rules may be complicated.

They want to measure effects on a whole portfolio
(macro effect).

Spreadsheet approach is no longer acceptable for go-
ing "industrial” (back-office, risk measure, regulators,...

Cost of entry for a new "industrial” financial product,
model or method is huge.

We should (try to) lower this barrier...but still provide
needed flexibility.




Finance technology today

"Applied” finance theory well understood, huge theo-
retical unification in progress.

More and more "common knowledge”:
e its nice to play with stochastic processes, but...

e future competition will be on implementation, not
mathematics !

Dissemination (repeated specificaton) of financial do-
main specific knowledge:

e each interest rate pricer reimplements the institu-
tional rate calculation rules

Dissemination of implementations:

e rigourously identical numerical procedures imple-
mented for different underyings (pde solver)

Absence of up to date documentation:

e what does it mean to be (a) correct (implemen-
tation) ?

No formal specification tool adapted to financial do-
main available.




Future of financial industry

Global approach for risk analysis and management.
But what does "global” mean ?

Highly competitive, pressure on cost.

Regulatory pressure (documentation, correct imple-
mentation, operational risk factor,...).

Secured and standard, highly automated, deal descrip-
tion exchange format (even for OTC products).

e FpML is a tentative example

Migration of " trading-room” techniques to more " clas-
sical” banking activities:

e less " complicated”, but less "standard” structures

e fewer closed-form solutions, more numerical ap-
proximations

Future of financial tools

Diversity of models, because diversity of needs, but
unified deal (or position) description.

Incomplete market models or " methods”:

e "Come-back” of classical optimisation methods,
stochastic programming.

Evaluation of a financial contract along "factor paths”
(back-testing, simulation for customers,...):

e Even if your pricing model is not path-dependant,
this simulation may be !

e Marketing importance of such simulation approaches.




Merge of qualitative and quantitative analysis.

Technical data-exchange format standard (compare
with other technical industries!)?

Computers more and more powerful (evidence, of course,

but: relative cost of some algorithms or approaches
are changing enormously).

Financial specification that adapts to and survives
technological shifts:

e change of financial model

e change of computer architecture

e capacity to incorporate existing technology (com-
ponents)

Description and evaluation

A financial contract is described by a language.
This (formal) language has a syntax.

This language can have one (or more) attached se-
mantic(s) (" meaning”)...

Such a description can be used in many different ways:
it should be " exhaustive”.

The semantics should be compositional.




Why a new language ?

Pragmatic reasons (”art”):
e good engineering practice...
e well adapted to application domain

e Conciseness (example: object oriented program-
ming)

Fundamental reasons ("science”):

e simplify semantics, implementation, orthogonal-
ity

e reduce the complexity class of the language

Properties of compositional
descriptions of contracts

Enables to distinguish between (legal, say) description
and evaluation (of such a description).

Predominance of a particular "object”: time

e "solution algorithms” go monotonically along the
time line, but also...

e from irreversibility of time comes the typical re-
cursive contract description "a la” dynamic pro-
gramming.

Its impossible to write "impossible” contracts (like
a "looping” program in a classical programming lan-

guage).

Verified to be "bug free” by, for instance, lawyers!




e make the contract enforceable: only a finite num-
ber of actions or events.

Real world financial contracts

We should keep previous advantages when extending
the language to real world financial contracts.

What we certainly have to do:

e link our language with the "outside” world, espe-
cially for writing contracts on observables.

e introduce schedules, and a way to use them con-
cisely and efficently.

e mention models and model specialisation (closed
form solutions for instance).




Observables

Financial contracts pay-outs are always written on ob-
servables:

® an equity quoted spot, a quoted future contract, an interest
rate like 3mLibor, temperature (in degree celsius) at Notre
Dame in Paris, rating class of a given corporate, default of

a corporate on his debt,...

Observables are defined as being common information
and easily verified:

e Necessary condition for being legally enforceable

Observable aren't necessarly real valued (see the last
two examples: enumerated type, boolean).

Applying an arithmetic function to observables gener-
ates another observable.

Observables don’t have a currency: the contract on an
observable prescribes a payment in a given currency!

e ¢ = (quote T GBP obs) is a contract that pays
immediately obs pounds.

e quanto structures, for instance, can only be writ-
ten on observables:
quanto = (quote T GBP socgen)

Constants and elapsed time are observables.

Lagged observables are observables (path dependant
products).

Uniquely identified observables are the (pricing) link
between front- and back-office.




Observables and pricing

Observables often play the role of "underlyings”, of
course.

A model must implement all the observables refer-
enced by a contract for pricing it.

But aren’t some observables simply a function of other
prices ?

e think about a forward rate being "equal” to a
function of two discount bonds:

e no! an observable is always an entity on itself.
but..

e ...a model (or a class of models) may, for pric-
ing purposes only, declare such a (no-arbitrage)
relationship.

A model implements an observable by:

e implementing it directly, as a function of its state
variables (the ”S” of Black-Scholes)

e declaring it a function of other observables

e declaring it a function of other prices




Schedules

We take the simplest example: a sum of discount
bonds in the same currency:

(zcb date "12jan2002” 10.0 GBP) 'and’ (zcb date "11jan2003"
11.0 GBP) 'and’ (zcb date "9jan2004" 12.0 GBP) 'and’ (zcb
date "12jan2005" 8.0 GBP)

We want to create a combinator that takes as input a
schedule of (date, float) pairs, and generates the sum:

schedule = |

(date "12jan2002", 10.0),
(date "11jan2003", 11.0),
(date "9jan2004", 12.0),
(date "12jan2005", 8.0)

]

bond GBP = newoperator schedule

Schedules and iteration

Schedules are lists. Well known data type: is actively
studied by computer scientists as the simplest recur-
sive datastructure.

A huge literature exists about efficent manipulation of
(or "calculating” with) lists.

In finance, schedules are ordered along time.

A contract definition is obtained by a monotone iter-
ation over a schedule.

foldr gives us what we need:

(("a list)x(("ax’b)—'b)x('a—'b))—'b
foldr([z1, %2, ..., Tp_1,Zn], f,9) =
,\NAHT ,\NAHMv <ee ,\NAHQ@IH“.QAHQ@VVVV

If lists are only finite, foldr always terminates!

A few other primitives are needed, especially for build-
ing (finite) lists and transforming (finite) lists.




Schedule example

We want to define a bond_GBP, given a list 1 of pairs
(d, c) , representing c pounds to be paid at date d:

g :: (Date * Float) -> Contract
g (t, a) = zcb t a GBP

f :: (Date * Float) * Contract —-> Contract
f (t, a) ¢ = (zcb t a GBP) ’and’ c

then

bond GBP = foldr 1 £ g

This example is, of course, trivial: you can imaginate
much more complex structures (full compositional ap-

proach).

Important: the financial understanding of the foldr
operator is a mechanic consequence of its definition.

foldr: explicit (structural) recursion
operator for financial contract
description

Explicit documentation (generate schedule diagrams,
time charts...).

Expose regularity along the datastructure to a com-
piler: many optimisations possible.

But: highly abstract specification; reuse possibility,
libraries of code.

Deforestation: gluing together many " passes” for de-
scribing an algorithm, but guaranty of efficiency!

Good starting point for automatic inductive proofs!




Semantics: what does a contract
mean ¢

For manipulating contracts (pricing is only one of this
manipulations), we need a precise understanding of
contracts, but...

e ...no (semantic) theory of contracts known to us...

e ...we have to build one!

An axiomatic theory of domination, denoted a >b, for
contract a dominates contract b, and equality defined
as mutual domination.

Defined inductively along the combinators; example:

e (c1>c2)A(dl > d2) =
(c1 ’and’ d1) > (c2 ’and’ d42)

Set of axioms driven by application: two contracts
may be equal for one application, but not for another.

We call such a set of axioms a theory.

Typical applications "add” axioms, or refine the the-
ory (example: always positive interest rates)!

Enables automatic transformation of contracts, be-
cause we have the following "replace equal by equal”
possibility:

Theorem 0.1 Contextual equality: if c1 = c2, then
for any context C[], we have: C[cl] = C[c2].

One possible theory: ¢l > c2 iff (price process of c1)
> (price process of c2) for any "reasonable” (no ar-
bitrage) model (" Mertons Rational Option Pricing”).




Abstract semantics: an application

Can we analyse the essence of American optionality
without a model in mind ?

American option in terms of contracts only: "the
sooner you get it, the better”.

When is a contract ¢ early preferred 7 Our language
has all the tools to express this:

Definition 0.1 c is early preferred, written Early(c),
ifF:
Vt, (truncate t c) > (get(truncate t c))

Then we define Late(c), Timelndiff(c).

In a pricing semantics, this corresponds to the notion
of super-, sub- and martingales of normalised price
processes.

We postulate: FEarly(anytime c) and rules like:

e H(c)=H(d), Early(c) N Early(d) = FEarly(c
’and’ d)

Enables to deduce qualitative properties of contracts,
and, thus, of associated (normalised) price processes.

Applies to less trivial contracts:

Exercice: define a Bermudan option structure on
an underlying as a function berm of a schedule
rule and a underlying contract c. Schedule rule
is a list of triples (begdate, enddate, strike)
defining the exercise period and strike for this pe-
riod. Define berm with a foldr. Convince yourself
that an inductive proof shows that any Bermudan
option is early preferred!




Positive interest rates

Knowing that interest rates are always positive may
be important.

This property isn't always true (just think about a
linear gaussian interest rate model!).

Can we abstractly define positiveness of interest rates
?

Yes, it suffices to express the " preference for the present”:

Definition 0.2 We have positive interest rates for unit
(or numeraire) k up to date T iff
Early(quote T k (const 1.0))

Abstract semantics: a classical proof
revisited

Can we prove the "classical” result: European call on
S = American call on S if S is a non dividend paying
stock and interest rates are positive ?

Proof:

Timelndiff(S) (assumption)

Timelndiff(truncate T S) (th)

Early(quote T k (const K)) (positive interest rates)
Late(give quote T k (const K)) (axiom)

Late((truncate T S) 'and’ give quote T k (const K) (axiom)
Late(truncate T (S 'and give quote T k (konst K))) (eq)
Late(truncate T (S 'and give quote T k (konst K)) or zero (...))
(axiom)

anytime(truncate T (S 'and give quote T k (konst K)) or zero

(..) = get (...)




Use of abstract semantics for pricing

Simplify numerical procedures:

e replace "American” style options on Early pre-
ferred contracts by " European” structures

e Use linearity etc... to optimise generated numer-
ical code

Generate "good” time discretisation by applying a dis-
cretisation strategy to a contract definition.

Choice of numeraire problem: what is the " best” choice
(can, and should, be done at the level of the abstract
semantics) ?

Closed form solutions and evaluation

Closed form solutions (CF) are fundamental in finance:
huge advantage, not only for pricing, but also for
hedging.

Definition: easy to calculate as a "function” of state
variables.

Algebraic combination of CFs is a CF: we should keep
"hedging advantage”.

CFs may be used inside a numerical procedure.

Being a CF depends on the model: the contract writer
don't even know about that.

A model may "rewrite” a contract as a function of its
state variables. It should keep this "representation”
as high as possible in the contract "tree”.

Formal differentiation should be used.

This approach is necessary if we want the best of both
worlds (complete semantic description and efficency).




Contracts, semantics, evaluation in
industrial practice

We work on the kernel language: it should be ex-
tended or be extendable (legal annotations, pricing
annotations, embedd technical documentation ...).

Contract execution is (also) a document processing
business.

An explicit contract description is the only method for
a global and unified approach.

Enables flexibility, by implementing language proces-
sors for needs we even don’t know today.

Describe the dynamic possible evolution of the con-
tract in time (exercise decisions, rate fixings,...).

Models must also be described in a language.

Code generation tehnology.




