

Operational Risk Measures and Bayesian Simulation Methods for Capital Allocation

E A Medova

Co-workers: M A H Dempster, M Kyriacou & Y Romahi Partially supported by PricewaterhouseCoopers

Regulatory Capital Charge for Operational Risk

• Banks' objectives are to develop an accurate allocation of economic capital and to avoid hard regulatory over-provision that will make their business less competitive

- Banking supervisors' objectives are national and global financial stability. The main concern is to capture all types of risk and to ensure that there is sufficient capital in a bank to provide protection up to a certain confidence level
- If in the future capital is to be allocated there must be some definitional common ground!

•	Under normal con	ditions (credit ratings higher than B	BB) credit i	nodels	ocation	
	than market [P. Jo	rion]	a laigei cap	nai and	Cation	
	Choo	sing Equity Coverage from the Cred	lit Rating			
	a	Multiples of Annual Standard Devia	tion)			
\rightarrow	Desired Rating	1-Year Probability of Default	Equity	Cover	overage	
\rightarrow	(Moody's)	%	Normal	t(6)	t(4)	
\rightarrow	Aaa	0.009	3.75	9.26	15.96	
\rightarrow	Aal	0.015	3.65	8.45	14.03	
\rightarrow	Aa2	0.022	3.51	7.89	12.72	
\rightarrow	Ba1	1.25	2.24	3.52	4.31	
\rightarrow	B1	6.14	1.54	2.30	2.58	

- By estimating accurately the extreme losses and their corresponding probabilities, one can manage extreme operational risks -and other types of- risk effectively
- Extreme quantiles and tail-probabilities can be estimated by fitting an extreme value statistical model to a set of extreme-event data
- Data availability, model applicability, time horizon for capital allocation,...?

© Centre for Financial Research, Judge Institute of Management Studies, University of Cambridge www-cfr.jims.cam.ac.uk

LTCM [P. Jorion]:

• LTCM claimed to be no more risky than an unleveraged investment of US equities with \$45 million as the target daily volatility.

For the 1997th LTCM capital base of \$4.7 billion and 15% annual average volatility of the S&P 500 over 1978 to 1997, a daily volatility is \$44 million:
\$4700.0.15 √ 252 = \$44

- Assuming a normal distribution the daily 99% (the associated multiplier of 2.33) VaR is \$105 millions. Applying the Basle rules with 10 days period, this translates into a minimum capital level of $3 \cdot \$105 \cdot \sqrt{10} = \993 m.
- With actual daily volatility around \$100 million, the Basle minimum capital would be \$2.2 billion. This is now closer to the actual loss of \$1.7 billion in August.

The Generalised Pareto distribution (GPD) -- the limit distribution of excesses y = X - u over high thresholds u

$$F_u(y) = P \quad (X - u \le y \mid X > u) = \frac{F(y + u) - F(u)}{1 - F(u)} \text{ for } 0 \le y < x_F - u$$

For a large class of underlying distributions we can find a function $\beta\left(u\right)$ such that

$$F_u(y) \approx G_{\xi,\beta}(y)$$

$$(GPD) \quad G_{\xi,\beta}(x) = \begin{cases} 1 - (1 + \xi x / \beta)^{-1/\xi} & \xi \neq 0, \\ 1 - \exp(-x / \beta) & \xi = 0 \end{cases}$$

For given realizations of X, the GPD is fitted to the N excesses to obtain estimates $\hat{\xi}$ and $\hat{\beta}$ by choosing a sensible u

Peaks over Threshold Model (POT)

- The Peaks over Threshold (POT) model is suitable for the excesses $X \sim GPD$ with parameters $\xi < 1$ and β
- The mean excess function for $x_F > u$

$$e(u) = E(X - u \mid X > u) = \frac{\beta + \xi u}{1 - \xi}$$

• Using POT we model the number of exceedances over a threshold u and the exceedance times by a Poisson point process with intensity $\sqrt{1/\xi}$

$$\lambda_{u} = \left(1 + \xi \, \frac{u - \mu}{\sigma}\right)^{-1}$$

• Excesses and exceedance times are independent of each other

MCMC Bayesian Hierarchical Model

- Generate a Markov chain of EV parameters whose stationary distribution is the posterior distribution of interest (R. Smith, 1999)
 - Gibbs Sampler and Metropolis-Hastings Algorithm
 - Gibbs sampler is used in Bayesian setting
- Take the Markov chain output to represent a sample drawn from that posterior distribution
- Use Monte Carlo integration to approximate the population mean by the sample mean
- Inference or prediction for individual risk type parameters is made via the parameters of aggregated data -- the successive conditioning of Bayesian modeling

Data Split date: (a) 17th August 1998 one week before GKO default **Summary Statistics** • Observations: 174 Min. 1st Qu. Median Mean 3rd Qu. Max. 0.00204 38.67 90.53 166 227.2 891.3 • Span: start end 01/10/97 - 17/08/98 **POT Model Results** Expected excess 446.0 Average number of losses per year exceeding 200 approximately 60 Six days on average between excessive losses Risk capital 25,635 © Centre for Financial Research, Judge Institute of Management Studies, University of Cambridge www-cfr.jims.cam.ac.uk

Data Split date: (b) 21st August 1998 3 days before GKO default Summary Statistics • Observations: 178 Min. 1st Qu. Median Mean 3rd Qu. Max. 0.00204 40.55 95.06 173.9 230.5 1148 • Span: start end 01/10/97 - 21/08/98

Firm-level	ع	ß		Quantile)	Expected	Expecte
	~	Р	.9	.95	.99	Excess	number
MLE	.4	219.8	570.7	864.7	1961.9	499.7	75
Post Med	.5	196.4	564.8	888.1	2268.5	621.6	75
Trading desks							
One	.34	205.2	632.7	919.9	1901.5	365.9	72
Two	.25	108.1	188.6	282.0	576.4	190.4	11
Three	.24	118.6	233.2	343.2	693.1	206.5	19
Four	.26	106.1	147.4	231.1	502.3	192.8	7

	95% GPD Quantile	Risk Capital
Firm-level	888.1	46620
Trading desks		
One	919.9	26344
Two	282.0	2086
Three	343.2	3857
Four	231.1	1407
		34494

