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Abstract

We consider the mean-variance (M-V) model of Markowitz and the con-

struction of the risk-return eÆcient frontier. We examine the e�ects of

applying buy-in thresholds, cardinality constraints and transaction round-

lot restrictions to the portfolio selection problem. Such discrete constraints

are of practical importance but make the eÆcient frontier discontinuous.

The resulting quadratic mixed-integer (QMIP) problems are NP-hard and

therefore computing the entire eÆcient frontier is computationally chal-

lenging. We propose an eÆcient approach for computing this frontier and

provide insight into its discontinuous structure. Computational results are

reported for a set of benchmark test problems.

KEYWORDS: Portfolio optimisation, mean variance model, eÆcient fron-

tier, buy-in threshold, cardinality constraint, roundlot restriction.

1



1 Introduction

We consider the portfolio selection model of Markowitz (1952, 1959, 1987) that

laid the foundations of Modern Portfolio Theory (see Constantinides and Malliaris

(1995) for a survey). Markowitz shows how rational investors can construct

optimal portfolios under conditions of uncertainty. The mean and variance of a

portfolio's return represent the bene�t and risk associated with the investment.

Markowitz shows that for a rational investor, maximising expected utility, their

chosen portfolio is optimal with respect to both expected return and variance of

return. He de�nes such a non-dominated portfolio as eÆcient, that is, it o�ers

the highest level of expected return for a given level of risk and the lowest level

of risk for a given level of return. His normative mean-variance rule for investor

behaviour both implies and justi�es the observable phenomenon of diversi�cation

in investment. Determining the eÆcient set from the investment opportunity

set, the set of all possible portfolios, requires the formulation and solution of a

parametric quadratic program (QP). Plotted in risk-return space the eÆcient set

traces out the eÆcient frontier.

Hanoch and Levy (1969) show that the M-V criterion is a valid eÆciency criterion,

for any individual's utility function, when the distributions considered are Gaus-

sian Normal. A study comparing alternative utility functions appears in Kallberg

and Ziemba (1983). They show that portfolios with \similar" absolute risk aver-

sion indices have \similar" optimal compositions, regardless of the functional

form and parameters of the utility function. Hence, M-V analysis is justi�ed for

any general concave utility function of the Von Neumann-Morgenstern type (Von

Neumann and Morgenstern (1944)).

The estimation of the large number of parameters (returns, variances and covari-

ances) which are required as the input to M-V analysis is an important modelling

step. Small changes in the inputs can have a large impact on the optimal asset

weights. Chopra and Ziemba (1993) found that, for a typical investor's risk toler-

ance level, errors in the forecast means are more than ten times as important as

errors in the variances and about twenty times as important as errors in covari-

ances. For practical aspects of portfolio analysis see Hensel and Turner (1998) and

Grinold and Kahn (1995). MPT has developed in tandem with simpli�cations to

the QP required by M-V analysis. These simpli�cations centre around linearis-

ing the quadratic objective function or reducing the number of parameters to be

estimated. Both approaches involve either the approximation or decomposition

of the covariance matrix.

Tobin (1958) developed the separation theorem which states that, in the pres-

ence of a risk-free asset, the optimal risky portfolio can be determined without
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any knowledge of investor preferences. Ziemba, Parkan and Brooks-Hill (1974)

show that the solution to the portfolio problem involving a risk-free asset can be

obtained by a two-stage process; �rstly solving a deterministic linear complemen-

tarity problem and then an univariate stochastic program.

Sharpe (1963) proposed that the single-index, or `market', model was a suÆcient

model of covariance. Subsequently, Sharpe (1964), Lintner (1965) and Mossin

(1966) independently developed the Capital Asset Pricing Model. This linear

model of equilibrium asset prices explains the covariance of asset returns solely

through their covariance with the market. King (1966) presented evidence of the

in
uence of industry factors that the market model did not take into account.

Rosenberg (1974) presented a multi-factor model that incorporated industry and

other factors. Ross (1976) using factor analysis, developed the Arbitrage Pricing

Theory which is a multi-index equilibrium model.

Index or factor models allow a simpli�cation of the underlying QP. The covari-

ance matrix can be expressed in a diagonal form such that the quadratic objec-

tive function is a weighted sum of squares that is easily represented in a linear

form (see Sharpe (1971)). In the case that an index or factor model is not em-

ployed, the nature of the covariance matrix also permits a natural decomposition

of the quadratic objective term into a weighted sum of squares (see Vanderbei

and Carpenter (1993)). Standard techniques also exist for the piecewise linear

approximation of quadratic objective functions.

A number of researchers have introduced alternative measures of risk for portfolio

planning. In many cases these measurements are linear, leading to a correspond-

ing simpli�cation in the computational model. Konno and Yamazaki (1991) show

that the mean absolute deviation of returns is a risk measure equivalent to vari-

ance, under the assumption of multi-variate normal returns. Speranza (1996)

considers only the mean absolute value of negative deviations. Markowitz (1959)

suggested that semi-variance is the real cause for concern but variance is em-

ployed as the risk measure as it is more tractable computationally and reveals

the same information. Downside risk measures are typically used in dynamic

asset allocation problems (see Cari~no and Ziemba (1998)). Multi-objective goal

programming approaches have been proposed by Lee (1972) and Lee and Chesser

(1980). Young (1998) employs a minimax investment rule measuring risk as the

minimum return (maximum loss) that the portfolio would have achieved over all

of the past observation periods. A survey of alternative portfolio selection models

appears in Horniman et al. (2000).

Simpli�cations to the basic quadratic programming problem have allowed the

models to be extended to perform more realistic analysis, incorporating market

imperfections. Rudd and Rosenberg (1979) consider linear transactions costs.

Konno and Yamazaki (1991) suggest that an advantage of the MAD model is
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that it limits the number of stocks held, allowing control of transaction costs.

Adcock and Meade (1994) combine a modulus function for transaction costs with

the usual quadratic objective. Young (1998) describes how the minimax model

can be adapted to include linear transaction costs.

To capture the realism of portfolio planning we introduce the following restric-

tions:

(i) A Buy-in thresholds is de�ned as the minimum level below which an asset is

not purchased. This requirement eliminates the unrealistically small trades that

can otherwise be included in an optimised portfolio.

(ii) Cardinality constraints: Investors may wish to specify the number of stocks

in their portfolio because of monitoring and control issues.

(iii) Roundlots are de�ned as discrete numbers of assets which are taken as the

basic unit of investment. Investors are restricted to making transactions only

in multiples of these roundlots. This overcomes the assumption of the in�nite

divisibility of assets required in the development of the M-V rule.

Cardinality constraints are inherently linked with buy-in thresholds. For example,

a buy-in threshold of 5% of the value of a portfolio ensures that there can be no

more than 20 stocks purchased. Also, to model cardinality constraints requires

a buy-in threshold to be applied. Imposing these types of constraints on the

portfolio selection problem, necessitates the introduction of binary and integer

variables. The basic QP becomes a QMIP and, as a result, both the size and

complexity of the models are increased accordingly. Mansini and Speranza (1999)

have shown that �nding a feasible solution to the portfolio selection problem with

roundlots is NP-complete.

Bienstock (1996) and Lee and Mitchell (1997) use QMIP techniques to solve

the portfolio selection problem with an upper limit on the size of the portfo-

lios. Chang et al. (1999) use heuristic algorithms (genetic algorithm, tabu search

and simulated annealing) to solve cardinality constrained problems with speci-

�ed portfolio sizes. Linear programming based heuristics are used by Speranza

(1996), considering the negative semi-MAD model with cardinality constraints.

This model is extended in Mansini and Speranza (1999) to incorporate roundlots

and then in Kellerer, Mansini and Speranza (1997) incorporating both roundlots

and �xed costs. Young (1998) also shows how �xed transaction costs can be

applied to the linear minimax model.

The rest of this paper is organised as follows. In section 2 we introduce the

underlying portfolio planning model and discuss the construction of the eÆcient

froniter using two di�erent QP models. The algebraic formulations of the M-V
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model including buy-in thresholds, cardinality constraints and roundlot restric-

tions are introduced in section 3. We also discuss some theoretical issues of

discontinuities and missing sections of the eÆcient frontier in the presence of

discrete constraints (DCEF). In section 4 we discuss our solution methods and

present the computational results for datasets taken from �ve global stock mar-

kets. In addition, we also investigate the e�ects of the discrete constraints in the

context of the portfolio rebalancing problem. In section 5 we discuss our research

�ndings and present our conclusions. Appendix A contains the dataset used to

illustrate the shape of the DCEF in section 4.2.

2 Mean-Variance Model

The classical M-V model and an alternative approach to computing the `Markowitz

EÆcient' Frontier (MEF) are set out below. The basic notation is:

Indices:

i; j = 1; : : : ; N : denotes the di�erent risky assets

Parameters:

�i: the expected return of asset i

�ij: the covariance between asset i and asset j

(�ii = �2i is the variance of asset i)

�: the desired level of return for the portfolio

Decision variables:

xi: the fraction of the portfolio value invested in asset i

QP1:

Min ZQP1 =
NX

i=1

NX

j=1

xixj�ij

subject to

NX

i=1

xi�i = �

NX

i=1

xi = 1

xi � 0 i = 1; : : : ; N
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Varying the desired level of return, �, in QP1 and repeatedly solving the quadrat-

ic program identi�es the minimum variance portfolio for each value of �. These

are the eÆcient portfolios that compose the eÆcient set. Plotting the correspond-

ing values of the objective function and �, variance and return respectively, for

the eÆcient set traces the MEF in the mean-variance plane. Markowitz (1956)

describes a `critical line' solution algorithm tracing out the eÆcient frontier by

identifying `corner' portfolios - points at which a stock either enters or leaves the

current portfolio. It it is common to use standard deviation rather than variance

as the risk measure because the frontier is linear if a risk-free asset exists, see

Tobin (1958) and Ziemba et al. (1974).

An alternative formulation of QP1 explicitly trades risk against return in the

objective function using the Arrow-Pratt absolute risk aversion index RA (see

Kallberg and Ziemba (1983)). RA is de�ned as

RA = �
u00(w)

u0(w)

where w is the portfolio wealth and u0, u00 are the �rst and second derivatives of

a Von Neumann-Morgenstern utility function u.

QP1 can be stated alternatively as

QP2:

Max ZQP2 =
NX

i=1

xi�i �
RA

2

NX

i=1

NX

j=1

xixj�ij

subject to

NX

i=1

xi = 1

xi � 0 i = 1; : : : ; N

Solving for di�erent values of RA traces out the eÆcient frontier. Empirical

results by Kallberg and Ziemba (1983) show that RA � 6 leads to very risk averse

portfolios, 2 � RA � 4 represents a moderate absolute risk aversion and RA � 2

6



leads to risky portfolios. RA = 4 corresponds approximately to pension fund

management (typically, holdings of 60% stocks and 40% bonds). In practice it is

common to plot the MEF modelling the risk-return trade-o� using a parameter

�, 0 � � � 1, with the objective function

Min Z = �
NX

i=1

NX

j=1

xixj�ij + (1� �)
NX

i=1

xi�i:

Setting RA

2
= �

(1��)
shows equivalence with the objective function in QP2.

3 EÆcient Frontier with Discrete Constraints

3.1 Discontinuities in the DCEF

Discrete constraints, representing practical trading requirements, introduce dis-

continuities into the otherwise eÆcient frontier. To illustrate the appearance

of the discontinuities, we consider the small 4-stock example from Chang et

al. (1999)) with the following expected returns, standard deviations and cor-

relations.

Correlation Matrix Exp. Return Std. Deviation

Stock No. 1 2 3 4

1 1 0.004798 0.014635

2 0.118368 1 0.000659 0.030586

3 0.143822 0.164589 1 0.003174 0.030474

4 0.252213 0.099763 0.083122 1 0.001377 0.035770

Figure 1 plots the MEF for this dataset. From the 4 stocks we are to choose a

portfolio containing only 2 stocks. We can identify our opportunity set, Figure

2, by considering the 6 pairwise combinations of stocks. Ordering by risk and

return, we can eliminate the ineÆcient portfolios to reveal the discontinuous

DCEF shown in Figure 3.
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Figure 2: 4 stock example: Investment Opportunity Set
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Figure 3: 4 stock example: DCEF

3.2 Representation of Discrete Constraints

In the presence of threshold constraints the portfolio weights are semi-continuous

variables (see Beale and Forrest (1976)) modelled using variable upper and lower

bounds. A binary variable, Æi, and �nite upper and lower bounds, li and ui,

respectively, are associated with each asset 1 = 1; : : : ; N . The buy-in thresholds

are represented by the constraint pair

liÆi � xi � uiÆi and Æi = 0; 1 i = 1; : : : ; N:

We refer to model BUY-IN as QP1 with the above constraints added. Cardinality

constraints are simply modelled by constraining the sum of the binary variables

to be equal to, k, the number of assets required to be in the portfolio.

NX

i=1

Æi = k

Model CARD is model BUY-IN with this additional constraint.
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CARD:

Min ZCARD =
NX

i=1

NX

j=1

xixj�ij

subject to

NX

i=1

xi�i = �

NX

i=1

xi = 1

xi � ui � Æi

xi � li � Æi
NX

i=1

Æi = k

Æi = 0 or 1 i = 1; : : : ; N

Transaction roundlots, described as either numbers of stocks, or as a cash value,

are expressed as a fraction, fi, of the portfolio wealth. The portfolio weights

are then de�ned in terms of fi and an integer number of roundlots, yi. Thus,

xi = yifi, i = 1; : : : ; N . Applying roundlot constraints, it may not be possible to

exactly satisfy the budget requirement
PN

i=1 xi = 1. Therefore, this restriction is

made `elastic' using undershoot and overshoot variables, �� and �+, respectively,

which are penalized in the objective function with a high cost 
. In an optimum

solution �� and �+ are made as small as possible so that the fractional stock

holdings xi sum to a value `as close as possible' to 1.

LOT:

Min ZLOT =
NX

i=1

NX

j=1

yifiyjfj�ij + 
�� + 
�+

subject to

NX

i=1

yifi�i = �

NX

i=1

yifi + �� � �+ = 1

li � yifi � ui i = 1; : : : ; N
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yi integer i = 1; : : : ; N

��; �+ � 0

Buy-in thresholds and cardinality constraints can also be applied to model LOT.

3.3 Invisible Sections of the DCEF

To generate the DCEF for the example in section 3.1 we are able to use complete

enumeration. The same frontier can be generated by repeatedly solving model

CARD with k = 2. Model CARD is based on QP1, however, using QP2 as

the underlying model prevents the full DCEF from being generated. In order to

explain the `missing' sections, consider the objective function of QP2

Max ZQP2 =
NX

i=1

xi�i �
RA

2

NX

i=1

NX

j=1

xixj�ij:

This can be rewritten as the equation of the straight line, e = mv + c, where e

is the expected return, v is the variance, m = RA

2
and ZQP2 is the e-intercept,

c. Maximising ZQP2, for any given value of RA, corresponds to maximising the

e-intercept, for a speci�ed gradient. Drawing, over the feasible region, the family

of lines described by any non-negative value of RA, the e-intercept is maximised,

uniquely, at the point of tangency with the upper-left border of the region. Sys-

tematically varying RA, from zero upwards, changes the point of tangency and

traces out the entire frontier. See Figure 4.

Applying this method to the non-convex region in Figure 2, we begin on the

curve MEF 1-3 and slide continuously down until we �nd tangency with the

curve MEF 2-4. The result is that our point of tangency `jumps' to the lower

curve maintaining smoothness in the increasing gradient but missing out some

eÆcient points. See Figure 5. The missing parts of the DCEF are also shown in

Figure 6.
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Figure 4: Tracing Out The EÆcient Frontier
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Figure 5: The gradient of the objective function of the `lambda' formulation, model QP2
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Figure 6: `Invisible' sections of the DCEF

4 DCEF - A Computational Study

We investigate the shape of the DCEF for the BUY-IN, CARD and LOT models

using 60 monthly returns (October 1994 to September 1999) for 30 stocks drawn

randomly from the FTSE 100. We consider model CARD in detail for 5 datasets

drawn from the Hang Seng, DAX, FTSE, S&P and Nikkei indices with 31, 85,

89, 98 and 225 stocks respectively (Beasley (1999), Chang et al. (1999)). To

compute the solutions to these models within an acceptable time frame we use two

heuristic solution procedures;`integer restart' and `reoptimisation' on a reduced

set of stocks. We compare our results to those of Chang et al. (1999), obtained

using modern heuristic methods (genetic algorithm, tabu search and simulated

annealing).

4.1 Implementation

Software Tools

The models are implemented using MPL, a mathematical programming language

(Maximal (1999)). Alternatively, AMPL (Fourer et al. (1993)) can be used. The
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solver system used is FortQP (Mitra et al. (2000)). A VBA routine drives the

system from EXCEL where the input and output data is stored. See Figure 7.

The system is run on a Pentium III PC, 500 MHz with 128 MB RAM using

Windows NT.

Excel/VBA
- data storage
- driving application

MPL/AMPL

calls

sends data

sends to    solver

FortQP
resultsSolution file

 reads   solution

Adjusts MPL/AMPL

Model file

Figure 7: Data - Modeling - Solver Architecture

Solution Methods

Each point of the DCEF curve represents the global optimum solution of a `dis-

crete non-convex' optimisation problem. Given that the quadratic form for the

minimisation problem is positive semi-de�nite, relaxing the discreteness restric-

tion on the variables leads to a convex programming problem. This continuous

variable QP relaxation of the problem provides a lower bound and is easily em-

bedded (see Mitra (1976) and Lawler and Wood (1966)) in a branch-and-bound

tree search paradigm.

The FortQP system implemented within the FortMP (Ellison et al. (1999))

solver has both interior point method (IPM) and sparse simplex (SSX) solution

capabilities. The system is extensively tested using QLIB test data (Maros and

Meszaros (1997)) and models from the �nance industry. For the given family

of QMIP problems at hand the branch-and-bound algorithm has been specially

constructed taking into consideration the following design issues:

SSX versus IPM

In medium to large test problems IPM performs better than SSX. Yet as an
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embedded solver of sub-problems within branch-and-bound it is not well-suited

since the `warm start' property of IPM is extremely poor. We have therefore

chosen SSX as our embedded `optimisation engine' for solving sub-problems.

Information Sharing and Algorithm Choice

In solving the sub-problems in the child node we share (reuse) the optimum

basis information (basis list and the basis factors) of the parent node. We also

apply the dual algorithm which reduces the total number of pivotal steps for

reoptimisation. These features also justify our choice of algorithm and vindicates

the useful `warm start' properties of the SSX.

Integer Restart Heuristic

In the construction of the DCEF involving, say, 500 points we are unlikely to

solve all of these models to QMIP optimality. As a consequence, we are likely

to lose the `pareto eÆcient' property of the frontier and our experiments con�rm

this. We do, however, adopt a scheme of computing the DCEF from the highest

return, and its corresponding risk, to lower return and reduced risk. We use the

previous integer solution in this sequence as the `�rst feasible and upper bounding

QP value' for the next point (problem). This has the e�ect that `within the band

of sub-optimality' the DCEF points are `eÆcient'.

We believe, and our experimental results vindicate (see section 4.2), that this

approach is preferable to applying modern heuristics to this discrete non-convex

programming problem.

Reoptimisation Heuristic

To re
ect common practice (in the absence of a QMIP solver) we employ a sim-

ple heuristic solving 2 continuous QP problems for each QMIP CARD problem.

The portfolio size restriction and buy-in thresholds are initially ignored and the

equivalent version of QP1 is solved. If there are at least k stocks in the optimal

portfolio, QP1 is solved again using only the k stocks with the largest weights.

Imposing the buy-in thresholds as explicit lower bounds in the reoptimisation re-

sults in a portfolio with exactly k stocks above the appropriate buy-in thresholds.

4.2 Computational Results

Shapes of DCEFs

The discrete eÆcient frontiers corresponding to the three models, BUY-IN, CARD

and LOT, for the 30 stocks from the FTSE 100, are shown in Figure 8. Figure

8a) shows the DCEF for model BUY-IN with a 20% threshold. Figure 8b) shows

the DCEF for model CARD with k = 4 and a threshold of 10%. Figure 8c) shows

the DCEF for model LOT with a uniform lot size of 5% of the portfolio value.

In each instance there are clear discontinuities in the frontiers.
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a) BUY-IN

b) CARD

c) LOT

Figure 8: Shapes of DCEF frontiers

`Integer Restart' and `Reoptimisation' Heuristics

We investigate our heuristic approaches using model CARD for the 5 dataset-

s drawn from the Hang Seng, DAX, FTSE, S&P and Nikkei indices. We set

li = 0:01; i = 1; : : : ; N and use the cardinality restriction k = 10. To anal-

yse the experimental results we follow the metric used in Chang et al. (1999).

Error values for points on the heuristically obtained DCEF are measured as the

minimum absolute distance (vertical or horizontal) from the MEF as the exact

DCEF is not calculated. Therefore, the reported `errors' mainly re
ect the sys-

tematic deviations due to the discrete constraints. Using the same metric allows

a comparison with the modern heuristic results of Chang et al. (1999).
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Integer Restart Heuristic

The QMIP problems are solved to the second, improving, feasible integer solution

subject to a limit of 500 nodes in the branch-and-bound algorithm. Figure 9 shows

the DCEF for the S&P dataset plotted against the MEF.
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Figure 9: DCEF: S&P - 98 stocks

Table 4.1 presents the results for the integer restart method applied to the �ve

datasets. The table includes the mean and median percentage errors, the total

number of DCEF points computed, the number of integer optimal points and

the total solution time in seconds. The number of optimal points obtained does

not appear to in
uence the size of the errors observed, suggesting that when

optimality is not reached, the second integer solution is a good approximation of

the optimal solution.

For each dataset the mean error is below 0.02% with the median error below

0.015%. In all instances, the mean is greater than the median indicating positively

skewed error distributions. The size of the errors reported indicate that the

DCEFs obtained are very close to the corresponding MEFs. This is borne out by

a mean error of 0.008% (median error 0.006%) for the DCEF solved to optimality

(3000 points) for the Hang Seng.

In order to establish the computational advantage of the integer restart heuristic
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Index
No. of
Stocks

Total no.
of DCEF

pts

No. of
integer

optimal pts

Solution
time *

Mean Error
Median

Error

Hang Seng 31 500 492 57.55 0.01415 0.00997

DAX 85 500 228 8405.33 0.01399 0.01159

FTSE 89 500 244 10978.12 0.01141 0.00860

S & P 98 500 192 15831.97 0.01586 0.01325

Nikkei 225 500 486 18345.56 0.00618 0.00252

Hang Seng 31 3000 3000 382.21 0.00826 0.00628

Table 4.1: Results for the integer restart heuristic

we also calculate the DCEF without starting with the previous solution vector.

The integer restart heuristic �nds more non-dominated points and more optimal

points with a smaller mean deviation in less time. To achieve similar error and

optimality results the number of nodes to be searched in the B&B algorithm

needs to be increased. For example, for the S&P dataset the number of nodes

has to be increased from 500 to 2500 but the solution time also increases �vefold.

Reoptimisation Heuristic

The results of the reoptimisation heuristic are displayed in Table 4.2. For each

dataset we consider 500 points. The discrepancy between this and the number of

discrete points obtained corresponds to those portfolios with less than 10 stocks

after the initial optimisation and the infeasible solutions (not achieving the de-

sired level of return) from the reoptimisation. The number of DCEF points refers

to the number of eÆcient discrete points.

Index
No. of

Stocks

Total no.

of  MEF

pts

No. of

discrete

pts

No. of

DCEF pts

Solution

time *

Mean

Error

Median

Error

Hang Seng 31 500 104 103 10 0.00021 0.00051

DAX 85 500 356 349 37.53 0.01444 0.01155

FTSE 89 500 375 355 36.18 0.01014 0.00715

S & P 98 500 356 278 44.93 0.01652 0.01356

Nikkei 225 500 376 374 280.92 0.00316 0.00151

Table 4.2: Results for the reoptimisation heuristic

When the reoptimisation heuristic can be implemented it appears to o�er a good

approximation of the true solution. Again the mean errors are all below 0.02%
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with the median errors all below 0.015%. The reoptimisation also reproduces the

positive skewness in the error distributions.

Integer Restart versus Reoptimisation Heuristic

The reported errors are similar for both methods although the reoptimisation

heuristic is faster. However, the reoptimisation method cannot generate the en-

tire frontier if any of the portfolios on the MEF contain less than k stocks. Also,

reoptimising can generate ineÆcient points. Ignoring these ineÆcient portfolios

leads to a coarser approximation of the true DCEF. Figure 10 shows the DCE-

F computed by the reoptimisation heuristic plotted against the DCEF for the

restart method.
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Figure 10: Restart and Reoptimisation DCEF's: S&P - 98 stocks

Comparison with Modern Heuristic Methods

Both the integer restart and reoptimisation heuristics outperform the modern

heuristic methods of Chang et al. (1999) who report average mean and median

deviations in excess of 1% (see Table 4.3). Clearly this makes both of our heuristic

schemes very attractive, from the point of view of the quality of the discrete

solution. The computational times are diÆcult to compare. Unfortunately, it

is not possible to further compare the results since their full DCEFs are not

available (Beasley (2000)).
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Index
No. of

Stocks
Solution Method

No. of

efficient

points

Mean Error Median Error

Hang Seng 31 Integer restart heuristic 500 0.01415 0.00997

3000 0.00826 0.00628

Rounding heuristic 103 0.00021 0.00051

GA heuristic 1317 0.94570 1.18190
TS heuristic 1268 0.99080 1.19920

SA heuristic 1003 0.98920 1.20820

pooled (GA, TS, SA) 2491 0.93320 1.18990

DAX 85 Integer restart heuristic 500 0.01399 0.01159

Rounding heuristic 349 0.01444 0.01155

GA heuristic 1270 1.95150 2.12620

TS heuristic 1467 3.06350 2.53830
SA heuristic 1135 2.42990 2.46750

pooled (GA, TS, SA) 2703 2.19270 2.46260

FTSE 89 Integer restart heuristic 500 0.01141 0.00860

Rounding heuristic 355 0.01014 0.00715

GA heuristic 1482 0.87840 0.59600
TS heuristic 1301 1.39080 0.71370

SA heuristic 1183 1.13410 0.63610

pooled (GA, TS, SA) 2538 0.77900 0.59380

S & P 98 Integer restart heuristic 500 0.01586 0.01325

Rounding heuristic 278 0.01652 0.01356

GA heuristic 1560 1.71570 1.14470

TS heuristic 1587 3.16780 1.14870

SA heuristic 1284 2.69700 1.12880

pooled (GA, TS, SA) 2759 1.31060 1.06860

Nikkei 225 Integer restart heuristic 500 0.00618 0.00252

Rounding heuristic 374 0.00316 0.00151

GA heuristic 1823 0.6431 0.6062
TS heuristic 1701 0.8981 0.5914

SA heuristic 1655 0.637 0.6292

pooled (GA, TS, SA) 3648 0.569 0.5844

Table 4.3: Comparison with modern heuristic approaches

4.3 Investigation of a Portfolio Rebalancing Problem

We apply cardinality constraints to the portfolio rebalancing problem. The aim

is to identify the trades required to adjust the initial asset holdings such that the
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optimised portfolio tracks (in terms of variance) a target portfolio or index. The

cardinality constraint restricts the number of trades that can be made.

The optimal portfolio weights, xi, are now de�ned in terms of the initial holdings,

ni, and the amounts bought, bi, and sold si. Thus, xi = ni+bi�si. We introduce

binary variables, Æbi and Æsi , to indicate if asset i bought or sold. Constraining the

sum of each pair to be at most 1 prevents an asset being both bought and sold:

Æbi + Æsi � 1 i = 1; : : : ; N:

Buy-in thresholds, LBb
i and LBs

i , and upper bounds, UB
b
i and UBs

i , apply to the

buying and selling variables respectively:

ÆbiLB
b
i � bi � ÆbiUB

b
i i = 1; : : : ; N

ÆsiLB
s
i � si � ÆsiUB

s
i i = 1; : : : ; N:

The cardinality constraint restricts the sum of all the binary variables, the number

of trades made, to be no greater than k:

NX

i=1

(Æbi + Æsi ) � k:

In practice it is common to employ a factor model to describe asset returns.

Tracking a target portfolio then involves replicating the risk pro�le (the vector of

factor sensitivities) of the target portfolio. For C factors, with fc being the level

of the cth factor, �ic the sensitivity of asset i to factor c, �i the mean return of

asset i and �i the speci�c return of asset i, asset returns ri, are given by

ri = �i +
CX

c=1

�icfc + �i:

The factors are constructed such that there is no correlation between the factors,

no correlation between the factors and speci�c returns and it is assumed that the

speci�c returns are uncorrelated. The variance of returns is given by

V ar(ri) = �2i =
CX

c=1

�2ic�
2
fc
+ �2�i

21



Denoting the sensitivity of the index to factor c by Ic, the initial the portfolio

rebalancing model can be stated as

REBALANCE:

Min ZREB =
CX

c=1

y2P;c�
2
fc
+

NX

i=1

x2i�
2
�i

subject to

yP;c = (
NX

i=1

xi�ic)� Ic c = 1; : : : ; C

NX

i=1

xi�i � �

NX

i=1

xi = 1

xi = ni + bi � si

ÆbiLB
b
i � bi � ÆbiUB

b
i

ÆsiLB
s
i � si � ÆsiUB

s
i

Æbi + Æsi � 1
NX

i=1

(Æbi + Æsi ) � k

xi, bi, si � 0

Æbi , Æ
s
i = 0 or 1 i = 1; : : : ; N:

We implement this model for 2 �xed income datasets. The �rst problem is to

rebalance a given 20 bond portfolio, using at most 6 trades, to track an index of

330 bonds. The second problem involves a portfolio of 49 bonds tracking an index

of 391 bonds, with a limit of 10 trades. For each problem we plot 200 points on

the DCEF using the same integer restart and reoptimisation heuristics as before.

3 factors (explaining 90% of the total variance) are used in the model to describe

returns. In the optimisations, residual risk is ignored making the factor risk of

the target indices the focus of the model. Figures 11 and 12 show the DCEFs for

these problems. For the smaller of the two datasets all of the restart solutions

are integer optimal. For the larger dataset most solutions are integer feasible.
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Figure 11: Rebalancing: 20 bonds, 6 bonds traded

0.015

0.020

0.025

0.030

0.035

0.000 0.010 0.020 0.030 0.040 0.050 0.060

Tracking Error

R
et

u
rn

MEF

DCEF - reoptimisation

DCEF - integer restart

Figure 12: Rebalancing: 49 bonds, 10 bonds traded
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When constructing a new portfolio, the relative positions of the MEF and DCEF,

are determined by the number of stocks in a portfolio on the MEF and the size

of the cardinality constraint. For the rebalancing problem it is the number of

trades identi�ed by a portfolio on the MEF, the cardinality constraint and also

the initial holding that a�ect the relative positions of the frontiers.

5 Discussion and Conclusions

5.1 Comparative results

The use of QMIP enables us to use discrete constraints and capture important

features of real-world problems. For the DCEF we highlight the discontinuities

which follow as a consequence of imposing discrete constraints. We also explain

why the risk-return trade-o� cannot be used to construct the entire DCEF. Com-

puting the entire `DCEF to optimality' for even a reasonable size model remains a

computationally intractable task We show that by `integer restarting' the QMIP

with the previous solution we are able to generate a reasonable number of optimal

and near optimal points within a restricted branch-and-bound search. We intro-

duce a simple `reoptimisation' heuristic which proves to be computationally very

eÆcient in constructing parts of the DCEF. Both methods outperform modern

heuristic approaches.

The integer restart heuristic appears to be a valid method for investigating the

problem of portfolio rebalancing. The reoptimisation heuristic performs relatively

poorly as the restart DCEF dominates the reoptimisation DCEF in both cases

studied. We also observe that in real applications the interest is not so much

to construct the entire frontier accurately but to identify (and `zoom in' to) an

appropriate `risk-return' segment where a number of alternative exact portfolios

can be constructed.

5.2 Solution Systems: current state-of-the-art

The solution of convex quadratic programs by sparse simplex (Mitra (1976)) or

by the interior point method (see Vanderbei (1994)) are now well established.

Although there exist large sets of test data for QP problems they are not im-

mediately relevant in the context of portfolio planning. It is also possible to

apply any nonlinear solver such as the ones provided by NAG (NAG 1999) or

that found within EXCEL. There are many commercially available solvers, such

as those provided by MathSoft (NUOPT (1998)), Operations Research Systems
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(GIANO 1999), Advanced Portfolio Technology (APT (2000)) amongst others.

Commercial LP systems such as CPLEX and OSL also provide QP solver ca-

pability. Chang et al. (1999) provide heuristics for obtaining good sub-optimal

solutions but they are not able to solve a discrete portfolio problem to optimality

for a given data set. The authors are aware of only one other QMIP system

(GIANO) but no scienti�c description or performance �gures are available in the

open literature.

Our experience vindicates that a branch-and-bound solver which uses the SSX

for solving QPs is the most attractive avenue. In this approach the `warm start'

feature of the SSX is exploited which, unfortunately, rules out using IPM since

its restart properties are relatively poor. Finally, we would like to highlight that

our relative success in computing the `near optimal' DCEF is due to the use of

`warm start' and dual SSX and `integer restart' using the previous solution which

speeds up the computation of the next eÆcient point.

5.3 Future Directions

The success of the very simple reoptimising heuristic suggests that there may

be some bene�t in investigating a re�ned version that can overcome some of

the drawbacks. Although the integer restart method produces good sub-optimal

results there is some scope of improving solver performance using pre-processing

techniques.

Our study shows that the portfolio rebalancing problem with discrete constraints

should be investigated more thoroughly. Particularly, the relationship between

the cardinality constraint and the initial holding requires further exploration.

The QMIP capability will also allow the discrete models to be extended to in-

corporate short sales and transaction costs. It also be interesting to observe the

e�ect these extensions have on the shape of the eÆcient frontier.

A natural extension is to implement the practical, discrete, constraints in dynamic

multi-period models (Ziemba and Vickson (1975), Ziemba and Mulvey (1998)).
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A Illustrative Dataset

Average monthly returns and covariances from 5 years' data for 30 FTSE stocks.

Stock no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Expected Return 1.9231 0.3950 0.9231 2.1234 0.5822 2.4004 2.3603 0.7932 1.1049 0.7388 1.1954 0.5775 2.5019 0.3152 1.5001

Stock no. 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Expected Return 1.8989 1.7460 1.2366 1.2509 0.7493 1.2468 2.4568 2.3528 0.6651 3.4346 0.6886 1.3782 2.2393 1.8350 1.4522

Expected Return

Covariance Matrix

Stock 1 Stock 2 Stock 3 Stock 4 Stock 5 Stock 6 Stock 7 Stock 8 Stock 9 Stock 10 Stock 11 Stock 12 Stock 13 Stock 14 Stock 15
Stock 1 44.3591
Stock 2 12.5813 55.4118
Stock 3 5.9673 0.4586 41.0694
Stock 4 13.1064 5.3978 -1.1127 38.8121
Stock 5 4.8330 11.8629 3.8800 9.3633 40.1504
Stock 6 31.8484 15.7188 2.3163 7.4252 10.3679 61.8480
Stock 7 36.4109 23.3858 -9.0213 21.4845 11.4553 45.0002 89.0782
Stock 8 15.4496 10.2141 8.5785 5.3165 7.5599 26.1761 28.0091 44.2418
Stock 9 3.3790 -3.9218 11.2122 -0.8193 -4.1408 3.8793 2.3141 -2.3792 49.2997
Stock 10 14.4884 14.0008 0.3506 1.7166 25.1077 16.9762 27.0829 19.7745 -4.6766 60.4822
Stock 11 4.8061 15.6431 -8.1843 1.6400 8.6543 14.2046 20.1257 10.4054 -4.0006 23.8506 37.8261
Stock 12 6.3673 -1.7339 9.3644 -0.0434 7.7353 13.6164 8.3009 13.2075 8.7405 1.2429 -6.3669 31.9311
Stock 13 17.5273 19.4895 10.0226 13.3435 21.5076 19.8401 26.1493 21.5748 -13.9164 31.2236 16.4499 -1.6659 77.1391
Stock 14 20.3714 21.4225 -0.9602 -0.9443 17.0215 35.5623 51.5795 31.6692 -13.5125 35.2425 19.1531 11.9854 33.9238 82.2687
Stock 15 4.6626 7.7249 13.9976 -3.2001 7.0223 11.9670 3.3668 -1.0326 11.2959 9.3192 6.4534 -4.7699 11.4253 3.9857 64.0410
Stock 16 6.9818 -4.8496 9.8336 -0.1453 7.4180 4.3640 5.3660 12.1749 9.4513 19.1732 3.8130 8.1015 8.9752 4.5364 -4.8198
Stock 17 9.2554 -0.9581 4.8525 -1.8828 -0.6854 11.8507 12.8461 9.9904 9.7687 -3.3282 -13.3500 9.8185 -10.6832 6.7398 5.3612
Stock 18 9.9860 9.5638 15.6003 11.0239 20.3285 20.9279 22.5954 25.0349 11.5507 21.2028 4.1351 0.5254 28.4416 24.1109 20.8041
Stock 19 10.8073 21.7486 0.5542 11.4746 9.7190 14.1490 14.9537 8.9985 0.0905 7.1867 8.3512 3.0824 7.2041 9.2856 1.0705
Stock 20 6.3428 -1.3307 -7.7636 11.6846 8.2683 11.3679 22.5338 20.3737 -8.8334 12.1690 5.5548 3.6094 17.8511 22.7147 0.1103
Stock 21 17.4619 10.1502 10.6081 3.9556 9.6999 19.9152 23.9791 19.4550 5.5415 14.0175 -1.3558 8.5733 15.4246 19.6629 14.3351
Stock 22 0.9183 2.6363 3.9260 12.6739 17.1122 12.3284 9.5956 11.0185 -0.2397 7.5793 -5.9742 3.5035 7.5169 8.8428 13.3204
Stock 23 6.2159 7.2150 5.8835 4.5602 15.4986 23.7688 27.1578 25.5365 3.2994 14.9532 7.0658 13.5514 18.1989 22.4374 4.8242

Stock 24 8.0790 15.9699 5.8752 3.5692 14.7254 14.1447 19.9735 16.9202 1.1718 19.2443 7.8282 4.9043 19.0235 28.8589 8.9305
Stock 25 -2.7174 -9.7647 -11.1966 -8.4836 10.5996 11.2000 -4.4236 12.7476 -9.8964 13.8600 7.3210 3.6247 13.0249 -0.2227 -4.4157
Stock 26 17.9332 1.1008 -5.1822 1.5520 4.8314 30.4307 31.6643 29.9974 -2.5327 21.1830 20.5619 11.7268 22.7388 48.3054 -7.4816
Stock 27 -0.5185 2.0338 -0.3383 -4.4157 3.6868 4.7662 6.2970 15.4424 -0.2073 19.4279 5.7230 -4.7336 20.7437 11.8125 10.9219
Stock 28 12.0854 28.2566 -8.7473 1.9600 23.9601 19.8818 29.4014 15.2403 -16.0066 34.3006 17.7291 3.7221 26.8055 36.4593 -8.8789
Stock 29 13.8039 3.9858 5.1420 16.6629 2.9495 17.1986 19.2041 3.3403 4.7296 2.7432 0.3909 8.1764 4.9850 8.1445 6.0819
Stock 30 10.3900 16.6060 3.5069 6.4344 18.8809 25.5144 34.9891 32.0006 -12.3490 26.4902 9.0255 9.7111 19.1408 39.2370 1.7386

Stock 16 Stock 17 Stock 18 Stock 19 Stock 20 Stock 21 Stock 22 Stock 23 Stock 24 Stock 25 Stock 26 Stock 27 Stock 28 Stock 29 Stock 30

Stock 16 38.4227
Stock 17 -0.7394 40.6584
Stock 18 7.0093 14.5095 79.4799
Stock 19 -7.2643 0.9579 6.7248 37.7253
Stock 20 6.4249 5.3646 18.4547 3.0081 44.6980
Stock 21 11.1846 12.1726 16.6755 7.1091 3.6814 39.3485
Stock 22 -7.5054 4.7289 23.5466 9.2018 15.2742 6.4136 48.9834
Stock 23 2.7644 14.6693 27.5381 6.5745 14.7446 12.5524 16.4556 60.0240
Stock 24 5.2109 6.3461 28.5846 10.7705 18.1423 12.5216 9.8386 9.2266 34.4239
Stock 25 14.0825 -4.7384 10.5420 -1.0552 13.0105 0.4526 -7.3964 5.3785 1.1923 84.3889
Stock 26 17.5917 3.7492 12.1592 -0.0140 30.0701 7.5221 -3.0085 17.4780 18.4134 21.2663 88.3961
Stock 27 12.5256 -4.0824 18.8931 -3.6541 14.9177 11.7879 10.2016 6.4771 12.9987 2.3873 14.2432 42.6852
Stock 28 13.6664 -3.0415 12.5306 17.3668 19.5915 11.2792 7.0790 8.6710 22.0286 15.9701 26.1601 15.5715 65.1371
Stock 29 0.0887 4.8677 2.7280 11.7927 5.9487 9.7819 6.5569 3.8675 9.8203 -7.4017 9.4172 1.2209 2.0285 33.3388
Stock 30 6.9190 5.4667 22.9398 17.0197 21.6440 14.5880 23.7345 27.0986 20.3379 10.7548 19.9260 12.9230 30.2109 6.6499 51.9320

30


