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FX and FX Options markets –

stylised empirical observations

• Volatility (both implied and historical) 
changes randomly, fx options markets imply 
skews / smiles, jumps in underlying are 
observed.

• A key feature in fx options which is NOT 
observed in other markets is stochastic skew 

ie risk-reversals change in magnitude and 
actually also change sign on a moderately 
frequent basis (cf Equity options which are 
nearly always negatively skewed). 



Vanilla options on spot fx rate

• Just as with other asset-classes, vanilla 

(standard European) options are very 

actively traded.

• Recall that the prices of vanilla options only 

depend upon the terminal distribution of the 

spot fx rate.



Barrier options on spot fx rate

• Unlike other asset-classes, there is a liquid 

and active market in barrier options. Many 

different types of barrier options are traded, 

eg double barrier knockout, knockin, window, 

with and without rebates, but the most liquid 

and actively traded are Double-No-Touch 

(DNT) options. 

• DNT options pay one unit of domestic 

currency (at maturity) if neither a lower 

barrier nor an upper barrier are ever hit 

before maturity and they pay zero otherwise.



Joint calibration?
• It would be desirable to calibrate one’s model 
to both barrier and fx options. This is 
because:

• (a) Unlike vanilla options, barrier (eg DNT) 
options depend upon the full distribution of 
spot fx rates at all times up to and including 
maturity so they contain finer information 
about future spot fx rates (in the risk-neutral 
measure).

• (b) Traders would, of course, like a model 
which can match the market prices of barrier 
(especially DNT) options, since they are so 
actively traded.



Joint calibration?
• Therefore, it would be desirable to calibrate 
one’s model to both barrier and fx options.

• But this is easier said than done.

• This is because one could try and calibrate 
two different models to vanilla options eg

• (a) a Dupire (1994) local vol model

• (b) a Bates (1996) model (Heston-style 
stochastic vol plus jumps), perhaps making 
some of the parameters time-dependent.



Which model does one choose?
• Both these models could be calibrated very well to 
the vanilla options surface.

• Unfortunately, these two different models will give 
two different prices for DNT (or other barrier) 
options.

• Neither may coincide with the market price.

• One model might be better for, say, shorter-dated 
DNT options and the other better for longer-dated 
DNT options.

• The question is: Which model would one choose?



Utopia
• WIBNI if we could have a model that can 
capture all the empirical features of the fx 
markets (eg jumps, stochastic vol, stochastic 
skew) and which also has something akin to 
a semi-automatic or semi-autonomous 
calibration to both vanilla fx options and 
barrier fx options.

• Lets see how we could do it.



Notation

• Today (the initial time) denoted by 

• Calendar time denoted by     .

• We work only in the (non-unique) risk-neutral 

measure, which we denote by       .

• Expectations, at time    , under     denoted 

by   

• Spot fx rate (number of units of domestic 

currency per unit of foreign currency) 

denoted by       . Write   
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Notation

• Domestic (respectively foreign) interest-rates are 

constant and denoted by       (respectively    ).

• Price, at time      , of a domestic bond, maturing at 

time     , is denoted by              ie 

• We introduce lower and upper barriers         and 

which correspond to the barrier levels of the DNT 

(or other barrier) options to which we’ll calibrate.

We call           the “corridor”. (Assume                   ).
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• We denote the first exit time of the spot fx 

rate from the corridor by       ie

or            . 

• Set            if spot fx rate has never exited 

from the corridor.
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First key assumption

• We assume that, at time      and while              

, the dynamics of the spot fx rate, 

under     , are such that we can compute the 

Laplace Transforms of certain quantities of 

interest (essentially the LT of joint probability 

distribution of       and        ).

• This is a reasonably flexible assumption.
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Risk-neutral dynamics of the spot fx rate

• Number of possibilities for the dynamics: 

• The Kou (2002) Double Exponential Jump-Diffusion (DEJD) 

model.

• Or a jump-diffusion process with an arbitrary number of sums of 

double exponential jumps and where the diffusion volatility and 

the jump intensity rates are stochastic and driven by a Markov 

chain. We christen this the CEE2 process and this is the 

process we consider in the paper (can be used (see Asmussen 

et al. (2005)) to approximate a time-changed CGMY process or 

indeed a time-changed Levy process for any Levy process with 

a monotone Levy density eg CGMY, Generalised Hyperbolic, 

NIG (although some parameter restrictions may apply)). 

• We conjecture (unproven) that it may possible to use the 

Markov chain regime-switching MMGBM model of Di Graziano 

and Rogers (2006).



We assume Kou (2002) DEJD 

dynamics in this talk

• However to fix ideas, we’ll assume that the 

dynamics, while               ie while the spot 

fx rate has never exited the corridor, are 

those of the Kou (2002) Double 

Exponential Jump-Diffusion (DEJD) model 

in this talk.

∞=τ



Hence, we assume, under      :

where          ,          (gives up jumps),

(down jumps), and           for each           is a 

compound Poisson process with 

exponentially distributed jump amplitudes 

with mean         . Furthermore          

denotes Brownian increments and        

denotes a constant volatility term.
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Second key assumption

• At the instant that the spot fx rate first exits 

from the corridor, ie at          , we assume the 

dynamics (under     ) can change. The only 

practical requirement is that these dynamics 

are such that we can compute the Laplace 

Transform of the characteristic function 

(preferably in closed form). 

• => We could use any Levy process model 

and some time-changed Levy processes.
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• We want to price DNT and vanilla options 

rapidly to allow fast calibration.

• Pricing DNT options (or double barrier 

knockout options) with barriers at        and    

is now straightforward using Kou and Wang 

(2003) and Sepp (2004) since the change of 

dynamics at the first exit time from the 

corridor is irrelevant as then the option 

expires worthless.

• Now we are done for pricing these barrier 

options !

UL



Pricing vanilla options

• Now we want to price vanilla options.

• By “in-out” parity, the price of a vanilla 

equals the price of a double barrier knockout 

plus the price of a double barrier knockin.

• But, as on the last slide, we can price double 

barrier knockout options using Kou and 

Wang (2003) and Sepp (2004).

• All we have to do is price a double barrier 

knockin option with the same strike and 

maturity as the vanilla and we are done !



Remember the spot fx rate can first exit the 

corridor in one of 4 ways:

(1)Diffuse through upper barrier =>

(2)Jump (overshoot) through the upper barrier 

=>                                             for some 

(3)Diffuse through lower barrier =>

(4)Jump (overshoot) through the lower barrier 

=>                                             for some 
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Let us denote by                               the price, 

at time     , of a vanilla option with strike        

and remaining time to maturity equal to    

ie                        is the UNDISCOUNTED 

vanilla price. We can think of a double 

barrier knockin option as paying a vanilla 

option at time     , the first exit time from the 

corridor          .
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• So we can write the price                           

at time      of a double barrier knock-in as:

where 

(        and      remind us that the barrier was 

overshot)
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• From Kou and Wang (2003), we can show:

• (here        and 

)

(here         and

)

• This is a key result for us. It is not true for all 

jump processes but holds in the DEJD model 

(more or less, follows from the memory-less 

property of the exponential distribution). We 

derive a somewhat analogous result for our 

CEE2 process in the paper.
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• The last slide plus the linear homogeneity 

property of vanilla option prices =>

( ) ( )( ) ( ) ( )( )

( )( ) ( )( ) ( )( )

( )( ) ( ) ( )( )

( )( ) ( )( ) ( )( )∫

∫

−

∞−

∞

+

−−−∈<+

−∈=+

−−−∈>+

−∈==

0

222

0

0

111

0

,exp,1exp,Pr

,,exp,Pr

,exp,1exp,Pr

,,exp,Pr

dxTxKLVxbbdslX

TKltSVdslX

dxTxKUVxbbdsuX

TKutSVdsuXsg

τρττ

τττ

τρττ

τττ



• But now we can make progress in evaluating  

because we have 4 

terms each of which is form of a convolution.

Hence:
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“Probability-like” terms
• Our last equation involves eight Laplace Transforms.

• The four on the LHS of each line are: 

• Need to be computable in closed form (this was our First 
Key Assumption).

• Furthermore, in some models they are indeed computable: 

• eg Kou (2002) DEJD model. 

• eg The CEE2 process which we consider in the paper (ie a 
jump-diffusion model with an essentially arbitrary number of 
sums of double exponential jumps and with stochastic 
diffusion volatility and jump intensity rates driven by a 
continuous-time Markov chain). 
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“Option price-like” terms
• Using Fourier methods, we can write vanilla option 
price as essentially an integral involving the 
Characteristic Function.

• Hence the Laplace Transform of vanilla option 
price is essentially an integral involving the 
Laplace Transform of the Characteristic Function.

• The integrals over       in the terms 

can be done analytically.
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• Hence we can compute the Laplace Transform of 

with 4 Fourier inversions and hence compute 

and hence                                by Laplace 
inversion.

This gives us the price of a double barrier knockin 
option. 

We already know how to price double barrier 
knockout prices.

Hence by “in-out” parity we can compute vanilla 
option prices.
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Model Recipe Stage 1

• What we have is a very flexible framework.

• While              ie before the first exit time 

from the corridor, we assume that the 

dynamics are such that we can compute the  

“probability-like” terms eg the Kou (2002) 

DEJD model (but, as already indicated, other 

richer models such as our CEE2 process are 

possible with only modest changes to the 

equations we have derived).

∞=τ



Model Recipe Stage 1 

continued
• Calibrate the model parameters by fitting to 

the market prices of DNT (or other double 

barrier) options with barriers at       and       . 

• Then price double barrier knockout options 

(with the same strikes and maturities as the 

vanilla options) using these same estimated 

parameters. Subtract these latter prices from 

the vanilla option (market) prices to give the 

prices of double barrier knockin options which 

we will use in Stage 2.

UL



Model Recipe Stage 2
• Pick any model for which we know the 

Laplace Transform of the Characteristic 

Function in closed form eg any Levy process 

and some time-changed Levy processes. 

• Eg Simplest specification would be to use the 

Kou (2002) DEJD model or our CEE2 

process but with different parameters.

• Or eg CGMY process.

• Or eg time-changed Tempered Stable 

processes.



Model Recipe Stage 2 

continued
• Take the parameters from Stage 1 as 

given, calibrate the model parameters, for 

the dynamics of the spot fx rate after the 

first exit time from the corridor, to the 

market prices of vanilla options (by using 

the results we have derived and the prices 

of the double barrier knockin options we 

obtained in Stage 1).



• By design, we have separated the two 

stages which will give us two good 

calibrations:

• Firstly to DNT options (or other types of 

barrier options).

• Secondly to vanilla options.

• An additional benefit is that we have 

lowered the dimensionality of the least 

squares fit calibration.



• We performed such a fit to DNT and vanilla 

options on cable (USD/STG) as of 

31/05/2007 for three different specifications 

in Stage 2. They were:

(a)DEJD (2002) model (but with different 

parameters after the first exit time from the 

corridor compared to before the first exit 

time).

(b)CGMY model with the addition of a 

Brownian motion component.



• (c) We time-changed two independent 

Tempered Stable processes (one 

produces up jumps and the second 

produces down jumps), with the time-

change generated by two independent 

two-state continuous-time Markov chains.

• Note that Specification (c) can generate 

stochastic skew.



Calibration to market DNT option prices

• Calibration to the market prices of the DNT options are the 

same in each case: Spot fx rate =               , 

• Maturity Model price Mid-market Bid/Offer

Barrier levels 1.92 / 2.02

• 1 m 0.7542 0.76 0.745 / 0.775

• 6 w 0.6885 0.695 0.68 / 0.71

• 3 m 0.3268 0.34 0.325 / 0.355

• 6 m 0.0916 0.09 0.075 / 0.105

• 9 m 0.0256 0.045 0.03 / 0.06

Barrier levels 1.95 / 2.00

• 1 m 0.2466 0.245 0.23 / 0.26

02.2,92.1 == UL97575.1



Calibration to market vanilla prices (six months)



Calibration to market vanilla prices (9 months)



Calibration to market vanilla prices (12 months)



Calibration to market vanilla prices (2 years)



• When we use a Kou (2002) DEJD model, 

with the parameters the same for both before 

and after the first exit time from the corridor, 

but with the parameters obtained from the 

calibration to DNT prices, then we get a very 

poor fit to vanilla prices.

• What about the other way round? As an 

experiment, we fitted a Kou (2002) DEJD 

model to the vanilla options (with the 

parameters the same for both before and 

after the first exit time from the corridor) and 

then re-priced the DNT options.



Using parameters implied from vanillas and 

then re-pricing our DNT options

• Maturity Model price Mid-market Using parameters

implied from vanillas

Barrier levels 1.92 / 2.02

• 1 m 0.7542 0.76 0.8309

• 6 w 0.6885 0.695 0.7787

• 3 m 0.3268 0.34 0.4429

• 6 m 0.0916 0.09 0.1660

• 9 m 0.0256 0.045 0.0621

Barrier levels 1.95 / 2.00

• 1 m 0.2466 0.245 0.3572



• Conclusion: The Kou (2002) DEJD model 

(and possibly lots of other models) can’t 

simultaneously be calibrated to the market 

prices of both barrier and vanilla fx options 

with any great degree of success.



• When we allow the parameters (or the 

stochastic process) to change at the first exit 

time from the corridor, as we have done, then 

we get a very good fit to both barrier and 

vanilla fx options.

• This may support our assumption that the 

risk-neutral dynamics of the spot fx rate 

change at the first exit time from the corridor 

(or at least that traders, (perhaps 

unknowingly or based on heuristics) price fx 

options as if the risk-neutral dynamics do 

change).



The second key assumption revisited

Possible explanations for why the risk-neutral 

dynamics of the spot fx rate do change.

(a) Jumps (observed in the real-world physical 

measure P but they may also be present in the 

risk-neutral measure Q) due to traders 

rebalancing delta-hedges in large volumes.

(b) Risk-reversals change magnitude and sign.

• dQ/dP may change even if P does not because:

(c) Different degree of risk-aversion.

(d) Change in Arrow-Debreu state space.



Conclusions
• Our model is a very flexible framework. Our CEE2 

process can approximate a time-changed Levy process 

for any Levy process with a monotone Levy density eg 

CGMY, Generalised Hyperbolic, NIG.

• Our CEE2 process can capture features such as jumps 

and stochastic vol (we can also capture stochastic skew).

• Main assumption is that the risk-neutral dynamics change 

when the spot fx rate first exits from the corridor.

• With this assumption, we can get a very good fit to both 

barrier and vanilla fx options.

• Have demonstrated that (at least within the Kou (2002) 

DEJD model), there is evidence that the risk-neutral 

dynamics DO change when the spot fx rate first exits 

from the corridor.
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