
The Black-Scholes implied

volatility at extreme strikes

Peter K. Friz
University of Cambridge

March 2008

Joint work with Shalom Benaim (Cambridge).



Part I: The Tail-Wing Formula

Outline: - all the background needed on one page

- statement of result

- sketch of proof

- examples with known tail asymptotics

- forthcoming in Math. Finance



• Black-Scholes normalized call price given by

cBS (k, σ) = N (d1)− ekN (d2)

where k is log-strike and d1,2 (k) = −k/σ ± σ/2.

• Notation: F denotes the distribution function of
risk-neutral returns, F̄ ≡ 1− F and (if ∃) F 0 ≡ f

• Implied volatility defined by

cBS (k, V (k)) =
Z ∞
k

³
ex − ek

´
dF (x) ≡ c (k)

• Definition: g regularly varying, index α, g ∈ Rα iff

g (xt) /g (t)→ xα as t→∞.

• Examples: t2/2 ∈ R2, t log t ∈ R1, ...

• Notation: g ∼ h iff g (t) /h (t)→ 1 as t→∞.



Tail-wing formula [Benaim, F]: Assume α > 0 and
∃� > 0 : E[e(1+�)X] <∞ and define

ψ (x) ≡ 2− 4
µq

x2 + x− x
¶
.

Then

(i) =⇒ (ii) =⇒ (iii) =⇒ (iv),

where, always as k→∞,

− log f (k) ∈ Rα; (i)

− log F̄ (k) ∈ Rα; (ii)

− log c (k) ∈ Rα; (iii)

and

V (k)2/k ∼ ψ [− log c (k) /k] . (iv)

If (ii) holds then − log c (k) ∼ −k − log F̄ and

V (k)2/k ∼ ψ
h
−1− log F̄ (k) /k

i
, (iv’)

if (i) holds, then − log f ∼ − log F̄ and

V (k)2/k ∼ ψ [−1− log f (k) /k] . (iv”)



• There is a similar result for the left tail resp. wing.

• Note ψ : [0,∞]& [0, 2] and ψ [x] ∼
x→∞ 1/ (2x).

• If −1− log f (k) /k→ p∗ ∈ (0,∞) then

V (k)2 ∼ ψ (p∗)× k (asymptotically linear)

• If − log f (k) /k→∞ then

V (k)2 ∼ 1

−2 log f (k) /k
×k (asymptotically sublinear)

• Sanity check: Black-Scholes returns are Gauss with
variance σ2. Hence

− log fBS (k) ∼ k2/
³
2σ2

´
∈ R2

From the tail-wing formula,

V (k)2 ∼ 1

−2 log fBS (k) /k
× k ∼ σ2

in trivial agreement with the flat smile V ≡ σ.



Sketch of proof: A motivating example,

− log
Z ∞
x

e−t
2/2dt ∼ x2/2 as x→∞

Bingham’s Lemma: g ∈ Rα with α > 0. Then

− log
Z ∞
x

e−g(t)dt ∼ g (x) as x→∞.

Claim 1: − log F̄ ∼ − log f.
Apply Bingham’s lemma to g = − log f.

Claim 2: − log c (k) ∼ −k − log F̄ (k) .
Apply Bingham’s lemma after Integration by Parts

c (k) = −
Z ∞
k

³
ex − ek

´
dF̄ (x) =

Z ∞
k

exF̄ (x) dx.

Claim 3: V (k)2/k ∼ ψ (− log c (k) /k).
Show that log c (k) = −d21/2 +O (log k) so that

log c (k)

k
= − k

2V (k)2
+
1

2
− V (k)2

8k
+O

µ
log k

k

¶
and solve for V (k).

That’s it!



Examples:

• NIG Model: X = XT ∼ NIG (α, β, μT, δT ) .

We know that

f (k) ∼ C |k|−3/2 e−
√
β2+γ2|k|+βk as k→ ±∞

Therefore − log f ∈ R1 and

log f (k) /k→
µ
−
q
β2 + γ2 + β

¶
as k→ +∞.

and the tail-wing formula gives

σ2BS (k, T )T

k
∼ ψ (−1− log f (k) /k)

∼ ψ
µ
−1 +

q
β2 + γ2 − β

¶
.



• FMLS Model: X = XT ∼ Lα
³
μT, σT 1/α,−1

´
withα ∈ (1, 2]. Asymptotics of F̄ known and imply

− log F̄ (k) ∼ k
α

α−1×[Tασα |sec (πα/2)|]−1/(α−1) .

Note − log F̄ ∈ Rα/(α−1).
From the tail-wing formula

σ2BS (k, T )T ∼ k
1− 1

a−1×1
2
[Tασα |sec (πα/2)|]1/(α−1) ,

consistent with Black-Scholes as α ↑ 2.



• Merton: X· is Lévy with triplet (μ, σ2,K) where
K is λ (=intensity of jump) times a Gaussian mea-
sure with mean α and standard deviation δ > 0

describing the distribution of jumps. F̄ (k) equals

P [X > k] ≤ inf
z
e−zkE [exp (zX)] = eK(z

∗)−z∗k

where K (z) = logE [exp (zX)] and z∗ = z∗ (k) is
determined from K0 (z∗) = k. Here

K (z) = T
½
zμ+

1

2
z2σ2 + λ

µ
ezα+z

2δ2/2 − 1
¶¾

from which z∗ = z∗ (k) ∼
√
2 log k/δ and

log F̄ (k) ≤ K (z∗)−z∗k ∼ −z∗k ∼ −k
q
2 log k/δ

Nice Lévy tail estimates (Albin-Bengtsson, 2005) con-
firm

log F̄ (k) ∼ −k
δ

q
2 log k.

From the tail-wing formula,

σ2BS (k, T )T ∼ δ × k

2
√
2 log k

.



Part II: Models with Known Moment Generating
Functions

Outline: - link to Roger Lee’s moment formula

- Tauberian theory

- Several Criteria

- Time Changed Lévy models

- numerical examples

- forthcoming in Journal of Applied Probability



• What if only a moment generating function M is
known? Roger Lee’s moment formula states that

lim sup
k→∞

σ2BS (k, T )T

k
= ψ (−1 + r∗T )

with critical exponent

r∗ ≡ r∗T ≡ sup {r ≥ 0 :M (r) ≡ E exp (rXT ) <∞} ,
usually seen directly from explicitly known M .

• If r∗ =∞ the moment formula only says

σ2BS (k, T ) = o (k) .

In contrast, the tail-wing formula contains the full
asymptotics (cf examples in Part I)

• Consider r∗ < ∞. Numerical evidence that in all
practical cases ” lim sup = lim ”, that is

lim
k→∞

σ2BS (k, T )T

k
= ψ (−1 + r∗T ) (1)

Can one prove (1) knowning the mgf M?



• Yes! By the Tail-Wing-Formula suffices to show

log F̄ (k) ∼ −r∗k with r∗ = sup
r≥0

{r :M (r) <∞} (2

and we have sufficient criteria for (2) that (seem to)
cover all examples. (Remark: log F̄ (k) . −r∗k is
easy.)

• Criterion I: M or one of its derivatives (i.e. M 0,M 00, ...)
blows up in a regularly varying way at r∗.
Criterion II: logM blows up in a regularly varying
way at r∗.
Idea of proof: Esscher-type change of measure fol-
lowed by an application of Karamata’s resp. Kohlbecker’s
Tauberian Theorem.
(Ã fine monograph by Bingham, Goldie, Teugels.)



More Lévy Examples:

• Variance Gamma: V G (m, g,CT )|T=1 has mgf

M(s) =

Ã
gm

(m− s)(s+ g)

!C
See that r∗ = m and the M satisfies criterion I:

M(r∗ − s) ∼
Ã

gm

m+ g

!C
s−C as s→ 0 + .

• NIG Model (again!): NIG (α, β, μT, δT )|T=1
has mgf

M (s) = exp
½
δ
½q

α2 − β2 −
q
α2 − (β + s)2

¾
+ μs

¾
See that r∗ = α− β and M 0 satisfies criterion I:

M 0(r∗ − s) ∼ 2δα
√
2αs−1/2M(r∗) as s→ 0 + .



• Kou’s Double Exponential model has mgf

logM(s) =
1

2
σ2s2+μs+λ

Ã
pη1

η1 − s
+

qη2
η2 + s

− 1
!
.

See that r∗ = η1 and M satisfies criterion II:

logM(η1 − s) ∼ λpη1s
−1 as s→ 0 + .

• ... and in all Lévy examples r∗ ∈ (1,∞) does not
depend on T ,

∀T > 0 : lim
k→∞

σ2BS (k, T )T

k
= ψ (−1 + r∗) .



Time-changed Lévy Process:

• Lévy process (Lt) ! cumulant generating fct of
L1 :

KL (v) ≡ logML (v) ≡ logE [exp (vL1)]
Independent random clock τ = τ (ω, T ) ≥ 0 with
cgf Kτ = logMτ =⇒ mgf of L ◦ τ given by

M(v) =M(v;T ) = exp [Kτ(KL(v)] .

• Theorem: If both ML and Mτ satisfy one of the
criteria, then M does. r∗ = sup {r :M (r) <∞}
Corollary: σ2BS(k,T )T

k ∼ ψ (−1 + r∗)

• In practise, Kτ = Kτ (·, T ) ,KL known =⇒
r∗ = r∗T easy to determine and have full analytic
understanding of term structure of smile at extreme
strikes,

T 7→ ψ (−1 + r∗T ) .
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Figure 1:

• Example: Variance Gamma with OU time change
with Schoutens et al. parameters. Plot σ2BS (k, T )T
for

T = 0.4, 0.9, 1.3.

The respective smile slopes ψ
³
−1 + r∗T

´
are

0.047, 0.053, 0.054 ∈ [0, 2] .



Part III: Local and Stochastic Volatility

Outline: - The CEV model

- Review of some models+their K ↑ ∞ smile

- SABR

- Moment explosion in stochastic vol models

- open problems



• CEV model: dS = σS1−βdW . Density available
(mod. Bessel fcts). Or exploit scaling

dS̃ ≡ d(S/K) = σ(S/K)1−β� dW = σS̃1−β� dW,

with � = 1/Kβ → 0 for K → ∞. Set S� := S̃.
Freidlin-Wentzell:

�2 logP(S�T > 1) ∼ − 1

2T
d2(S�0, 1) ∼ −

1

2T
d2(0, 1)

where d(0, 1) ∼
R 1
0

³
σx1−β

´−1
dx = 1/ (βσ). It

follows that

logP(ST > K) ∼ − K2β

2β2σ2T
.

Tail of "CEV-returns" logST decays exponentially
fast =⇒ regular-variation assumption in tail-wing
formula not fullfilled!

• Thm: (TWF for exp decay) If − logP(ST > ·) is
regularly varying then tail-wing formula holds.



• Forde, Labordere (08) propose general heat-kernel
estimates to derive large-strike smile asymptotics for
more general local models. (Challenge: in general
no explicit density or MGF.)

• Stochastic vol models: assume d hW,Zi = ρdt

• Avellaneda-Zhu (99) study smile asymptotics of

dS = σSdW, dσ = −1
2
ρησ2dt+ ησdZ.

When ρ = 0, σBS (k)
√
T ∼

√
2k, refined by

Gulisashvili-Stein (08) to

σBS (k)
√
T ∼

√
2k − log k + log log k

2η
√
T

+O (1) .

(explains term-structure of un-annualized implied vol!)

• Hagan et. al (02) introduce SABR model

dS = σS1−βdW
dσ = ησdZ with dWdZ = ρdt.



Accurate asymptotic solution for implied vol in the
at-the-money region (Hagan’s formula) but wings
more problematic ... Andersen-Piterbarg (06) show

E[SpT ] ≤
"
S
2β
0 + β(p− 1)

Z T

0
E
³
σ
p/β
t

´2β/p
dt

# p
2β

from which logE[SpT ]/p
2 . η2T/

³
2β2

´
. For ρ =

0, we can check & so that

logE
h
S
p
T

i
= logE

h
ep logST

i
∼ η2T

β2| {z }
=:C

p2

2
≡ C

p2

2

Kasahara’s exponential Tauberian theorem relates
log-asymptotics of the mgf to log-asymptotics of the
tail. Apply to logST :

− log F̄ (k) ∼ 1

C

k2

2
and from the tail-wing formula

σ2 (k, T )T

k
∼ ψ

h
−1− log F̄ (k) /k

i
∼ ψ

∙
1

2C
k
¸
∼ C/k ≡ η2

β2
T

k
.



We then have (as was conjectured by Piterbarg)

σ (k, T ) ∼ η

β
as k→∞.

• Aside: Hagan et al. show that the pdf of St is
"approximately Gaussian" with respect to distance

d (S0, S) =
1

η
log

q
ζ2 − 2ρζ + 1 + ζ − ρ

1− ρ
,

ζ =
η

σ0

Z S

S0

1

u1−β
du ∼ η

σ0

Sβ

β

With ρ = 0, as S → ∞, d (S0, S) ∼ log ζ/η ∼
β logS/η and

− logP [ST ∈ dS] ≈ 1

2T
d (S0, S)

2 ∼ β2

2η2T
(logS)2 .

Let f denote the pdf of logST . Then

− log f (k) ∼ β2

2η2T
k2

This is consistent with log F̄ -estimate obtained ear-
lier using Kasahara’s Tauberian theorem and the tail-



wing formula gives the same asymptotic implied vol

σ (k, T ) ∼ η/β as k→∞.



• Lions-Musiela [Annales de l’IHP 2008] consider

dSt = σδtSdW, S0 > 0 (1)

dσt = ησ
γ
t dZt + b (σt) dt, σ0 = ξ > 0

and give essentially sharp conditions for ESmt <∞.
We can use their ideas in our context: set L(m)z :=

η2

2
ξ2γ∂ξξz+

³
ηρmξδ+γ + b (ξ)

´
∂ξz+

m2 −m

2
ξ2δz.

• Theorem: (Applies to γ+ δ = 1, ρ ∈ (−1, 1].) Let
z̄ = z̄ (t, ξ;m) be a super-solution and z (t, ξ;m)

be a subsolution to

∂tz − L(m)z = 0 with z|t=0 ≡ 1 on [0,∞).
Then

z (T, σ0;m) ≤ E[SmT ]/Sm0 ≤ z̄ (T, σ0;m) .

If both z and z̄ blow up at T = T0 (m
∗) < ∞

then σ2BS(k, T )T/k . ψ(m∗ (T ) − 1) and ∼ for
"regular" blowup of

log z (T, σ0;m
∗ − ε) , log z̄ (T, σ0;m

∗ − ε) .



• Theorem: (Applies to γ + δ < 1.) Assume there is
no moment explosion and

log z (T, σ0;m) ∼ log z̄ (T, σ0;m) ∈ Rα.

Then explicit tail-asymptotics (and hence smile as-
ymptotics) can be obtained by Kasahara’s Tauberian
theorem. (This is work in progress ...)

• Open problems and future work ...
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