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Part I: The Tail-Wing Formula
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statement of result

sketch of proof

examples with known tail asymptotics

forthcoming in Math. Finance



Black-Scholes normalized call price given by
cps (k,0) = N (d1) — "N (dp)
where k is log-strike and dq > (k) = —k/o £ 0/2.

Notation: [F' denotes the distribution function of
risk-neutral returns, F =1 — F and (if 3) F/' = f

Implied volatility defined by

cps (b, V (K) = [

. (ew — ek) dF (z) = c(k)

Definition: g regularly varying, index o, g € Ry iff

g(xt) /g (t) — x“ as t — oo.

Examples: t2/2 € Ry, tlogt € Ry, ...

Notation: g~ hiff g(t) /h(t) = 1 ast — oo.



Tail-wing formula [Benaim, F]: Assume o > 0 and
Je > 0 : E[e(11€)X] < 00 and define

Y (x) 52—4(\/3324—3;—33).
Then
(i) = (ii)) = (iii)) = (iv),

where, always as k — oo,

—log f (k) € Ra (i)
—log F' (k) € Rq; (ii)
—logc (k) € Ra; (iii)
and
V(k)?/k ~ ¢ [~ logc (k) /K] (iv)

If (ii) holds then —log c(k) ~ —k — log F’ and

V(k)?/k ~p | -1 —log F (k) /K|, (V)
if (i) holds, then —log f ~ — log F' and

V(k)?/k ~ 1 —log f (k) /k]. (V')



There is a similar result for the left tail resp. wing.

Note 4 : [0, 00] N\, [0,2] and ¥ [z] ~ 1/ (2z).

r—00

If —1 —log f (k) /k — p* € (0,00) then

V (k)% ~ ¢ (p*) x k (asymptotically linear)

If —log f (k) /k — oo then
1
—2log f (k) /k

V (k)% ~ x k (asymptotically sublinear)

Sanity check: Black-Scholes returns are Gauss with
variance o2. Hence

—log fps (k) ~ k?/ (20%) € Ry
From the tail-wing formula,
1
X k ~ 0
—2log fps (k) /k
in trivial agreement with the flat smile V = o.

V(k)? ~




Sketch of proof: A motivating example,

©
—|og/ e ! /2dtwaf;2/2 as r — 00
I

Bingham’'s Lemma: g € R, with o > 0. Then
> t
— Iog/ e 9 dt ~ g (x) as z — oo.
X

Claim 1: —log F' ~ —log f.
Apply Bingham’s lemma to g = — log f.

Claim 2: —logc (k) ~ —k — log F' (k).
Apply Bingham's lemma after Integration by Parts
c(k) = —/OO (ex — ek) dF (z) = /OO e’ F (x) dz.
k k
Claim 3: V(k)?/k ~ v (—logc (k) /k).
Show that log c (k) = —d%/2 + O (log k) so that

log ¢ (k) k 1 V(k)? log k
i3~ +o(F)
k 2V(k)2 2 8k k

and solve for V (k).

That’s it!



Examples:

NIG Model: X = X ~ NIG(«, 3,uT,6T).
We know that

F (k) ~ C k|32 = VEBHPIIFBE 55 1 4og
Therefore —log f € Ry and

log f (k) /k — (—\/ﬂ2—|—’yz—|—ﬁ) as k — +oo0.

and the tail-wing formula gives

o4 (k,T)T
k

~ P (—=1—log f (k) /k)

N ¢<—1+\/ﬁ2+v2—5>.



e FMLS Model: X = X7 ~ Lq (,uT, oTl/e —1)
with o € (1,2]. Asymptotics of F' known and imply

_log F (k) ~ ka-Tx[Tac®|sec (ra/2)|] 1/ (@=1)

Note — log F' € Ro/(a—1):
From the tail-wing formula

1 1
0%e(k,T)T ~ k' a1 X2 [Tao® [sec (ra/2)|]/ (1)

consistent with Black-Scholes as o T 2.



e Merton: X. is Lévy with triplet (i, 02, K) where
K is A (=intensity of jump) times a Gaussian mea-
sure with mean « and standard deviation 6 > O
describing the distribution of jumps. F' (k) equals

P[X > k] < inf e *"E [exp (2X)] = /(=)=

where K (z) = log E [exp (2X)] and z* = 2* (k) is
determined from K’ (2*) = k. Here

1
K (2) = T{z,u—|— 5Z202 1 (eza—l-z252/2 _ 1>}
from which z* = 2* (k) ~ v/2log k/d and
log F (k) < K (2*)—2"k ~ —2"k ~ —ky/2logk/§

Nice Lévy tail estimates (Albin-Bengtsson, 2005) con-

_ k
log F' (k) ~ —g\/2 log k.

From the tail-wing formula,

firm

k
2./ 2logk

056 (k,T)T ~ & x



Part Il: Models with Known Moment Generating
Functions

Outline: - link to Roger Lee's moment formula

- Tauberian theory

- Several Criteria

- Time Changed Lévy models

- numerical examples

- forthcoming in Journal of Applied Probability



e What if only a moment generating function M is
known? Roger Lee’s moment formula states that

2. (k,T)T
lim sup JBS( )
k— 00 k

= (=1+r7)
with critical exponent

r*=rp=sup{r>0: M (r)=Eexp(rXr) < oo},

usually seen directly from explicitly known M.

o If »* = oo the moment formula only says
2
ogs(k,T) =o0(k).

In contrast, the tail-wing formula contains the full
asymptotics (cf examples in Part |)

e Consider * < oo. Numerical evidence that in all

practical cases " limsup = lim", that is
%o (k,T)T
lim 7ps (k1) = (=14 ry) (1)
k— 00 k

Can one prove (1) knowning the mgf M7



e Yes! By the Tail-Wing-Formula suffices to show
log F' (k) ~ —r*k with r* =sup {r: M (r) < oo} (2
r>0

and we have sufficient criteria for (2) that (seem to)
cover all examples. (Remark: log F' (k) < —r*k is

easy.)

e Criterion I: M or one of its derivatives (i.e. M’ M" ...
blows up in a regularly varying way at r*.
Criterion Il: log M blows up in a regularly varying
way at r*.
Idea of proof: Esscher-type change of measure fol-
lowed by an application of Karamata's resp. Kohlbecker's
Tauberian Theorem.
(~~ fine monograph by Bingham, Goldie, Teugels.)



More Lévy Examples:

e Variance Gamma: VG (m, g, CT)|p_; has mgf

am ¢
Ms) = ((m ~ (s +g)>

See that * = m and the M satisfies criterion |:

agm

C
M(r*—s)~< ) sTCass—>0+.

m -+ g

e NIG Model (again!): NIG (o, 8, T, 6T)|7—1
has mgf

M (s) :exp{5{\/a2—52 — \/ozz— (B—I—s)2} —l—,us}

See that r* = o« — B and M’ satisfies criterion |:

M'(r* — 8) ~ 25av2as V2 M (r*) as s — 0 + .



e Kou’s Double Exponential model has mgf

1
log M(s) = =0°s°+us+A ( P 92 1) :
2 Mm—5s TMN2+s

See that 7* = 17 and M satisfies criterion II:

1

log M(ny —s) ~ Apnys” ~ass — 0+.

e ... and in all Lévy examples 7* € (1, 00) does not
depend on T,

2 (k.TT
VT'>0: lim ZBs(&T)

k— 00 k

=y (-1+17).




Time-changed Lévy Process:

e Lévy process (L¢) «~ cumulant generating fct of
L1 :
K (v) = log M7y (v) = log FE [exp (vL1)]

Independent random clock 7 = 7 (w,T’) > 0 with
cgf K+ = log M —> mgf of L o7 given by

M(v) = M(v; T) = exp [K+ (K (v)].

e Theorem: If both Mj; and M satisfy one of the
criteria, then M does. r* =sup{r: M (r) < oo}

JzBS(Z’T)T ~ 1 (=1+717)

Corollary:

e In practise, K+ = K, (-,T),K; known —
r* = r7 easy to determine and have full analytic
understanding of term structure of smile at extreme

strikes,

Tr—>¢(—1—|—7“§ﬂ).



Total inplied variance as function of log strike : VG with OU timechange , 0.4, 0.9 and 1.3 wrs
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Figure 1:

e Example: Variance Gamma with OU time change

with Schoutens et al. parameters. Plot 0]255 (k,T)T

for

T =0.4, 0.9, 1.3.

The respective smile slopes (—1 + riﬂ) are

0.047, 0.053, 0.054 € [0, 2].



Part |ll: Local and Stochastic Volatility

Qutline: - The CEV model

- Review of some models+their K T oo smile

- SABR

- Moment explosion in stochastic vol models

- open problems



e CEV model: dS = ¢S1~BdW. Density available
(mod. Bessel fcts). Or exploit scaling

dS =d(S/K) = o(S/K)'PedW = 681 Pedw,
with e = 1/K8 — 0 for K — oco. Set S€:=S.

Freidlin-Wentzell:

1 1
2 € 2( Q€ 2
log P(S5 > 1) ~ ——d?(S§,1) ~ ——d?(0, 1

where d(0,1) ~ f& (o21=8) " dz = 1/ (Bo). It
follows that
K28
232527
Tail of "CEV-returns" log S7 decays exponentially

log P(S7 > K) ~ —

fast — regular-variation assumption in tail-wing
formula not fullfilled!

e Thm: (TWEF for exp decay) If —logP(S > -) is
regularly varying then tail-wing formula holds.



Forde, Labordere (08) propose general heat-kernel
estimates to derive large-strike smile asymptotics for
more general local models. (Challenge: in general
no explicit density or MGF.)

Stochastic vol models: assume d (W, Z) = pdt

Avellaneda-Zhu (99) study smile asymptotics of
1
dS = oSdW, do = —Epnazdt + nodZ.

When p = 0, opg(k)VvT ~ 2k, refined by
Gulisashvili-Stein (08) to

log k + loglog k
K)VT ~ V2k — +0(1).
7ps (k) o~ (1)

(explains term-structure of un-annualized implied vol!)

Hagan et. al (02) introduce SABR model

dS = oS Paw
do = mnodZ with dWdZ = pdt.



Accurate asymptotic solution for implied vol in the
at-the-money region (Hagan's formula) but wings
more problematic ... Andersen-Piterbarg (06) show

So +6(p—1)/ (o7 it ]

from which log IIEQ[S%]/p2 < n?T/ <262). For p =
0, we can check 2 so that

E[S7] <

2 2 2
logE |SP.| = log E |eP'985T| ~ T Lp =foLa
[ T] [ } :520 2 2

Kasahara's exponential Tauberian theorem relates
log-asymptotics of the mgf to log-asymptotics of the
tail. Apply to log S :

1 k2
—log F (k) ~ =—
og I (k) ~ =
and from the tail-wing formula
2(k, T)T : _
2 (]; ) ¥ [~1— log ' (k) /K]

1 2T

~ —k] ~ Ok = L=

2C B2 k




We then have (as was conjectured by Piterbarg)

a(k,T)Nﬂask—>oo.
5

e Aside: Hagan et al. show that the pdf of S; is
"approximately Gaussian" with respect to distance

2 _ _
1o V@ —20C+14+C—p

d(So,S) —
7 1—0p ;
S 1
¢ = L gy o 157
oo JSo ul=F oo B

With p = 0, as S — oo, d(Sp,S) ~ log(/n ~
Blog S/n and

(log S)°.

1
—log P [St € dS] & ——d (So, 5)? ~ 52T

Let f denote the pdf of log S7. Then
52
2n2T

This is consistent with log F-estimate obtained ear-

— log f (k) ~ K

lier using Kasahara's Tauberian theorem and the tail-



wing formula gives the same asymptotic implied vol

o(k,T) ~n/B as k — oo.



e Lions-Musiela [Annales de I'l[HP 2008] consider

dS; = o2SdW, Sp >0 (1)
doy = noldZi+b(or)dt, og=£>0

and give essentially sharp conditions for S} < oo.
We can use their ideas in our context: set L{)z :=

m2—m

2

2
%52785§z+(npm55+v +b(€)) Ozt 20,

e Theorem: (Appliesto v+ =1,p € (—1,1].) Let
z = Z(t,&;m) be a super-solution and z (¢, &; m)
be a subsolution to

8z — L™z = 0 with zlt—g = 1 on [0, c0).
Then
z(T,00;m) <E[ST1/Sy < Z(T,00;m).

If both z and Z blow up at T' = Ty (m*) < oo
then 0% o(k, T)T/k < y(m*(T) — 1) and ~ for
"regular" blowup of

logz (T, 00; m* —€),logz(T,009;m" —€).



e Theorem: (Applies to v+ 6 < 1.) Assume there is
no moment explosion and

log z (T, 00; m) ~ log z (T, 0g; m) € Ra.

Then explicit tail-asymptotics (and hence smile as-
ymptotics) can be obtained by Kasahara's Tauberian
theorem. (This is work in progress ...)

e Open problems and future work ...
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