Soft Derivatives

David G. Luenberger October 2007

What is a soft derivative?

- It is an asset whose payoff is a function of some other variable, but that variable is not marketed.
- Examples: options on profit, weather, or many other things.

Outline

Properties and variations of CAPM
Properties and variations of zero-level pricing
Axiomatic pricing in continuous time
The abstract Black-Scholes equation
The extended Black-Scholes equation
Hedging

Linear Pricing

- Consider a set of n assets with payoffs (at the end of a year) y₁, y₂, y₃, ..., y_n and prices p₁, p₂, p₃, ..., p_n.
- Linear pricing implies that a combination asset will have the combination price. That is, Σw_i y_i will have price Σw_i p_i.

CAPM

 It is always true (if it exists) for the given set of assets.

Equivalence

 The price assigned by the CAPM (when it exists) is equal to the projection price (which always exists).

Hilbert Space for Pricing

- H is the set of all linear combinations of asset payoffs.
- The inner product is

 (y₁| y₂) = E(y₁ y₂) = E(y₁)E(y₂) + cov (y₁, y₂)
- Since H is finite dimensional, all subspaces are closed.

Minimum Norm Pricing Vector

Add Risk-free Asset

- Same y_1 and y_2 as before.
- Risk-free return is R_f
- Critical value is $R_f = 1.1$
- In some cases there is no efficient risky portfolio and hence no CAPM formula. But there is always a minimum norm pricing formula.

Correlation Pricing Formula

$$p = \frac{1}{R} \left[E(y) - \frac{\operatorname{cov}(y, y_M)(\overline{y}_M - p_M R)}{\sigma_M^2} \right]$$

where now y_M is an asset most correlated with y. (The magnitude and risk-free component are arbitrary.)

Try it for y in M. Then $y_M = y$ is most correlated. We find $p = R^{-1}[E(y) - E(y) + p_y R] = p_y$.

dvantages Solidly based on projection theorem. The correlation pricing formula for an asset y uses the pressets that are similar to y. It is a rigorou Stock of "pricing by Report comparables' 888 8

dvantages

Solidly based on projection theorem.

 The correlation pricing formula for an asset y uses the prices of assets that are similar to y.

 It is a rigorous expression of "pricing by comparables".

888 8

Second Topic

- Use general portfolio theory to assign prices
- Zero-level prices
- Does result depend on utility function?
- Applications

Add an asset

- Suppose asset with payoff x is not in the market but is available to you. What is the logical price?
- Theorem. Assume there is no arbitrage in the original system. Then there is an open interval of the real line such that for p_x in this interval no arbitrage is possible.
- For coin flip, what is the interval?

Zero-Level

- Theorem. There is a price p_x such that x is taken in the portfolio at zero level. Thus, the optimal portfolio does not change.
- This is called the zero-level price.
- For coin flip, what is the zero-level price?

Portfolio Problem

Maximize E[U(y₀)]
Sub to y₀ = a₁ y₁ + a₂ y₂ +... +a_n y_n + a_{n+1} R_f
W = a₁ p₁ + a₂ p₂ +... +a_n p_n + a_{n+1}

Necessary conditions

- $E[U'(y_0) y_i] = \lambda p_i$ for each i and some $\lambda > 0$.
- Can find $\lambda = RE[U'(y_0)]$
- p=E[U' (y₀) y] / RE[U' (y₀)]

Independent x

- If x is in dependent of all y_i's then we can find a unique zero-level price.
- Since p=E[U'(y₀)x]/R_f E[U' (y₀)], it follows that p_x = E(x)/ R_f. Price is universal zero-level price.
- There are other cases where the zerolevel price is universal.

Continuous-time Framework

- Market prices follow stochastic processes, such as $dx_i(t) = \mu_i x_i(t) dt + \sigma_i x_i(t) dz_i$.
- There is a risk free asset with rate of return *r*.
- Frictionless trading is possible at every instant.
- Everyone is a price taker.

General Idea of Operational Calculus

- We only need to know how at time t to price payoffs at time t + dt.
- We use only knowledge of how to value risk free payoffs and marketed payoffs.
- Only first-order terms in dt are relevant.

An Operational Calculus

FOUR AXIOMS:

- Pricing a constant: If C is constant, then P{C}=C·(1- r dt)
- Pricing a marketed quantity: If x is an evolving market variable that neither pays dividends nor requires holding costs, $P{x + dx} = x$.
- $P\{dt\} = dt$
- P is linear.

Main Application

• Since x is a constant $x = P{x + dx} = (1 - r dt) x + P{dx}$ Hence $rx dt = P{dx}$

Fundamental Pricing Equation

 A value function on the span of marketed assets must satisfy
 rV(x,t) dt = P{dV(x, t)}

> This is the general Black--Scholes Equation

Standard Black--Scholes Equation

$$dV = V_t dt + V_x dx + \frac{1}{2} V_{xx} (dx)^2$$

= $V_t dt + V_x dx + \frac{1}{2} V_{xx} \sigma^2 x^2 dt$
 $P\{dV\} = V_t dt + V_x rx dt + \frac{1}{2} V_{xx} \sigma^2 x^2 dt$
 $rV(x,t) dt = P\{dV(x, t)\}$
 $rV = V_t + V_x rx + \frac{1}{2} V_{xx} \sigma^2 x^2$

Extend outside the marketed space

- Apply similar idea to payoffs outside the marketed space.
- Use instantaneous projection (as CAPM uses projection).

The Extended framework

 $dx_e = \mu_e x_e dt + \sigma_e x_e dz_e$ Underlying process $dx_i = \mu_i x_i dt + \sigma_i x_i dz_i$ i = 1, 2, ..., n Stock processes $F(x_e(T))$ Payoff function

Instantaneous Projection Definition of price Price of y when $p_y = \mathbf{P}\{y \mid M\}$ projected onto M Pricing equation $V(x_{\rho}t) = P\{V(x_{\rho},t) + dV(x_{\rho},t) | M\}$ $rV(x_{\rho},t)dt = P\{dV(x_{\rho},t) \mid M\}$ General extended For standard case **B-S** equation $\mathbf{d}V = \left[V_t + V_x, \mu_e x_e + \frac{1}{2}V_{x,x}, \sigma_e^2 x_e^2\right] \mathbf{d}t + V_x, \sigma_e x_e \mathbf{d}z_e$

Projection of dz_e $\{dz_{\rho} \mid M\} = adt + bdz_{m}$ $\mathbf{E}\left[(\mathrm{d}z_e - a\mathrm{d}t - b\mathrm{d}z_m)\mathrm{d}t\right] = 0$ $\mathbf{E}\left[(\mathrm{d}z_e - a\mathrm{d}t - b\mathrm{d}z_m)\mathrm{d}z_m\right] = 0$ $a=0, b=\rho_{em}$ $\{dz_{e} \mid M\} = \rho_{em} dz_{m}$

Price of dz_e From operational calculus: $rx_m dt = P\{dx_m\} = P\{\mu_m x_m dt + \sigma_m x_m dz_m\}$ • Hence = $\mu_m x_m dt + \sigma_m x_m P\{dz_m\}$ $\mathbf{P}\{\mathrm{d}z_m\} = \frac{(r-\mu_m)}{\mathrm{d}t}$ σ_m Finally $\mathbf{P}\{\mathrm{d}z_e\} = \frac{(r-\mu_m)}{\sigma_m}\rho_{em}\mathrm{d}t$

Beta Form

We have $\mathbf{P}\{\mathrm{d}z_e \mid M\} = \frac{\rho_{em}}{(r-\mu_m)}\mathrm{d}t$ σ_m Define $\beta_{em} = \sigma_{em} / \sigma_m^2$ Then $\mathbf{P}\{\mathrm{d}z_e \mid M\} = \frac{\beta_{em}}{\sigma_e}(r - \mu_m)\mathrm{d}t$ **The Equation** (Standard Version) $dx_e = \mu_e x_e dt + \sigma_e x_e dz_e$ Underlying process $dx_i = \mu_i x_i dt + \sigma_i x_i dz_i$ i = 1, 2, ..., n Stock processes $F(x_e(T))$ Payoff function

 $rV(x_e,t) = V_t(x_e,t) + V_{x_e}(x_e,t)x_e[\mu_e - \beta_{em}(\mu_m - r)]$ $+ \frac{1}{2}V_{x_ex_e}(x_e,t)x_e^2\sigma_e^2 \quad \text{Main equation}$ $V(x_e,T) = F(x_e) \quad \text{Boundary condition}$

Alternate x_m 's

 Most-correlated marketed asset. - Valid for x_e and all its derivatives Dual Asset Valid for all assets. – Always exists Markowitz portfolio Valid for all assets – May not exist

Universal Propery

 $\max_{\alpha} \mathbb{E}\{U(W(T))\}$

subject to $dW(t) = \alpha'_x dx + \alpha_e dV(x_e, t)$ $W(0) = W_0$ $\alpha'_x x + \alpha_e V(x_e, t) = W(t)$

Solution:

$$\alpha_e = 0$$

Universal Property $J(x_o, W, t) = U(W(T))$ $J(x_{\rho}, W, t) = \max_{\alpha} E\{J(x_{\rho} + dx_{\rho}, W + dW, t + dt)\}$ subject to $dW(t) = \alpha'_{x}dx + \alpha_{\rho}dV(x_{\rho},t)$ $W(0) = W_0$ $\alpha'_{x}x + \alpha_{\rho}V(x_{\rho},t) = W(t)$ Solution: $\alpha_{\rho} = 0$

Optimal Replication

- Can replicate at each instant so as get best fit.
- Begin with V(x_e, 0) dollars and at each instant allocate fraction γ to the most-correlated asset and 1- γ in the risk free asset, where

$$\gamma = \frac{V_{x_e}(x_e, t) x_e \beta_{em}}{V(x_e, t)}$$

Extended Equation Properties

- Prices are linear.
- Instantaneous projection consistent.
- No arbitrage opportunities generated.
- Gives universal zero-level price.
- Agrees with B--S if pricing a derivative.
- Gives best replication (or best hedge).
- Can be based on market or most-correlated portfolio.
- Easy to implement (similar to B--S).
- Gives formula for total error after hedge.

Extensions

Discrete time (lattice) method
Risk-neutral form
More complex dynamics
Expectations of any variable
Hedging

Risk-Neutral Process

 $dx_e = \mu_e x_e dt + \sigma_e x_e dz_e$ Underlying process $dx_i = \mu_i x_i dt + \sigma_i x_i dz_i$ i = 1, 2, ..., n Stock processes $dx_e = \omega_{em} x_e dt + \sigma_e x_e dz_e$ Risk-Neutral Process $\omega_{em} = \mu_e - \beta_{em}(\mu_m - r)$

Example

- Consider an option on the variable x_e(T) with strike price K.
- x_e may be estimated stock value of untraded company.
- x_e may be revenue or profit
- Can get closed-form expression

Specific Example

 Standard Option $-K = 60, S = 62, T = 5 \text{ mo}, r = 10\%, \sigma = 20\%$ Value = 5.85 Non traded version $-K = 60, S = 62, T = 5 \text{ mo}, r = 10\%, \sigma_e = 20\%$ $\mu_e = 8\%, \ \sigma_m = 15\%, \ \mu_m = 14\%, \ \rho = .7$ - Value = 4.79

Projection Error (**Risk that cannot be hedged**)

• Let $S(x_e, t)$ be the variance at T as seen at t. We may find S from $0 = E(dS) + \delta^2$

• Or, in detail,

 $S_t + S_{x_e} \mu_e x_e + \frac{1}{2} S_{x_e x_e} \sigma_e^2 x_e^2 + [V_{x_e} \sigma_e x_e]^2 (1 - \rho_{em}^2) = 0$

 $S(x_e,T) = 0$

Summary Conclusion

- B-S pricing renders a derivative redundant, in the sense it can be constructed from existing securities.
- Extended pricing renders a soft derivative irrelevant, in the sense that no risk-averse investor will want it in a portfolio.

References (available on Stanford website)

- Luenberger, David G. (1999), <u>Projection Pricing</u>, Journal of Optimization Theory and Applications, vol. 109, no. 1, April 2001, 1-25.
- Luenberger, David G. (2000), <u>A Correlation Pricing</u> <u>Formula</u>, Journal of Economic Dynamics and Control, 26, (2002), 1113-1126.
- Luenberger, David G. (2001), <u>Arbitrage and Universal</u> <u>Pricing</u>, *Journal of Economic Dynamics and Control*, 26, (2002), 1613-1628.
- Luenberger, David G. (2003), <u>Pricing a Nontradeable</u> <u>Asset and Its Derivatives</u>, *Journal of Optimization Theory and Applications*, Vol. 121, No. 3, June 2004, 465-487.