Soft Derivatives

David G. Luenberger October 2007

What is a soft derivative?

- It is an asset whose payoff is a function of some other variable, but that variable is not marketed.
- Examples: options on profit, weather, or many other things.

Outline

- Properties and variations of CAPM
- Properties and variations of zero-level pricing
- Axiomatic pricing in continuous time
- The abstract Black-Scholes equation
- The extended Black-Scholes equation
- Hedging

Linear Pricing

- Consider a set of n assets with payoffs (at the end of a year) $y_{1}, y_{2}, y_{3}, \ldots, y_{n}$ and prices $p_{1}, p_{2}, p_{3}, \ldots, p_{n}$.
- Linear pricing implies that a combination asset will have the combination price. That is, $\Sigma \mathrm{w}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}$ will have price $\Sigma w_{i} p_{i}$.

CAPM

$p=\frac{1}{R}\left[E(y)-\frac{\operatorname{cov}\left(y, y_{M}\right)\left(\bar{U}_{M}-p_{M} R\right)}{}\right]$
where y_{M} is an efficient risky asset.

$$
p=\frac{1}{R}\left[E(y)-\beta_{y, M}\left(\bar{y}_{M}-p_{M} R\right)\right]
$$

CAPM

- It is always true (if it exists) for the given set of assets.

Asset Outside Span

- y

Price by Projection

Set $\mathrm{p}_{\mathrm{y}}=\mathrm{p}_{\mathrm{m}}$.

- ${ }^{\wedge}$

I
I

Equivalence

- The price assigned by the CAPM (when it exists) is equal to the projection price (which always exists).

Hilbert Space for Pricing

- H is the set of all linear combinations of asset payoffs.
- The inner product is
$\left(y_{1} \mid y_{2}\right)=E\left(y_{1} y_{2}\right)=E\left(y_{1}\right) E\left(y_{2}\right)+\operatorname{cov}\left(y_{1}\right.$, y_{2})
- Since H is finite dimensional, all subspaces are closed.

Minimum Norm Pricing Vector

Minimum-Norm Pricing

$$
\begin{aligned}
& p=\frac{1}{R}\left[E(y)-\frac{\operatorname{cov}\left(y, y_{M}\right)\left(\bar{y}_{M}-p_{M} R\right)}{\sigma_{M}^{2}}\right. \\
& \text { where now } \mathrm{y}_{M} \text { is the traded asset with } \\
& \text { price } 1 \text { and minimum norm. } \\
& p=\frac{1}{R}\left[E(y)-\beta_{y, M}\left(\bar{y}_{M}-p_{M} R\right)\right]
\end{aligned}
$$

Application to Pricing

- $\mathrm{y}_{1}=\mathrm{R}_{1}=1.4, \quad \mathrm{y}_{2}=\mathrm{R}_{2}=.8$
- $\sigma_{1}=\sigma_{2}=.20$
- Uncorrelated.

- $\mathrm{y}_{\mathrm{M}}=-\mathrm{y}_{1}+2 \mathrm{y}_{2}$
- $\mathrm{p}=\left(\mathrm{R}_{0}\right)^{-1}\left[\mathrm{E}(\mathrm{y})-\operatorname{cov}\left(\mathrm{y}, \mathrm{y}_{\mathrm{M}}\right)\left(\mathrm{E}\left(\mathrm{y}_{\mathrm{M}}\right)-\mathrm{p}_{\mathrm{M}} \mathrm{R}_{0}\right) / \sigma_{\mathrm{M}}{ }^{2}\right]$

Add Risk-free Asset

- Same y_{1} and y_{2} as before.
- Risk-free return is R_{f}
- Critical value is $R_{f}=1.1$
- In some cases there is no efficient risky portfolio and hence no CAPM formula. But there is always a minimum norm pricing formula.

(b) $R_{f}=1.3$

(b) $R_{f}=1.1$

The Dual Theorem

Correlation Pricing Formula

$$
p=\frac{1}{R}\left[E(y)-\frac{\operatorname{cov}\left(y, y_{M}\right)\left(\bar{y}_{M}-p_{M} R\right)}{\sigma_{M}^{2}}\right]
$$

where now y_{M} is an asset most correlated with y .
(The magnitude and risk-free component are arbitrary.)
Try it for y in M . Then $\mathrm{y}_{\mathrm{M}}=\mathrm{y}$ is most correlated. We find $p=R^{-1}\left[E(y)-E(y)+p_{y} R\right]=p_{y}$.

dvantages

- Solidly based on projection theorem.
- The correlation priciormula for an asset y uses the prif assets that are similar to y.
- It is a rigorou comparables"

dvantages

- Solidly based on projection theorem.
- The correlation pricing formula for an asset y uses the prices of assets that are similar to y.
- It is a rigorous expression of "pricing by comparables:

Second Topic

- Use general portfolio theory to assign prices
- Zero-level prices
- Does result depend on utility function?
- Applications

Coin Flip

Add an asset

- Suppose asset with payoff x is not in the market but is available to you. What is the logical price?
- Theorem. Assume there is no arbitrage in the original system. Then there is an open interval of the real line such that for p_{x} in this interval no arbitrage is possible.
- For coin flip, what is the interval?

Zero-Level

- Theorem. There is a price p_{x} such that x is taken in the portfolio at zero level. Thus, the optimal portfolio does not change.
- This is called the zero-level price.
- For coin flip, what is the zero-level price?

Portfolio Problem

- Maximize $E\left[U\left(y_{0}\right)\right]$
- Sub to $y_{0}=a_{1} y_{1}+a_{2} y_{2}+\ldots+a_{n} y_{n}+$ $a_{n+1} R_{f}$
- $W=a_{1} p_{1}+a_{2} p_{2}+\ldots+a_{n} p_{n}+a_{n+1}$

Necessary conditions

- $E\left[U^{\prime}\left(y_{0}\right) y_{i}\right]=\lambda p_{i}$ for each i and some $\lambda>0$.
- Can find $\lambda=\operatorname{RE}\left[\mathrm{U}^{\prime}\left(\mathrm{y}_{0}\right)\right]$
- $p=E\left[U^{\prime}\left(y_{0}\right) y\right] / R E\left[U^{\prime}\left(y_{0}\right)\right]$

Independent x

- If x is in dependent of all y_{i} 's then we can find a unique zero-level price.
- Since $p=E\left[U^{\prime}\left(y_{0}\right) x\right] / R_{f} E\left[U^{\prime}\left(y_{0}\right)\right]$, it follows that $p_{x}=E(x) / R_{f}$. Price is universal zero-level price.
- There are other cases where the zerolevel price is universal.

Continuous-time Framework

- Market prices follow stochastic processes, such as $\mathrm{d} x_{i}(t)=\mu_{i} x_{i}(t) \mathrm{d} t+$ $\sigma_{i} x_{i}(t) \mathrm{d} z_{i}$.
- There is a risk free asset with rate of return r.
- Frictionless trading is possible at every instant.
- Everyone is a price taker.

General Idea of Operational Calculus

- We only need to know how at time t to price payoffs at time $t+\mathrm{d} t$.
- We use only knowledge of how to value risk free payoffs and marketed payoffs.
- Only first-order terms in $\mathrm{d} t$ are relevant.

An Operational Calculus

 FOUR AXIOMS:- Pricing a constant: If C is constant, then $\mathrm{P}\{\mathrm{C}\}=C \cdot(1-r \mathrm{~d} t)$
- Pricing a marketed quantity: If x is an evolving market variable that neither pays dividends nor requires holding costs, $\quad P\{x+d x\}=x$.
- $\mathrm{P}\{\mathrm{d} t\}=d t$
- P is linear.

Main Application

- Since x is a constant $x=\mathrm{P}\{x+\mathrm{d} x\}=(1-\mathrm{r} \mathrm{d} t) x+\mathrm{P}\{\mathrm{d} x\}$ Hence $r x \mathrm{~d} t=\mathrm{P}\{\mathrm{d} x\}$

Fundamental Pricing Equation

- A value function on the span of marketed assets must satisfy

$$
r V(x, t) \mathrm{d} t=\mathrm{P}\{\mathrm{~d} V(x, t)\}
$$

> This is the general Black--Scholes Equation

Standard Black--Scholes Equation

$$
\begin{aligned}
\mathrm{d} V & =V_{t} \mathrm{~d} t+V_{x} \mathrm{~d} x+\frac{1}{2} V_{x x}(\mathrm{~d} x)^{2} \\
& =V_{t} \mathrm{~d} t+V_{x} \mathrm{~d} x+\frac{1}{2} V_{x x} \sigma^{2} x^{2} \mathrm{~d} t \\
\mathrm{P}\{\mathrm{~d} V\} & =V_{t} \mathrm{~d} t+V_{x} r x \mathrm{~d} t+\frac{1}{2} V_{x x} \sigma^{2} \mathrm{x}^{2} \mathrm{~d} t \\
r V(x, t) \mathrm{d} t & =\mathrm{P}\{\mathrm{~d} V(x, t)\}
\end{aligned}
$$

$$
r V=V_{t}+V_{x} r x+\frac{1}{2} V_{x x} \sigma^{2} x^{2}
$$

Extend outside the marketed space

- Apply similar idea to payoffs outside the marketed space.
- Use instantaneous projection (as CAPM uses projection).

The Extended framework

$$
\mathrm{d} x_{e}=\mu_{e} x_{e} \mathrm{~d} t+\sigma_{e} x_{e} \mathrm{~d} z_{e} \quad \text { Underlying process }
$$

$\mathrm{d} x_{i}=\mu_{i} x_{i} \mathrm{~d} t+\sigma_{i} x_{i} \mathrm{~d} z_{i} \quad i=1,2, \ldots, n \quad$ Stock processes
$F\left(x_{e}(T)\right)$ Payoff function

Instantaneous Projection

- Definition of price

$$
\begin{array}{ll}
p_{y}=\mathrm{P}\{y \mid M\} \quad \begin{array}{l}
\text { Price of } \mathrm{y} \text { when } \\
\text { projected onto } \mathrm{M}
\end{array}
\end{array}
$$

- Pricing equation

$$
V\left(x_{e} t\right)=\mathrm{P}\left\{V\left(x_{e}, t\right)+\mathrm{d} V\left(x_{e}, t\right) \mid M\right\}
$$

$$
r V\left(x_{e}, t\right) \mathrm{d} t=\mathrm{P}\left\{\mathrm{~d} V\left(x_{e}, t\right) \mid M\right\}
$$

- For standard case
$\mathrm{d} V=\left[V_{t}+V_{x_{e}} \mu_{e} x_{e}+\frac{1}{2} V_{x_{e} x_{e}} \sigma_{e}^{2} x_{e}^{2}\right] \mathrm{d} t+V_{x_{e}} \sigma_{e} x_{e} \mathrm{~d} z_{e}$

Projection of $\mathbf{d z} \boldsymbol{z}_{\boldsymbol{e}}$

$$
\begin{gathered}
\left\{\mathrm{dz}_{e} \mid M\right\}=a \mathrm{~d} t+b \mathrm{~d} z_{m} \\
\mathrm{E}\left[\left(\mathrm{~d} z_{e}-a \mathrm{~d} t-b \mathrm{~d} z_{m}\right) \mathrm{d} t\right]=0 \\
\mathrm{E}\left[\left(\mathrm{~d} z_{e}-a \mathrm{~d} t-b \mathrm{~d} z_{m}\right) \mathrm{d} z_{m}\right]=0 \\
a=0, \quad b=\rho_{e m} \\
\left\{\mathrm{~d} z_{e} \mid M\right\}=\rho_{e m} \mathrm{~d} z_{m}
\end{gathered}
$$

Price of $\mathbf{d} z_{e}$

- From operational calculus:

$$
r x_{m} \mathrm{~d} t=\mathrm{P}\left\{\mathrm{~d} x_{m}\right\}=\mathrm{P}\left\{\mu_{m} x_{m} \mathrm{~d} t+\sigma_{m} x_{m} \mathrm{~d} z_{m}\right\}
$$

- Hence $=\mu_{m} x_{m} \mathrm{~d} t+\sigma_{m} x_{m} \mathrm{P}\left\{\mathrm{d} z_{m}\right\}$

$$
\mathrm{P}\left\{\mathrm{~d} z_{m}\right\}=\frac{\left(r-\mu_{m}\right)}{\sigma_{m}} \mathrm{~d} t
$$

- Finally

$$
\mathrm{P}\left\{\mathrm{~d} z_{e}\right\}=\frac{\left(r-\mu_{m}\right)}{\sigma_{m}} \rho_{e m} \mathrm{~d} t
$$

Beta Form

We have
$\mathrm{P}\left\{\mathrm{dz}_{e} \mid M\right\}=\frac{\rho_{e m}}{\sigma_{m}}\left(r-\mu_{m}\right) \mathrm{d} t$
Define $\quad \beta_{e m}=\sigma_{e m} / \sigma_{m}^{2}$
Then

$$
\mathrm{P}\left\{\mathrm{~d} z_{e} \mid M\right\}=\frac{\beta_{e m}}{\sigma_{e}}\left(r-\mu_{m}\right) \mathrm{d} t
$$

The Equation (Standard Version)

$\mathrm{d} x_{e}=\mu_{e} x_{e} \mathrm{~d} t+\sigma_{e} x_{e} \mathrm{~d} z_{e}$ Underlying process $\mathrm{d} x_{i}=\mu_{i} x_{i} \mathrm{~d} t+\sigma_{i} x_{i} \mathrm{~d} z_{i} \quad i=1,2, \ldots, n \quad$ Stock processes
$F\left(x_{e}(T)\right)$ Payoff function

$$
\begin{aligned}
r V\left(x_{e}, t\right) & =V_{t}\left(x_{e}, t\right)+V_{x_{e}}\left(x_{e}, t\right) x_{e}\left[\mu_{e}-\beta_{e m}\left(\mu_{m}-r\right)\right] \\
& +\frac{1}{2} V_{x_{e} x_{e}}\left(x_{e}, t\right) x_{e}^{2} \sigma_{e}^{2} \quad \text { Main equation }
\end{aligned}
$$

$V\left(x_{e}, T\right)=F\left(x_{e}\right) \quad$ Boundary condition

Alternate $\boldsymbol{x}_{\boldsymbol{m}}$'s

- Most-correlated marketed asset.
- Valid for x_{e} and all its derivatives
- Dual Asset
- Valid for all assets.
- Always exists
- Markowitz portfolio
- Valid for all assets
- May not exist

Universal Propery

$\max _{\alpha} \mathrm{E}\{U(W(T)\}$
subject to $\mathrm{d} W(t)=\alpha_{x}^{\prime} \mathrm{d} x+\alpha_{e} \mathrm{~d} V\left(x_{e}, t\right)$
$W(0)=W_{0}$

$$
\alpha_{x}^{\prime} x+\alpha_{e} V\left(x_{e}, t\right)=W(t)
$$

Solution:

$$
\alpha_{e}=0
$$

Universal Property
 $$
J\left(x_{e}, W, t\right)=U(W(T))
$$

$J\left(x_{e}, W, t\right)=\max _{\alpha} \mathrm{E}\left\{J\left(x_{e}+\mathrm{d} x_{e}, W+\mathrm{d} W, t+\mathrm{d} t\right)\right\}$
subject to $\mathrm{d} W(t)=\alpha_{x}^{\prime} \mathrm{d} x+\alpha_{e} \mathrm{~d} V\left(x_{e}, t\right)$

$$
\begin{array}{r}
W(0)=W_{0} \\
\alpha_{x}^{\prime} x+\alpha_{e} V\left(x_{e}, t\right)=W(t)
\end{array}
$$

Solution:

$$
\alpha_{e}=0
$$

Optimal Replication

- Can replicate at each instant so as get best fit.
- Begin with $V\left(x_{e}, 0\right)$ dollars and at each instant allocate fraction γ to the mostcorrelated asset and 1- γ in the risk free asset, where

$$
\gamma=\frac{V_{x_{e}}\left(x_{e}, t\right) x_{e} \beta_{e m}}{V\left(x_{e}, t\right)}
$$

Extended Equation Properties
 - Prices are linear.

- Instantaneous projection consistent.
- No arbitrage opportunities generated.
- Gives universal zero-level price.
- Agrees with B--S if pricing a derivative.
- Gives best replication (or best hedge).
- Can be based on market or most-correlated portfolio.
- Easy to implement (similar to B--S).
- Gives formula for total error after hedge.

Extensions

- Discrete time (lattice) method
- Risk-neutral form
- More complex dynamics
- Expectations of any variable
- Hedging

Risk-Neutral Process

$$
\begin{aligned}
& \mathrm{d} x_{e}=\mu_{e} x_{e} \mathrm{~d} t+\sigma_{e} x_{e} \mathrm{~d} z_{e} \quad \text { Underlying process } \\
& \mathrm{d} x_{i}=\mu_{i} x_{i} \mathrm{~d} t+\sigma_{i} x_{i} \mathrm{~d} z_{i} \quad i=1,2, \ldots, n \quad \text { Stock processes } \\
& \mathrm{d} x_{e}=\omega_{e m} x_{e} \mathrm{~d} t+\sigma_{e} x_{e} \mathrm{~d} z_{e} \quad \text { Risk-Neutral Process } \\
& \omega_{e m}=\mu_{e}-\beta_{e m}\left(\mu_{m}-r\right)
\end{aligned}
$$

Example

- Consider an option on the variable $x_{e}(T)$ with strike price K.
- x_{e} may be estimated stock value of untraded company.
- x_{e} may be revenue or profit
- Can get closed-form expression

Option formula

$$
\begin{gathered}
r V\left(x_{e}, t\right)=V_{t}+V_{x_{e}} \omega x_{e}+\frac{1}{2} V_{x_{e} x_{e}} \sigma_{e}^{2} x_{e}^{2} \\
\omega=\mu_{e}-\beta_{e m}\left(\mu_{m}-r\right)
\end{gathered}
$$

$$
V\left(x_{e}, t\right)=x_{e} e^{(\omega-r)(T-t)} N\left(d_{1}\right)-K e^{-r(T-t)} N\left(d_{2}\right)
$$

$$
\begin{aligned}
d_{1} & =\frac{\ln \left(x_{e} / K\right)+\left(\omega+\frac{1}{2} \sigma_{e}^{2}\right)(T-t)}{\sigma_{e} \sqrt{T-t}} \\
d_{2} & =\frac{\ln \left(x_{e} / K\right)+\left(\omega-\frac{1}{2} \sigma_{e}^{2}\right)(T-t)}{\sigma_{e} \sqrt{T-t}}
\end{aligned}
$$

Specific Example

- Standard Option
- $K=60, S=62, T=5 \mathrm{mo}, r=10 \%, \sigma=20 \%$ Value $=5.85$
- Non traded version
$-K=60, S=62, T=5 \mathrm{mo}, r=10 \%, \sigma_{e}=20 \%$, $\mu_{e}=8 \%, \sigma_{m}=15 \%, \mu_{m}=14 \%, \rho=.7$
- Value $=4.79$

Projection Error (Risk that cannot be hedged)

- Let $S\left(x_{e}, t\right)$ be the variance at T as seen at t. We may find S from

$$
0=\mathrm{E}(\mathrm{~d} S)+\delta^{2}
$$

- Or, in detail,
$S_{t}+S_{x_{e}} \mu_{e} x_{e}+\frac{1}{2} S_{x_{e} x_{e}} \sigma_{e}^{2} x_{e}^{2}+\left[V_{x_{e}} \sigma_{e} x_{e}\right]^{2}\left(1-\rho_{e m}^{2}\right)=0$

$$
S\left(x_{e}, T\right)=0
$$

Summary Conclusion

- B-S pricing renders a derivative redundant, in the sense it can be constructed from existing securities.
- Extended pricing renders a soft derivative irrelevant, in the sense that no risk-averse investor will want it in a portfolio.

References
 (available on Stanford website)

- Luenberger, David G. (1999), Projection Pricing, Journal of Optimization Theory and Applications, vol. 109, no. 1, April 2001, 1-25.
- Luenberger, David G. (2000), A Correlation Pricing Formula, Journal of Economic Dynamics and Control, 26, (2002), 1113-1126.
- Luenberger, David G. (2001), Arbitrage and Universal Pricing, Journal of Economic Dynamics and Control, 26, (2002), 1613-1628.
- Luenberger, David G. (2003), Pricing a Nontradeable Asset and Its Derivatives, Journal of Optimization Theory and Applications, Vol. 121, No. 3, June 2004, 465-487.

