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A Brief Market Overview

According to a recent BBA survey, by the end of 2006 the size of the 
market will be $30 trillion

Rapid growth in CDSs, Indices, synthetic CDOs

Key market participants: banks (trading) (35%), hedge funds (32%), 
banks (loans) (9%), mono-line insurers (8%), others (16%)

Main products: CDSs (33%), Full Index Trades (30%), synthetic 
CDOs (over 10 names, tranches) (12.5%), Index Tranches (7.6%), 
synthetic CDOs (over 10 names, full capital structure) (3.7%), CLNs
(3.2%), others (10%)



What kind of a model do we need?

First, we need to explain how to price CDSs.

Then we need to extend our theory to cover indices, tranches, 
baskets, etc.

Two complementary approaches to pricing CDSs: structural and 
reduced form. Both have pros and contras. It was realized early on 
that without jumps (or/and curvilinear or uncertain barriers) it is 
impossible to explain short end of the CDS curve within the 
structural framework.

A typical snapshot of 125 CDS curves for CDX6 on June 20th 2006 is 
shown in Figure 1.
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A typical structural model

A typical structural model for the evolution of the log-value of the 
firm has the form

This value is governed by a combination of a Wiener process and a 
Poisson process with exponentially distributed jumps. The firm 
defaults if the value x(t) crosses a (generally time-dependent) 
barrier b(t). When all the relevant parameters are constant, the
problem can be solved analytically via the Laplace transform. 
However, in general this approach does not work.
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A typical structural model

Hence we need to use numerical methods. A judicious combination of 
finite differences for partial and ordinary differential equations allows 
one to build a fast and accurate numerical scheme. (This is a special 
feature of exponentially distributed jump sizes and does not work for 
more familiar Gaussian jumps.)

We can solve the barrier problem by using the forward Fokker-Planck 
equation t.p.d.f. and putting probabilities below the barrier to zero. 
This equation has the form
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A typical structural model

When barrier is absent, f can be found via the following recursion 
(knowing analytical solution is useful for benchmarking purposes)
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A typical structural model

Vis-à-vis Gaussian distribution, f has fat tails and narrow peak. 

Comparison of numerical and analytical t.p.d.f. as well as the 
solution of the barrier problem with non-constant barrier is given in 
Figure 2.

By bootstrapping the barrier, we can reproduce term structure of
CDS for most names. In addition, we can price equity derivatives and 
produce a respectable volatility skew.
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What to do for baskets?

We just saw that for individual names structural approach works 
quite well.

People tried to extend it to baskets of different names for some time 
but these attempts were not entirely successful.

In general, dimensionality of the problem is too high, and cannot be 
reduced in a computationally efficient way in a pure dynamic 
framework.

Hence we need to use some sort of a reduced form model. In order
to reduce dimensionality and generate necessary correlation among 
individual names, it has to be developed in a factor framework. One 
more traditional ingredient in the mix is analytical solvability, usually 
achieved via affinity.

We propose to drop affinity altogether, and modify other ingredients 
as appropriate.



Motivation for our choice of model

In order to motivate our subsequent choice, we consider short-rate 
models in the interest rate context.

Classical short-rate models (Vasicek, CIR, Black-Karasinski) have the 
form

These models deal with the evolution of the short rate directly and, 
apart from the last one, are analytically solvable.
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Motivation for our choice of model

We prefer to introduce a standard OU factor x, and represent r as an 
appropriate function of x (success or otherwise of a short-rate 
interest rate model crucially depends on an appropriate choice of f)

To calibrate our model, we need to price bonds and swaptions (say). 
The corresponding pricing equation for bonds can be written in the 
form

It has to be solved numerically (forward rather than backward for 
efficiency). Calibration to the US market is shown in Figure 3. In 
principle, it can be improved if extra factors are introduced.
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Motivation for our choice of model
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Motivation for our choice of model

We want to extend the above model in a different direction and 
augment it as follows

Then we can represent r in the form
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Motivation for our choice of model

Hence we can write the pricing equation for bonds as follows

This equation certainly looks (and is) more complicated than the
original one. However, we can also write it in a different form,
namely, 

This equation is similar to the standard pricing equation for Asian 
options and can be solved along similar lines (as a sequence of 
inhomogeneous one-factor equations).
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Motivation for our choice of model

Since the above equations are fairly unusual, it is useful to solve 
them in the special case when F=const (of course, in this case the 
rate is not stochastic). The corresponding solutions are
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Our model

Inspired by the above arguments, we propose the following model 
for a credit basket

Here Q’s are survival probabilities of individual names until time T. 
To calibrate the model, we need to solve the following pricing PDE:
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Our Model

Now our choice becomes more apparent. Indeed, because of our 
ansatz for survival probability, we can solve the same pricing 
equation for all names 

and calibrate them to CDS spreads by solving an algebraic equation 
rather than a PDE
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Our Model

Once calibration to individual names is performed, we can apply the 
usual recursion and calculate the loss distribution conditional on y. 
After that we can solve the pricing equation backward and find the 
expected losses for individual tranches at time 0. The overall output 
of the direct numerical scheme is shown in Figures 4a-4d. In order to 
price junior tranches rare but large jumps are necessary. (More on 
that below.) 

If need occurs, we can consider a multi-factor extension of the above 
model, namely

We note that our construction can be used for a totally different 
purpose, namely, for constructing consistent dynamics for the 
fractional loss of a portfolio: 
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Our Model

For illustrative purposes we use the following set of parameters
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Our model

Shifted logit profile
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Our model
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Our model

Shifted logit profiles
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Our model

Shifted Expected Losses
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Our model

We are in an unusual situation when it is more efficient to do the 
calibration via the backward induction, but the pricing via the 
forward induction. Of course, for this approach to be consistent, we 
need to design numerical schemes, which guarantee that backward 
and forward equations agree with machine accuracy.

The pricing equation for the conditional t.p.d.f. has the form

The unconditional probability is defined can be found by a simple 
integration.

Once it is known, all the quantities we are interested in can be
computed by taking averages.
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Our model
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Our model
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Our model
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A simplified model

To make the above arguments more transparent, we introduce a 
simplified version of the model and apply it to CDX7 on Jan 12, 
2007. On that date, the market data has the form

We can extract expected tranche losses by balancing default and 
payment legs in the usual manner.

Year 0-3% 3-7% 7-10% 10-15% 15-30% 0-100%
3 2.300% 0.0600% 0.0013% 0.0006% 0.0002% 0.172%
5 23.500% 0.730% 0.135% 0.055% 0.033% 0.340%
7 42.875% 2.018% 0.425% 0.180% 0.074% 0.470%

10 53.063% 4.760% 1.055% 0.490% 0.149% 0.590%



A simplified model
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A simplified model

By solving the above system of lower-triangular equations we find 
expected tranche losses as follows

In the spirit of our previous consideration, we introduce a market 
factor with four distinct values                        occurring with 
probabilities 

We assume that survival probabilities of individual names are given 
by the familiar expression

and calibrate model parameters to match the market.
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0-3% 3-7% 7-10% 10-15% 15-30% 0-100%
2.93 0.1583 0.0017 0.0000 0.0000 0.0000 0.0050
4.93 0.4830 0.0380 0.0071 0.0029 0.0017 0.0171
6.93 0.7805 0.1490 0.0324 0.0138 0.0056 0.0336
9.93 0.9568 0.4827 0.1175 0.0556 0.0167 0.0604



A simplified model

We achieve almost perfect calibration to the input expected tranche 
losses and obtain the following set of breakeven coupons and upfront 
payments (for clarity differences are shown)

The corresponding parameters have the form

0.50% 0.00% 0.00% 0.00% 0.00% 0.00%
0.11% 0.00% 0.00% 0.00% 0.00% 0.00%
0.11% 0.00% 0.00% 0.00% 0.00% 0.00%
0.11% 0.00% 0.00% 0.00% 0.00% 0.00%

0.8833 0.1119 0.0048 0.0000 1.3007 2.5505
0.9030 0.0891 0.0062 0.0017 1.2746 2.4306
0.8382 0.1342 0.0219 0.0057 0.9768 1.9647
0.5475 0.3943 0.0464 0.0118 0.7428 2.0239



A simplified model

It is very instructive to look at the corresponding thetas and  loss 
distributions which are given in Figures 11-16.

In principle, we can calibrate two indices at once and hence build a 
framework for pricing bespoke portfolios.



A simplified model
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A simplified model
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A simplified model

Total Loss D istribution
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A simplified model

Time-dependent loss distribution cannot be arbitraged.

Cumulative Loss Distributions
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A simplified model

Since we know loss distributions for all maturities, we can calculate 
break-even coupons for all 1% tranchelets, see Figure 14.

T ranchelet BECs

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

1.00% 2.00% 3.00% 4.00% 5.00% 7.00%



A simplified model

The corresponding base correlation has the form

Base Correlations
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A simplified model

In case the model does not calibrate to the market exactly, we can 
apply the usual relative entropy minimization to do so. The set of 
equations we need to solve is by now standard:
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A simplified model

Results of applying minimum cross-entropy are shown in Figure 17.
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A simplified model

Calibration parameters for iTRAXX are similar to the one for CDX.

Hence we can use the same parameters to price bespoke baskets 
(within reason).

More complicated instruments (such as LSS deals and the like can be 
priced in the framework of the complete model).



Conclusions

We demonstrated how to construct a one-factor dynamic factor 
model for credit baskets.

Via a special ansatz we solved the calibration problem for individual 
names without using analytically tractable (but not necessarily 
financially motivated) dynamics. 

We showed that even the simplified version of the model can 
reproduce the market exactly.

We use the calibrated simplified model to analyze the structure of 
loss distributions implied by market quotes.

As a result we achieved a financially meaningful “completion” of the 
break-even coupon surface.

In its full form, the model can be used to price a variety of exotic 
credit products, build dynamic hedges for tranches and tranchelets, 
etc.
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