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Introduction
• Simplified example

• 10 firms each issue $1 ZCB
• 3 tranches on this CDO: lower, middle, and upper
• Four firms default
• Lower tranche pays $3, middle tranche pays $1, upper pays nothing

• Problem: How to price bespoke tranches consistently with 
liquid market quotes?

• Solution: We will use the minimum cross entropy copula 
between the market data and a specified prior copula
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Introduction

• Early approaches – reduced-form with correlated 
intensities

• Default intensities are
• Firm 1: 
• Firm 2:

where λ1 and λ2 are correlated stochastic processes

• Problem: Empirical study suggests level of correlation
between τ1 and τ2 achievable is not high enough
Das et al (2005)

[ )( ) ( )1 1 1, ( )P t t dt t t dtτ λ λ∈ + =

[ )( ) ( )2 2 2, ( )P t t dt t t dtτ λ λ∈ + =
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Introduction

• Current popular approach: copulas which directly 
introduce dependence between default times τ1 and τ2

• Idea: (e.g. Gaussian copula)

where z1 and z2 are retrieved from single-name calibration
and correlation ρ is determined from CDO tranche quotes

( ) ( )1 2 1 2, , ;P T T z zτ τ ρ< < = Φ
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Introduction

• Choice of copula is exogenous and arbitrary – motivated by 
quality of fit to data

• Idea: imply the copula from market prices
• Problem is that only a finite number of market prices are 

available from which we are trying to retrieve a continuous 
distribution

• Solution is to introduce a regularizing function
• Several possibilities: e.g. goodness-of-fit, maximal 

smoothness Hull & White (2006) and entropy cf Avellaneda
et al (1997)
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Principle of Maximum Entropy

• Entropy is a measure of uncertainty

• We should choose a distribution which is consistent with
the given data but otherwise has maximum uncertainty

• This approach is optimal in the sense that we do not 
assume anything about the distribution other than what is 
given by the data i.e. it is a distribution free method
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Principle of Maximum Entropy

• Define entropy for a continuous multivariate density f  as

• Maximize H over f subject to 

where the ai are discounted payoffs and the constants     are 
the m observed market data points

( ) : ( ) log ( )H f f x f x dx= −∫

( ) 1f x dx =∫
( ) ( ) 1, ,i ia x f x dx a i m= =∫ …

ia
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Principle of Maximum Entropy

• Easy to solve with calculus of variations via method of 
Lagrange multipliers with solution

where Z is the normalizing factor that makes     a density

• Must now solve for the η’s numerically via first order 
conditions and Newton’s method e.g. Agmon et al (1981) but 
computationally easier to solve the problem dual to the 
original problem i.e. minimize the primal value over the η’s

1

1ˆ ( ) exp ( )
( )

m

i i
i

f x a x
Z

η
η =

⎧ ⎫= ⎨ ⎬
⎩ ⎭
∑

f̂
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Principle of Maximum Entropy

• Dual value function can be simplified to

Borwein & Lewis (2000)

• Minimize this unconstrained objective over η numerically
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Principle of Maximum Entropy

• The dual function is strictly convex

• So optimization is straightforward using a quasi-Newton
method  e.g. BFGS

( )

2

cov ( ), ( )

i j i j

i j

i j

Z Z Z
L

Z Z

a X a X

η η η η
η η = −

=

#



© 2006 Centre for Financial Research,  Judge Business School,  University of Cambridge
www-cfr.jbs.cam.ac.uk

Principle of Minimum Cross-Entropy

• Maximizing entropy means we are choosing a distribution
closest to the uniform distribution while satisfying the data 
constraints

• But instead of the uniform distribution we could choose 
another distribution which is useful if we have prior 
knowledge or a view

• Use the concept of cross-entropy – a measure of distance
from one probability distribution to another defined by

( )( | ) : ( ) log
( )

p xD P Q p x dx
q x

= ∫
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Principle of Minimum Cross-Entropy

• We wish to minimize cross-entropy – choose a distribution 
closest to our prior while satisfying the data constraints

• Solving this problem almost identical to MaxEnt with 
solution 

• Presence of the factor q(x) means it is possible to compute 
the required integrals via importance sampling

( )
' ( )1ˆ ( ) ( ) a xp x q x e

Z
η

η
=
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Application to CDO pricing

• To apply to CDO pricing we need an extra requirement –
the marginals of the joint distribution are specified 

• Hence we can attempt to infer the minimum cross-entropy
copula density c from the data but this introduces extra 
constraints – the marginals must be uniformly distributed

• Difficult to satisfy this requirement completely but we can 
approximate it with

where                     for some fixed maturity T and h is 
default intensity 

10 [0,1]

( ) 1, ,125
n

p

i ic u du du p i
−

− = =∫ ∫ …

: 1 hTp e−= −
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Computational Results

• Preliminary results: Suppose ‘market’ prices are generated 
by some copula with prior the Gaussian copula and 
calibrate the minimum cross-entropy copula to the 
generated ‘market’ premia

• The stochastic correlation Gaussian copula was chosen as 
the ‘market’ copula as it fits the market prices relatively 
closely (i.e. produces a correlation skew effect) and is very 
simple     Burtschell et al (2005)
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Computational Results

• Should be perfect calibration in theory – all errors are a 
result of inaccuracy in Monte Carlo integration

• Now use this minimum cross-entropy copula to price
tranches with ‘out-of-sample’ threshold levels and 
compare to other models (Gaussian copula and base 
correlation)
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Pricing results - 3-8 Tranche
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Pricing results - 8-13 Tranche
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Pricing results - 13-23 Tranche
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Computational Results

• Next let us see if minimum cross-entropy can be fitted to 
real market data -- iTraxx and CDX across maturities

• Conducted calibration on two dates to see if the method is 
flexible enough to fit to different market conditions

• Used prior copula: Gaussian with  ρ = 0.25
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iTraxx 21 Jun 05
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CDX 4 Apr 06  Prior: Student t with ρ = 0.25 and d = 2
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CDX 4 Apr 06   5 year only    Prior: Gaussian with ρ = 0.25
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Towards an exact solution to cross entropy 
CDO pricing

• Handle the uniformly distributed copula marginals by setting up the 
general marginal problem in Banach spaces over

s.t. 

• The constraint map carries L1(T) to                  with dual
• Then the convex dual function in terms of the Lagrange multipliers λ, Λ

becomes

• This can be globally minimized by the Banach space BFGS algorithm 
Edge & Powers (1976)

1 2: [ , ]n nT T T= ⊂ \

1 ( )
sup ( ) log ( )Tf L T

f x f x dx
ε

− ∫

( ) ( )T j ja x f x dx a∫ = 1, ...,j m=

1 1 2\[ , ] ~( ) ( )p
T T T T i i if x dx dx G p∫ ∫ = 1 2[ , ]p T Tε 1, ...,i n=

( )m C T×\ ( )m BV T×\

1 1 2 2 1 1
ˆ( , ; ) log ( , ) [ ( ) ( ) ( ) ( )]m n

j j j i i i i if Z a G T T G T Tλ λ λ= =Λ = Λ − Σ − Σ Λ − ΛL

2

1
( ) ( )T

T i ip dG p− ∫ Λ
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Example
• MaxEnt problem with Gaussian marginals

s.t.

where Φ is the standard normal distribution function
• Asymptotic solution in T is

the bivariate standard normal density with normalizing 
constant Z

2 2[ , ] [ , ]
max ( ) log ( )

f C T T T T
f x f x dx

ε − −
− ∫

2 1 2[ , ]
( )

T T
x x f x dx ρ

−
∫ =

1 2( ) ( )p T
T T f x dx dx p− −∫ ∫ = Φ

1 2( ) ( )T p
T T f x dx dx p− −∫ ∫ = Φ

1 2 1 1 2 2
1ˆ ( ) exp{ ( ) ( )}f x x x x x
Z

λ= − Λ − Λ 2 2
1 2 12

1 1exp{ ( 2 )}
2(1 )

x x x x
Z p

ρ= − + −
−



© 2006 Centre for Financial Research,  Judge Business School,  University of Cambridge
www-cfr.jbs.cam.ac.uk



© 2006 Centre for Financial Research,  Judge Business School,  University of Cambridge
www-cfr.jbs.cam.ac.uk

Conclusion

• Disadvantages and possible improvements
• Computationally very slow since full Monte Carlo simulation is 

required but working on theory and speedups
• Like typical copula approach the model is not dynamic but it does 

apply to multiple maturities

• Advantages of minimum cross-entropy copula approach
• Provides motivating rationale for choice of copula
• Near perfect calibration 
• Good out of sample performance
• Heterogeneous portfolios possible
• How does copula evolve from day to day and can its dynamics be 

simply specified?
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