University Finance SeminarCambridge19th January 2007

Empirical Copulas for CDO Pricing Using Minimum Cross Entropy

MAH Dempster

Centre for Financial Research Judge Business School University of Cambridge &

Cambridge Systems Associates mahd2@cam.ac.uk www-cfr.jbs.cam.ac.uk

Coworkers: E A Medova & S W Yang

Outline

- Introduction
- Principle of Minimum Cross Entropy
- Computational Results
- Conclusion

- Simplified example
 - 10 firms each issue \$1 ZCB
 - 3 tranches on this CDO: lower, middle, and upper
 - Four firms default
 - Lower tranche pays \$3, middle tranche pays \$1, upper pays nothing

- **Problem:** How to price bespoke tranches consistently with liquid market quotes?
- Solution: We will use the minimum cross entropy copula between the market data and a specified prior copula

- Early approaches reduced-form with correlated intensities
- Default intensities are
 - Firm 1: $P(\tau_1 \in [t, t+dt) | \lambda_1(t)) = \lambda_1(t) dt$
 - Firm 2: $P(\tau_2 \in [t, t+dt) | \lambda_2(t)) = \lambda_2(t) dt$

where λ_1 and λ_2 are correlated stochastic processes

Problem: Empirical study suggests level of correlation between τ₁ and τ₂ achievable is not high enough Das *et al* (2005)

- Current popular approach: copulas which directly introduce dependence between default times τ_1 and τ_2
- Idea: (e.g. Gaussian copula)

$$P(\tau_1 < T, \tau_2 < T) = \Phi(z_1, z_2; \rho)$$

where z_1 and z_2 are retrieved from single-name calibration and correlation ρ is determined from CDO tranche quotes

- Choice of copula is exogenous and arbitrary motivated by quality of fit to data
- Idea: imply the copula from market prices
- Problem is that only a finite number of market prices are available from which we are trying to retrieve a continuous distribution
- Solution is to introduce a regularizing function
- Several possibilities: e.g. goodness-of-fit, maximal smoothness Hull & White (2006) and entropy *cf* Avellaneda *et al* (1997)

- Entropy is a measure of uncertainty
- We should choose a distribution which is consistent with the given data but otherwise has maximum uncertainty
- This approach is optimal in the sense that we do not assume anything about the distribution other than what is given by the data i.e. it is a distribution free method

- Define entropy for a continuous multivariate density f as $H(f) \coloneqq -\int f(x) \log f(x) dx$
- Maximize *H* over *f* subject to

$$\Box \int f(x)dx = 1$$

$$\Box \int a_i(x)f(x)dx = \overline{a_i} \qquad i = 1, \dots, m$$

where the a_i are discounted payoffs and the constants \overline{a}_i are the *m* observed market data points

• Easy to solve with calculus of variations via method of Lagrange multipliers with solution

$$\hat{f}(x) = \frac{1}{Z(\eta)} \exp\left\{\sum_{i=1}^{m} \eta_i a_i(x)\right\}$$

where Z is the normalizing factor that makes \hat{f} a density

• Must now solve for the η 's numerically via first order conditions and Newton's method e.g. Agmon *et al* (1981) but computationally easier to solve the problem dual to the original problem i.e. minimize the primal value over the η 's

• Dual value function can be simplified to

$$L(\eta) = -\int \hat{f}(x) \log \hat{f}(x) dx + \sum_{i=1}^{m} \eta_i \left[\int a_i(x) \hat{f}(x) dx - \overline{a}_i \right]$$

$$= -\int \hat{f}(x) \left[-\log(Z(\eta)) + \sum_i \eta_i a_i(x) \right] dx + \sum_i \eta_i \left[\int a_i(x) \hat{f}(x) dx - \overline{a}_i \right]$$

$$= \log(Z(\eta)) - \sum_i \eta_i \overline{a}_i$$

Borwein & Lewis (2000)

• Minimize this unconstrained objective over η numerically

• The dual function is strictly convex

$$L_{\eta_i \eta_j} = \frac{Z_{\eta_i \eta_j}}{Z} - \frac{Z_{\eta_i} Z_{\eta_j}}{Z^2}$$

$$\vdots$$

$$= \operatorname{cov} \left(a_i(X), a_j(X) \right)$$

• So optimization is straightforward using a quasi-Newton method e.g. BFGS

Principle of Minimum Cross-Entropy

- Maximizing entropy means we are choosing a distribution closest to the uniform distribution while satisfying the data constraints
- But instead of the uniform distribution we could choose another distribution which is useful if we have prior knowledge or a view
- Use the concept of cross-entropy a measure of distance from one probability distribution to another defined by

$$D(P | Q) \coloneqq \int p(x) \log \frac{p(x)}{q(x)} dx$$

Principle of Minimum Cross-Entropy

- We wish to minimize cross-entropy choose a distribution closest to our prior while satisfying the data constraints
- Solving this problem almost identical to MaxEnt with solution

$$\hat{p}(x) = \frac{1}{Z(\eta)} q(x) e^{\eta' a(x)}$$

• Presence of the factor *q*(*x*) means it is possible to compute the required integrals via importance sampling

Application to CDO pricing

- To apply to CDO pricing we need an extra requirement the marginals of the joint distribution are specified
- Hence we can attempt to infer the minimum cross-entropy copula density *c* from the data but this introduces extra constraints the marginals must be uniformly distributed
- Difficult to satisfy this requirement completely but we can approximate it with

$$\int_{0}^{p} \int_{[0,1]^{n-1}} c(u) du_{-i} du_{i} = p \qquad i = 1, \dots, 125$$

where $p \coloneqq 1 - e^{-hT}$ for some fixed maturity *T* and *h* is default intensity

Computational Results

- Preliminary results: Suppose 'market' prices are generated by some copula with prior the Gaussian copula and calibrate the minimum cross-entropy copula to the generated 'market' premia
- The stochastic correlation Gaussian copula was chosen as the 'market' copula as it fits the market prices relatively closely (i.e. produces a correlation skew effect) and is very simple Burtschell *et al* (2005)

Thresholds (%)	Maturity	'Market' premium	Minxent premium	Absolute error (bps)
0-5	3	7.5%	7.4%	0.1%
5-10	3	51.3	50.5	0.7
10-15	3	25.2	25.8	0.6
15-30	3	12.3	11.9	0.4
0-5	5	13.2%	13.1%	0.1
5-10	5	68.9	68.9	0.0
10-15	5	28.3	27.9	0.4
15-30	5	13.6	13.8	0.2
0-5	7	18.7%	18.7%	0.0
5-10	7	91.6	92.7	0.1
10-15	7	30.7	31.6	0.9
15-30	7	14.5	15.2	0.7
0-5	10	26.0%	26.0%	0.0
5-10	10	131.0	131.8	0.8
10-15	10	35.2	36.6	1.4
15-30	10	15.4	15.8	0.4

Computational Results

• Should be perfect calibration in theory – all errors are a result of inaccuracy in Monte Carlo integration

• Now use this minimum cross-entropy copula to price tranches with 'out-of-sample' threshold levels and compare to other models (Gaussian copula and base correlation)

Thresholds (%)	Maturity	'Market' premium bps	Gaussian bps	BaseCorr bps	Minxent bps
3-8	3	106.3	194.8	121.6	112.2
8-13	3	31.8	37.2	28.7	32.7
13-23	3	17.0	5.2	17.2	20.5
3-8	5	159.2	236.5	154.9	162.0
8-13	5	35.6	46.6	34.9	35.5
13-23	5	18.5	6.2	18.1	19.2
3-8	7	213.2	276.6	199.2	215.0
8-13	7	41.0	56.0	42.5	41.6
13-23	7	19.6	7.8	20.1	20.8
3-8	10	294.8	340.9	267.0	292.4
8-13	10	52.4	75.5	55.2	53.3
13-23	10	21.1	11.6	20.9	21.5
Total error	-	-	-	-	21.2

Computational Results

- Next let us see if minimum cross-entropy can be fitted to real market data -- iTraxx and CDX across maturities
- Conducted calibration on two dates to see if the method is flexible enough to fit to different market conditions
- Used prior copula: Gaussian with $\rho = 0.25$

Thresholds (%)	Maturity	Market premium bps	Minxent premium bps	Absolute error bps
0-3	5	23.3%	23.4%	0.1%
3-6	5	68.0	67.8	0.2
6-9	5	19.0	19.9	0.9
9-12	5	9.5	10.1	0.6
12-22	5	4.5	5.3	0.8
0-3	7	43.1%	43.4%	0.3%
3-6	7	202.0	204.2	2.2
6-9	7	47.5	50.0	2.5
9-12	7	24.5	26.9	2.4
12-22	7	9.0	8.8	0.2
0-3	10	54.3%	53.9%	0.4%
3-6	10	580.0	580.4	0.4
6-9	10	117.0	117.2	0.2
9-12	10	51.5	52.0	0.5
12-22	10	20.0	20.6	0.6
Total error	-	-	-	12.3

iTraxx 10 Apr 06

iTraxx 21 Jun 05

Thresholds (%)	Maturity	Market premium bps	Minxent premium bps	Absolute error bps
0-3	5	30.2%	30.2%	0.0%
3-6	5	202.5	197.1	5.4
6-9	5	89.0	95.2	6.2
9-12	5	53.5	60.3	6.8
12-22	5	21.5	24.7	3.2
0-3	10	46.8%	48.0%	1.2%
3-6	10	399.0	394.7	5.7
6-9	10	206.0	199.3	6.7
9-12	10	137.0	128.8	8.2
12-22	10	62.5	58.3	4.2
Total error	-	-	-	47.7

Thresholds (%)	Maturity	Market premium bps	Minxent premium bps	Absolute error bps
0-3	5	32.3%	32.7%	0.6%
3-7	5	92.0	88.4	3.6
7-10	5	17.5	12.6	4.9
10-15	5	9.0	7.7	1.7
15-30	5	4.5	6.1	1.6
0-3	7	50.0%	50.2%	0.2%
3-7	7	258.5	259.2	0.7
7-10	7	37.5	37.7	0.2
10-15	7	21.5	21.9	0.4
15-30	7	7.5	5.8	1.7
0-3	10	56.8%	57.1%	0.3%
3-7	10	617.5	616.5	1.0
7-10	10	105.0	106.3	1.3
10-15	10	51.5	49.9	1.6
15-30	10	14.5	12.0	2.5
Total error	-	-	-	22.2

CDX 4 Apr 06 Prior: Student *t* with $\rho = 0.25$ and d = 2

CDX 4 Apr 06 5 year only Prior: Gaussian with $\rho = 0.25$

Thresholds (%)	Maturity	Market premium bps	Minxent premium bps	Absolute error bps
0-3	5	32.3%	32.6%	0.3%
3-7	5	92.0	94.2	2.2
7-10	5	17.5	17.2	0.3
10-15	5	9.0	9.9	0.9
15-30	5	4.5	5.5	1.0
Total error	-	-	-	4.7

Towards an exact solution to cross entropy CDO pricing

• Handle the uniformly distributed copula marginals by setting up the general marginal problem in Banach spaces over $T := [T_1, T_2]^n \subset \mathbb{R}^n$

$$\sup_{f \in L^{1}(T)} -\int_{T} f(x) \log f(x) dx$$

s.t.
$$\int_{T} a_{j}(x) f(x) dx = \overline{a}_{j} \qquad j = 1, ..., m$$
$$\int_{T_{1}}^{p} \int_{T \setminus [T_{1}, T_{2}]} f(x) dx_{i} dx_{i} = G_{i}(p) \quad p \in [T_{1}, T_{2}] \qquad i = 1, ..., n$$

- The constraint map carries $L^1(T)$ to $\mathbb{R}^m \times C(T)$ with dual $\mathbb{R}^m \times BV(T)$
- Then the convex dual function in terms of the Lagrange multipliers λ , Λ becomes

$$\mathcal{L}(\lambda,\Lambda;\hat{f}) = \log Z(\lambda,\Lambda) - \sum_{j=1}^{m} \lambda_j \overline{a}_j - \sum_{i=1}^{n} [G_i(T_2)\Lambda_i(T_2) - G_i(T_1)\Lambda_i(T_1)] - \int_{T_1}^{T_2} \Lambda_i(p) dG_i(p)$$

• This can be globally minimized by the Banach space BFGS algorithm Edge & Powers (1976)

Example

• MaxEnt problem with Gaussian marginals

$$\max_{f \in C[-T,T]^{2}} - \int_{[-T,T]^{2}} f(x) \log f(x) dx$$

s.t.
$$\int_{[-T,T]^{2}} x_{1}x_{2}f(x) dx = \rho$$

$$\int_{-T}^{p} \int_{-T}^{T} f(x) dx_{1} dx_{2} = \Phi(p)$$

$$\int_{-T}^{T} \int_{-T}^{p} f(x) dx_{1} dx_{2} = \Phi(p)$$

where Φ is the standard normal distribution function

• Asymptotic solution in T is

$$\hat{f}(x) = \frac{1}{Z} \exp\{\lambda x_1 x_2 - \Lambda_1(x_1) - \Lambda_2(x_2)\} = \frac{1}{Z} \exp\{-\frac{1}{2(1-p^2)} (x_1^2 + x_2^2 - 2\rho x_1 x)\}$$

the bivariate standard normal density with normalizing constant Z

Figure 1: MaxEnt density, $\rho = 0.35$ Figure 2:

Figure 2: True bivariate normal density, $\rho = 0.35$

Conclusion

- Disadvantages and possible improvements
 - Computationally very slow since full Monte Carlo simulation is required but working on theory and speedups
 - Like typical copula approach the model is not dynamic but it does apply to multiple maturities
- Advantages of minimum cross-entropy copula approach
 - Provides motivating rationale for choice of copula
 - Near perfect calibration
 - Good out of sample performance
 - Heterogeneous portfolios possible
 - How does copula evolve from day to day and can its dynamics be simply specified?

References

- Agmon N, Alhassid Y & Levine R (1981) An algorithm for determining the Lagrange parameters in the maximal entropy formalism *The Maximum Entropy Formalism* Levine R & Tribus M eds 207-209
- Avalleneda M, Friedman C, Holmes R & Samperi D (1997) Calibrating volatility surfaces via relative-entropy minimization *Applied Mathematical Finance* 4(1) 37-64
- Borwein J & Lewis A (2000) Convex Analysis and Nonlinear Optimization: Theory and Examples Springer Verlag Berlin
- Burtschell X, Gregory J & Laurent J-P (2005) A comparative analysis of CDO pricing models Working Paper BNP Paribas
- Das S, Duffie D, Kapadia N & Saita L (2005) Common failings: How corporate defaults are correlated Forthcoming in the *Journal of Finance*
- Hull J & White A (2006) Valuing credit derivatives using an implied copula approach Working Paper University of Toronto

