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• Assume the risk-neutral stock-process St is a con-
tinuous martingale and set xt = ln(St/S0). Recall
that the fair value of a variance-swap

E [hxiT ]
is given by a strip of European OptionsZ S0

0

2dK

K2
P (K) +

Z ∞
S0

2dK

K2
C(K)

=
Z ∞
0

dK w(K)

(
P (K) if K < S0
C(K) if K > S0

• Recent work by Carr & Lee (to be reviewed in a little)
suggests that

E [f (hxiT )] =
Z ∞
0

dKwf(K;S0)

(
P (K) if K < S0
C(K) if K > S0

• Theorem (Structure of the ATM weights): If above
holds then

wATM ≡ wf(S0;S0) = 2f
0(0)/S20



Proof: Assume St follows an arbitrary stochastic
volatility model possibly with non-zero correlation ρ.
Dynamics:

dSt = St
√
vtdW

1
t

dvt = a(vt)dt+ b (vt)
·
ρdW 1

t +
q
1− ρ2dW 2

t

¸
dzt = vtdt, z0 = 0.

As 3-dimensional diffusion its generator reads

L = 1

2
S2v∂SS+(a∂v+

1

2
b2∂vv+ρS

√
v∂vS)+v∂z.

Denote gK(S) the payoff of out-of-money puts resp.
calls struck at K. Solving the usual PDE may be
written as

P (K;T, S0, v0)=
h
eL TgK

i
(S0, v0) and similar for C.

Similar to pricing of Asian options,

E [f (hxiT )] =
h
eL Tf

i
(S0,v0)

=
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eL Tf

i
(v0).

Thush
eL Tf

i
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h
eL TgK

i
(S0, v0).



Take derivatives w.r.t. T and evaluate at T = 0,

[L f ] (v0) =
Z ∞
0

dKwf(K;S0) [L gK] (S0, v0).

Note that none of the payoffs under consideration
(f, gK) depends on instantaneous variance v. Thus

v0f
0(z0) =

Z ∞
0

dKwf(K;S0)
1

2
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1

2
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QED

• Applications:
Variance Swap ⇒ wATM = 2/S20
Volatility Swap ⇒ wATM = +∞
Variance Call ⇒
wATM ≡ 0 for all positive (total var.) strikes !!!



• Theorem (Carr/Lee): Assume independence between
W and v. With p(λ) = 1/2±

q
1/4 + 2λ have

E[eλhxiT ] = E[ep(λ)xT ].

Proof: Elementary computation when hxiT ≡ σ2BST.

Then average over different realizations of hxiT .
QED

• Assume a Laplace representation for f

f(y) =
1

2πi

Z a+i∞
a−i∞

F (λ) eλy dλ.

This yields

E [f(hxiT )] =
1

2πi

Z a+i∞
a−i∞

F (λ)E
h
eλhxiT

i
dλ.

On the other hand, the power-options with value

E
h
eλhxiT

i
expand naturally in terms of put/call options.



• Using put-call symmetry and working with dimension-
less quantities

k = log(K/S0)

c(k) = C(K)/K, etc.

find

E [f(hxiT )] =
Z ∞
0

dk c(k) w(k)

with (formal) weights w(k) equal to

4 ek/2
µ
1

2πi

Z
F (λ)λ cosh[k

q
1/4 + 2λ] dλ

¶
.

• For comparison, the variance swap reads

E [hxiT ] =
Z ∞
0

dk c(k) 4ek/2 cosh [k/2] .

• Apply this to the Volatility Swap
f(hxiT ) =

q
hxiT .



Brute force computation (Mathematica) ⇒

wf (k) =
µr

π

2
I1 (k/2) +

√
2πδ0 (k)

¶
ek/2

≈
√
2πδ0 (k) , I1 ... mod. Bessel Fct.

Simple understanding of approximation via standard
expansion of B.S. formula,

c(0) ∼ 1√
2π

p
σ2T =

1√
2π

q
hxiT .

Proof (no brute force): W.l.o.g. T ≡ 1. Ansatz:Z ∞
0

dk
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π

2
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√
2πδ (k)

¶
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for some F to be found with F (0) = 1. This last
choice and the constant

q
π
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π
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h
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i¶
.

Our statement is equivalent to saying that the above
strip of European has Black—Scholes-vega equal to



one. Using the well-known BS-vega for cBS(k;σ) =
e−kCBS(k;σ) with
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−k + σ2/2

σ
=
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v
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0

dk F (k/2) k e−k2/(2v) ≡ 1 ∀v
A power-expansion shows that

F (k) =
∞X

m=0

³
k2/4

´m
(m!)2

.

We recognize F as Bessel function I0(k) and finally
recall

I1(k) = ∂kI0(k).

QED



• Apply this to Variance Calls with payoff, say K =

0.04 = (20%)2 × 1 year.

f(hxiT ) = (hxiT −K)+ .

Well-known Laplace-transform of f is

F (λ) = e−λK/λ2.

Now the brute-force computation ... but defining
integral for w does not converge!
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Figure 1:

• To see what is going on (and to guarantee con-
verge) use convolution of payoff with Gauss-kernel of
std.dev.

√
h for h = 10−4 (dashed line) and 10−5

(solid) respectively. This introduces an exponential
damping factor and the weights

w(k) = wcall(k,K;h)

are given by

4 ek/2

2πi

Z a+i∞
a−i∞

ehλ
2/2 e

−λK
λ

cosh
·
k
q
1/4 + 2λ

¸
dλ.

• Still numerically hard since h ¿ 1 but scaling in λ
does the trick and we can plot for any h > 0.
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Figure 2: For h = 10−4.
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Figure 3: For h = 10−5



• Since wcall(k,K;h) is now defined by absolutely
convergent integrals have no problem differentiating
under the integral. Fix h and set

w̃(k,K)

=
2πi

4ek/2
wcall

=
Z a+i∞
a−i∞

ehλ
2/2 e

−λK
λ

cosh
·
k
q
1/4 + 2λ

¸
dλ.

Then w̃ satisfies a heat equation (with killing) on
the domain [0,∞)× [0,∞)

∂2

∂k2
w̃ = ...

=
1

4
w̃ − 2 ∂

∂K
w̃.

but the "time-derivative" ∂
∂K has the wrong sign.

(Try to solve heat equations against the natural time
direction ...)
Mathematically, such equations have exponential blow-
up of all Fourier-modes and the oscillations seen be-
fore become understandable.



Dealing with Ill-posedness:

• Recall our standing assumptions (in particular ρ =
0) and that normalized BS-prices only depend only
log-strike k and total variance y = σ2T.

• Let g denote the law of total variance. As observed
by Hull/White

(∗) c(k) =
Z ∞
0

cBS(k, y) dg(y) =: [Lg(.)](k).

(∼ convolution using a BS-integral kernel).

• Suffices to invert this relation such as to find the law
g.Then simply price

E [f(hxiT )] =
Z ∞
0

f(y)dg(y).

• How to invert (∗)? Similar to getting sharp pictures
from Hubble ... (again, an ill-posed problem).



After a discretization can write

ci =
#varX
j=1

Aij gj, i = 1, ...,#c.

Naiv guess #var = #c# and invert matrix (badly
conditioned). Ad hoc, stability can be obtained by
#var À #c and use Moore-Penrose’s pseudo-inverse
to find the least-square solution

g = AT(AAT)−1 c =:Mc

NB: Matrix-inversion takes place in the "smaller" di-
mension. This punishes (unwanted oscillations) in
the probability vector g.

• Example (Heston with BCC parameters): From CIR
bond pricing formula obtain explicit c.f. of total
variance. Now can price variance calls using the
Carr/Madan techniques in quasi-closed form.

Alternatively, we compute call-price (also in quasi-
closed form) with BCC parameters but zero correla-
tion and use the machinery above.



0.05 0.1 0.15 0.2 K
0.005
0.01
0.015
0.02
0.025
0.03
0.035
0.04
VarCall

Figure 4: Blue line from quasi-closed form based on CIR
formula. Red line from Moore-Penrose approach.

Heston/CIR dynamics for instantaneous variance

dvt = −λ(vt − v̄)dt+ η
√
vtdBt

and consider variance calls with payoffs

E
h
(hxiT −K)+

i
= E

ÃZ T

0
vtdt−K

!+
with BCC-fit: v0 = v̄ = 0.04, λ = 1.15, η = 0.39



• The quality of the Moore-Penrose inversion deterio-
rates for high vvol η ∼ 1 and high variances-strikes
K which arise naturally in the pricing of Capped
Variance Swaps.

• To get stable result in such regimes follow the stan-
dard procedure in the theory of ill-posed problems.
Minimize

g 7→ O(g) =
nStrikesX
j=1

¯̄̄̄
¯̄
nV arX

i=1

gicBS(kj, yi)

− c(kj)

¯̄̄̄
¯̄
2

+�1 ×
nX
i=1

g2i

+�2 × d(p, g)

The Moore-Penrose inversion is a special case of the
above with �2 = 0, �1→ 0. The very last term with
�2 weight serves as a distance between g and some a-
priori probability vector p. An example for a distance
d between two probability vectors is given byX

pi ln [pi/qi] .
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Figure 5: Heston with modified BCC parameter; η = 1

instead of 0.39

How to choose a good a priori law p ? Take a 2 pa-
rameter family of laws (e.g. log-normal) and match
variance and volatiliy swap.



• Recap: for var-swaps and zero-correlation vol-swaps

E hxiT =
Z ∞
0

dk c(k) 4ek/2 cosh [k/2]

E
q
hxiT =

Z ∞
0

dk c(k)
µr

π

2
I1(

k

2
) +

√
2πδ0 (k)

¶
e
k
2

• Matytsin showed: if z ≡ d2 (k) =
−k−σ2(k)T/2

σ(k)
√
T

then

E [hxiT ] =
Z ∞
−∞

dzN 0 (z)σ2implied (k (z))

Var-swap price directly from the smile!

• Similar for vol-swap?



• Observe how d2 comes into play although our setup
is far more general than Black-Scholes.

• To understand d2 (k) need to understand σimplied (k).

• Fundamental result by Roger Lee

β ≡ lim sup
k→∞

σ2implied (k)

k
∈ [0, 2]

p ≡ sup
n
q : ES1+qT <∞

o
then β = 2− 4

µq
p2 + p− p

¶
resp. 0 if p =∞.

(Similar formula for k→ −∞)

• Interpretation: implied (variance) smile is asymptot-
ically linear with slope β

• Too naiv: in Merton’s jump model we have p = ∞
but smile is certainly not flat!



• [F Benaim] Implied variance in Merton is linear with
logarithmic correction. Proof based on saddle point
approximation.

• Other results: Hagan’s SABR formula is wrong in
the wings ...


