Volatility Derivatives and the Implied Volatility Smile

Peter K. Friz
Cambridge University

Judge Business School , 7/10/2005

Joint work with Jim Gatheral \& Shalom Benaim

- Assume the risk-neutral stock-process S_{t} is a continuous martingale and set $x_{t}=\ln \left(S_{t} / S_{0}\right)$. Recall that the fair value of a variance-swap

$$
\mathbb{E}\left[\langle x\rangle_{T}\right]
$$

is given by a strip of European Options

$$
\begin{aligned}
& \int_{0}^{S_{0}} \frac{2 d K}{K^{2}} P(K)+\int_{S_{0}}^{\infty} \frac{2 d K}{K^{2}} C(K) \\
= & \int_{0}^{\infty} d K w(K) \begin{cases}P(K) \text { if } K<S_{0} \\
C(K) \text { if } K>S_{0}\end{cases}
\end{aligned}
$$

- Recent work by Carr \& Lee (to be reviewed in a little) suggests that

$$
\mathbb{E}\left[f\left(\langle x\rangle_{T}\right)\right]=\int_{0}^{\infty} d K w_{f}\left(K ; S_{0}\right)\left\{\begin{array}{l}
P(K) \text { if } K<S_{0} \\
C(K) \text { if } K>S_{0}
\end{array}\right.
$$

- Theorem (Structure of the ATM weights): If above holds then

$$
w_{A T M} \equiv w_{f}\left(S_{0} ; S_{0}\right)=2 f^{\prime}(0) / S_{0}^{2}
$$

Proof: Assume S_{t} follows an arbitrary stochastic volatility model possibly with non-zero correlation ρ. Dynamics:
$d S_{t}=S_{t} \sqrt{v_{t}} d W_{t}^{1}$
$d v_{t}=a\left(v_{t}\right) d t+b\left(v_{t}\right)\left[\rho d W_{t}^{1}+\sqrt{1-\rho^{2}} d W_{t}^{2}\right]$
$d z_{t}=v_{t} d t, \quad z_{0}=0$.
As 3-dimensional diffusion its generator reads
$\mathcal{L}=\frac{1}{2} S^{2} v \partial_{S S}+\left(a \partial_{v}+\frac{1}{2} b^{2} \partial_{v v}+\rho S \sqrt{v} \partial_{v S}\right)+v \partial_{z}$.
Denote $g_{K}(S)$ the payoff of out-of-money puts resp. calls struck at K. Solving the usual PDE may be written as
$P\left(K ; T, S_{0}, v_{0}\right)=\left[e^{\mathcal{L} T} g_{K}\right]\left(S_{0}, v_{0}\right)$ and similar for C.
Similar to pricing of Asian options,

$$
\begin{aligned}
\mathbb{E}\left[f\left(\langle x\rangle_{T}\right)\right] & =\left[e^{\mathcal{L} T} f\right]\left(S_{0}, v_{0}\right) \\
& =\left[e^{\mathcal{L} T} f\right]\left(v_{0}\right)
\end{aligned}
$$

Thus

$$
\left[e^{\mathcal{L} T} f\right]\left(v_{0}\right)=\int_{0}^{\infty} d K w_{f}\left(K ; S_{0}\right)\left[e^{\mathcal{L} T} g_{K}\right]\left(S_{0}, v_{0}\right)
$$

Take derivatives w.r.t. T and evaluate at $T=0$, $[\mathcal{L} f]\left(v_{0}\right)=\int_{0}^{\infty} d K w_{f}\left(K ; S_{0}\right)\left[\mathcal{L} g_{K}\right]\left(S_{0}, v_{0}\right)$.
Note that none of the payoffs under consideration $\left(f, g_{K}\right)$ depends on instantaneous variance v. Thus

$$
\begin{aligned}
v_{0} f^{\prime}\left(z_{0}\right) & =\int_{0}^{\infty} d K w_{f}\left(K ; S_{0}\right) \frac{1}{2} S_{0}^{2} v_{0} \partial_{S S} g_{K}\left(S_{0}\right) \\
v_{0} f^{\prime}(0) & =\int_{0}^{\infty} d K w_{f}\left(K ; S_{0}\right) \frac{1}{2} S_{0}^{2} v_{0} v_{0} \delta_{K}\left(S_{0}\right) \\
& =w_{f}\left(S_{0} ; S_{0}\right) \frac{1}{2} S_{0}^{2} v_{0} .
\end{aligned}
$$

QED

- Applications:

Variance Swap $\Rightarrow w_{A T M}=2 / S_{0}^{2}$
Volatility Swap $\Rightarrow w_{A T M}=+\infty$
Variance Call \Rightarrow
$w_{A T M} \equiv 0$ for all positive (total var.) strikes !!!

- Theorem (Carr/Lee): Assume independence between W and v. With $p(\lambda)=1 / 2 \pm \sqrt{1 / 4+2 \lambda}$ have

$$
\mathbb{E}\left[e^{\lambda\langle x\rangle_{T}}\right]=\mathbb{E}\left[e^{p(\lambda) x_{T}}\right]
$$

Proof: Elementary computation when $\langle x\rangle_{T} \equiv \sigma_{B S}^{2} T$. Then average over different realizations of $\langle x\rangle_{T}$. QED

- Assume a Laplace representation for f

$$
f(y)=\frac{1}{2 \pi i} \int_{a-i \infty}^{a+i \infty} F(\lambda) e^{\lambda y} d \lambda
$$

This yields

$$
\mathbb{E}\left[f\left(\langle x\rangle_{T}\right)\right]=\frac{1}{2 \pi i} \int_{a-i \infty}^{a+i \infty} F(\lambda) \mathbb{E}\left[e^{\lambda\langle x\rangle_{T}}\right] d \lambda
$$

On the other hand, the power-options with value

$$
\mathbb{E}\left[e^{\lambda\langle x\rangle_{T}}\right]
$$

expand naturally in terms of put/call options.

- Using put-call symmetry and working with dimensionless quantities

$$
\begin{aligned}
k & =\log \left(K / S_{0}\right) \\
c(k) & =C(K) / K, \text { etc. }
\end{aligned}
$$

find

$$
\mathbb{E}\left[f\left(\langle x\rangle_{T}\right)\right]=\int_{0}^{\infty} d k c(k) w(k)
$$

with (formal) weights $w(k)$ equal to

$$
4 e^{k / 2}\left(\frac{1}{2 \pi i} \int F(\lambda) \lambda \cosh [k \sqrt{1 / 4+2 \lambda}] d \lambda\right)
$$

- For comparison, the variance swap reads

$$
\mathbb{E}\left[\langle x\rangle_{T}\right]=\int_{0}^{\infty} d k c(k) 4 e^{k / 2} \cosh [k / 2]
$$

- Apply this to the Volatility Swap

$$
f\left(\langle x\rangle_{T}\right)=\sqrt{\langle x\rangle_{T}}
$$

Brute force computation (Mathematica) \Rightarrow

$$
\begin{aligned}
w_{f}(k) & =\left(\sqrt{\frac{\pi}{2}} I_{1}(k / 2)+\sqrt{2 \pi} \delta_{0}(k)\right) e^{k / 2} \\
& \approx \sqrt{2 \pi} \delta_{0}(k), \quad I_{1} \ldots \text { mod. Bessel Fct. }
\end{aligned}
$$

Simple understanding of approximation via standard expansion of B.S. formula,

$$
c(0) \sim \frac{1}{\sqrt{2 \pi}} \sqrt{\sigma^{2} T}=\frac{1}{\sqrt{2 \pi}} \sqrt{\langle x\rangle_{T}}
$$

Proof (no brute force): W.I.o.g. $T \equiv 1$. Ansatz:
$\int_{0}^{\infty} d k\left(\sqrt{\frac{\pi}{2}} F^{\prime}(k / 2)+\sqrt{2 \pi} \delta(k)\right) e^{k / 2} c_{B S}(k ; \sigma)=\sigma$
for some F to be found with $F(0)=1$. This last choice and the constant $\sqrt{\frac{\pi}{2}}$ are motivated by the following integration by parts argument,

$$
\begin{aligned}
& \int_{0}^{\infty} d k\left(\sqrt{\frac{\pi}{2}} F^{\prime}(k / 2)+\sqrt{2 \pi} \delta(k)\right) e^{k / 2} c_{B S}(k ; \sigma) \\
= & -\sqrt{2 \pi}\left(\int_{0}^{\infty} d k F(k / 2) \frac{\partial}{\partial k}\left[e^{k / 2} c_{B S}(k ; \sigma)\right]\right) .
\end{aligned}
$$

Our statement is equivalent to saying that the above strip of European has Black-Scholes-vega equal to
one. Using the well-known BS-vega for $c_{B S}(k ; \sigma)=$ $e^{-k} C_{B S}(k ; \sigma)$ with

$$
d_{1}=\frac{-k+\sigma^{2} / 2}{\sigma}=\frac{-k+v / 2}{\sqrt{v}}
$$

find

$$
\begin{aligned}
& -\sqrt{2 \pi}\left(\int_{0}^{\infty} d k F(k / 2) \frac{\partial}{\partial k}\left[e^{k / 2} \frac{\partial}{\partial \sigma} c_{B S}(k ; \sigma)\right]\right) \\
= & -\sqrt{2 \pi}\left(\int_{0}^{\infty} d k F(k / 2) \frac{\partial}{\partial k}\left[e^{-k / 2} \frac{1}{\sqrt{2 \pi}} e^{-d_{1}^{2} / 2}\right]\right) \\
= & \frac{e^{-v / 8}}{v} \int_{0}^{\infty} d k F(k / 2) k e^{-k^{2} /(2 v)} \equiv 1 \forall v
\end{aligned}
$$

A power-expansion shows that

$$
F(k)=\sum_{m=0}^{\infty} \frac{\left(k^{2} / 4\right)^{m}}{(m!)^{2}}
$$

We recognize F as Bessel function $I_{0}(k)$ and finally recall

$$
I_{1}(k)=\partial_{k} I_{0}(k)
$$

QED

- Apply this to Variance Calls with payoff, say $K=$ $0.04=(20 \%)^{2} \times 1$ year .

$$
f\left(\langle x\rangle_{T}\right)=\left(\langle x\rangle_{T}-K\right)^{+} .
$$

Well-known Laplace-transform of f is

$$
F(\lambda)=e^{-\lambda K} / \lambda^{2} .
$$

Now the brute-force computation ... but defining integral for w does not converge!

Figure 1:

- To see what is going on (and to guarantee converge) use convolution of payoff with Gauss-kernel of std.dev. \sqrt{h} for $h=10^{-4}$ (dashed line) and 10^{-5} (solid) respectively. This introduces an exponential damping factor and the weights

$$
w(k)=w_{c a l l}(k, K ; h)
$$

are given by

$$
\frac{4 e^{k / 2}}{2 \pi i} \int_{a-i \infty}^{a+i \infty} e^{h \lambda^{2} / 2} \frac{e^{-\lambda K}}{\lambda} \cosh [k \sqrt{1 / 4+2 \lambda}] d \lambda
$$

- Still numerically hard since $h \ll 1$ but scaling in λ does the trick and we can plot for any $h>0$.

Figure 2: For $h=10^{-4}$.

Figure 3: For $h=10^{-5}$

- Since $w_{\text {call }}(k, K ; h)$ is now defined by absolutely convergent integrals have no problem differentiating under the integral. Fix h and set

$$
\begin{aligned}
& \tilde{w}(k, K) \\
= & \frac{2 \pi i}{4 e^{k / 2}} w_{\text {call }} \\
= & \int_{a-i \infty}^{a+i \infty} e^{h \lambda^{2} / 2} \frac{e^{-\lambda K}}{\lambda} \cosh [k \sqrt{1 / 4+2 \lambda}] d \lambda .
\end{aligned}
$$

Then \tilde{w} satisfies a heat equation (with killing) on the domain $[0, \infty) \times[0, \infty)$

$$
\begin{aligned}
\frac{\partial^{2}}{\partial k^{2}} \tilde{w} & =\ldots \\
& =\frac{1}{4} \tilde{w}-2 \frac{\partial}{\partial K} \tilde{w} .
\end{aligned}
$$

but the "time-derivative" $\frac{\partial}{\partial K}$ has the wrong sign. (Try to solve heat equations against the natural time direction ...)
Mathematically, such equations have exponential blowup of all Fourier-modes and the oscillations seen before become understandable.

Dealing with III-posedness:

- Recall our standing assumptions (in particular $\rho=$ 0) and that normalized BS-prices only depend only log-strike k and total variance $y=\sigma^{2} T$.
- Let g denote the law of total variance. As observed by Hull/White
$(*) c(k)=\int_{0}^{\infty} c_{B S}(k, y) d g(y)=:[\mathfrak{L} g()].(k)$.
(\sim convolution using a BS-integral kernel).
- Suffices to invert this relation such as to find the law g.Then simply price

$$
\mathbb{E}\left[f\left(\langle x\rangle_{T}\right)\right]=\int_{0}^{\infty} f(y) d g(y)
$$

- How to invert (*)? Similar to getting sharp pictures from Hubble ... (again, an ill-posed problem).

After a discretization can write

$$
c_{i}=\sum_{j=1}^{\# v a r} A_{i j} g_{j}, \quad i=1, \ldots, \# c
$$

Naiv guess \#var $=\# c \#$ and invert matrix (badly conditioned). Ad hoc, stability can be obtained by $\#$ var \gg \# and use Moore-Penrose's pseudo-inverse to find the least-square solution

$$
\mathrm{g}=\mathrm{A}^{\mathrm{T}}\left(\mathrm{~A} \mathrm{~A}^{\mathrm{T}}\right)^{-1} \mathbf{c}=: \mathbf{M c}
$$

NB: Matrix-inversion takes place in the "smaller" dimension. This punishes (unwanted oscillations) in the probability vector g.

- Example (Heston with BCC parameters): From CIR bond pricing formula obtain explicit c.f. of total variance. Now can price variance calls using the Carr/Madan techniques in quasi-closed form.

Alternatively, we compute call-price (also in quasiclosed form) with BCC parameters but zero correlation and use the machinery above.

Figure 4: Blue line from quasi-closed form based on CIR formula. Red line from Moore-Penrose approach.

Heston/CIR dynamics for instantaneous variance

$$
d v_{t}=-\lambda\left(v_{t}-\bar{v}\right) d t+\eta \sqrt{v_{t}} d B_{t}
$$

and consider variance calls with payoffs

$$
\mathbb{E}\left[\left(\langle x\rangle_{T}-K\right)^{+}\right]=\mathbb{E}\left[\left(\int_{0}^{T} v_{t} d t-K\right)^{+}\right]
$$

with BCC-fit: $v_{0}=\bar{v}=0.04, \lambda=1.15, \eta=0.39$

- The quality of the Moore-Penrose inversion deteriorates for high vvol $\eta \sim 1$ and high variances-strikes K which arise naturally in the pricing of Capped Variance Swaps.
- To get stable result in such regimes follow the standard procedure in the theory of ill-posed problems. Minimize

$$
\begin{aligned}
g \mapsto & O(g)=\sum_{j=1}^{n_{\text {Strikes }}}\left|\left(\sum_{i=1}^{n_{\text {Var }}} g_{i} c_{B S}\left(k_{j}, y_{i}\right)\right)-c\left(k_{j}\right)\right|^{2} \\
& +\epsilon_{1} \times \sum_{i=1}^{n} g_{i}^{2} \\
& +\epsilon_{2} \times d(p, g)
\end{aligned}
$$

The Moore-Penrose inversion is a special case of the above with $\epsilon_{2}=0, \epsilon_{1} \rightarrow 0$. The very last term with ϵ_{2} weight serves as a distance between g and some apriori probability vector p. An example for a distance d between two probability vectors is given by

$$
\sum p_{i} \ln \left[p_{i} / q_{i}\right]
$$

Figure 5: Heston with modified BCC parameter; $\eta=1$ instead of 0.39

How to choose a good a priori law p ? Take a 2 parameter family of laws (e.g. log-normal) and match variance and volatiliy swap.

- Recap: for var-swaps and zero-correlation vol-swaps

$$
\begin{aligned}
\mathbb{E}\langle x\rangle_{T} & =\int_{0}^{\infty} d k c(k) 4 e^{k / 2} \cosh [k / 2] \\
\mathbb{E} \sqrt{\langle x\rangle_{T}} & =\int_{0}^{\infty} d k c(k)\left(\sqrt{\frac{\pi}{2}} I_{1}\left(\frac{k}{2}\right)+\sqrt{2 \pi} \delta_{0}(k)\right) e^{\frac{k}{2}}
\end{aligned}
$$

- Matytsin showed: if $z \equiv d_{2}(k)=\frac{-k-\sigma^{2}(k) T / 2}{\sigma(k) \sqrt{T}}$ then

$$
\mathbb{E}\left[\langle x\rangle_{T}\right]=\int_{-\infty}^{\infty} d z N^{\prime}(z) \sigma_{\text {implied }}^{2}(k(z))
$$

Var-swap price directly from the smile!

- Similar for vol-swap?
- Observe how d_{2} comes into play although our setup is far more general than Black-Scholes.
- To understand $d_{2}(k)$ need to understand $\sigma_{\text {implied }}(k)$.
- Fundamental result by Roger Lee

$$
\begin{aligned}
\beta & \equiv \lim \sup _{k \rightarrow \infty} \frac{\sigma_{\text {implied }}^{2}(k)}{k} \in[0,2] \\
p & \equiv \sup \left\{q: E S_{T}^{1+q}<\infty\right\}
\end{aligned}
$$

then $\beta=2-4\left(\sqrt{p^{2}+p}-p\right)$ resp. 0 if $p=\infty$.
(Similar formula for $k \rightarrow-\infty$)

- Interpretation: implied (variance) smile is asymptotically linear with slope β
- Too naiv: in Merton's jump model we have $p=\infty$ but smile is certainly not flat!
- [F Benaim] Implied variance in Merton is linear with logarithmic correction. Proof based on saddle point approximation.
- Other results: Hagan's SABR formula is wrong in the wings ...

