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e Assume the risk-neutral stock-process St is a con-
tinuous martingale and set z+ = In(.S¢/Sp). Recall
that the fair value of a variance-swap

B [(z)]

is given by a strip of European Options

S0 2d K 0 2dK
—C(K

/s + g gz O
P(K) if K < Sy
C(K) if K > Sy

e Recent work by Carr & Lee (to be reviewed in a little)
suggests that

ELf ((@)p)] = | diw;(K; So) { ) K 5

e Theorem (Structure of the ATM weights): If above
holds then

warn = w(So; So) = 2f'(0)/53



Proof: Assume S; follows an arbitrary stochastic
volatility model possibly with non-zero correlation p.
Dynamics:

dS; = Si/oidW}
dv: = a(vr)dt+ b (vp) [detl 1 p2dwt2]
dzy = wvedt, zo = 0.

As 3-dimensional diffusion its generator reads

1 1
L= §S2v855+(aav+§b2aw+p5\/aav 5)+vd,.

Denote g5 (.S) the payoff of out-of-money puts resp.
calls struck at K. Solving the usual PDE may be
written as

P(K;T,Sg,vg)= {eﬁ TgK] (S, vg) and similar for C.
Similar to pricing of Asian options,
BLf ((z)p)] = & 7] (So,v0)
= | Tf| (vo).
Thus

“Tf] (vo) = /OOO dKw(K; So) [¢” gk | (So, vo).



Take derivatives w.r.t. 1" and evaluate at T"' = 0,

£ f1(v0) = [~ dw; (K So) [ gic] (So, vo):

Note that none of the payoffs under consideration
(f, 9ic) depends on instantaneous variance v. Thus

00 1
vof’(20) dKw (K So)=S5v09s595k(So)
0 2
/ > 1 2
v f'(0) = /0 dEw (K So)550v0v0d i (So)
1
— wf(So;So)ES(%vo.
QED

Applications:

Variance Swap = warpy = 2/38

Volatility Swap = wap s = +00

Variance Call =

waTps = 0 for all positive (total var.) strikes !!!



e Theorem (Carr/Lee): Assume independence between
W and v. With p(A) = 1/2,/1/4 + 2X have

E[e*®)1] = E[eP(MT.

Proof: Elementary computation when (x)p = J%ST.

Then average over different realizations of (x)p.
QED

e Assume a Laplace representation for f

a-+100 A\
/ F(A) MY dA.

a—100

fly) = L

271
This yields

a-+100

1
E - /
(@ =5 [
On the other hand, the power-options with value
E [eMCL’)T}

expand naturally in terms of put/call options.

FO\)E |eM77] dA.

—100



e Using put-call symmetry and working with dimension-
less quantities

k = log(K/So)
c(k) = C(K)/K, etc.
find
B[f((@)7)] = [ dk (k) w(k)

with (formal) weights w(k) equal to

4 ¢k/2 (2%@ / F(\) A cosh[ky/1/4 + 2] d>\> .

e For comparison, the variance swap reads

E [(z) 7] = /0 = dk o(k) 4€F/? cosh [k /2]

e Apply this to the Volatility Swap
f(z)r) = /(@)



Brute force computation (Mathematica) =-

wp (k) = (\/gzl (k/2) + V2760 () )ek/2
~ V2w (k), I7 ... mod. Bessel Fct.

Simple understanding of approximation via standard
expansion of B.S. formula,

1 1 ()
— = ——/(x) .
V2T V2T T
Proof (no brute force): W.l.o.g. T'= 1. Ansatz:

/OOO dk (\/?F/(k/a + 2768 (k) ) ek/chS(k;J) — 5

for some F' to be found with F'(0) = 1. This last
choice and the constant \/g are motivated by the
following integration by parts argument,

/OOO dk (\/gF’(k/2) + 2716 (k) ) ek/chS(k; o)
= o ([T akE (5/2) 5 [ Peps(kio)] ).

Our statement is equivalent to saying that the above

c(0) ~

strip of European has Black—Scholes-vega equal to



one. Using the well-known BS-vega for cgg(k; o) =
e kCpg(k; o) with

—k+02/2 —k+v/2

di1 = —
! o NG

find

V2r (/OOO dkF (k/2) 88 [ k/288 e J)D

= —V2r ( /O " dkF (k/)2) % [e—’“/Q\/iz_ﬂe—d?/ZD
e—v/8

_ / dk F (k/2) ke "/(20) = 1 vy

A power-expansion shows that

o (K2/4)"
r= Z_o((m!))2

We recognize F' as Bessel function Ig(k) and finally
recall

I1(k) = O Io(F).
QED



e Apply this to Variance Calls with payoff, say K =
0.04 = (20%)° x 1 year.

f((z)p) = ((@)p — K)T.
Well-known Laplace-transform of f is
F(\) = e M52,

Now the brute-force computation ... but defining
integral for w does not converge!
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e To see what is going on (and to guarantee con-
verge) use convolution of payoff with Gauss-kernel of
std.dev. v/h for h = 10~* (dashed line) and 107>
(solid) respectively. This introduces an exponential
damping factor and the weights

w(k) = wequ(k, K;h)
are given by
4 ek/2 /a-l—ioo eh>\2/2 e_)‘K
271

cosh |k 1/1/4 + 2/\] .

a—100

e Still numerically hard since h < 1 but scaling in A
does the trick and we can plot for any A > 0.
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Figure 2: For h = 10%.
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Figure 3: For h = 107>




e Since w,y(k, K;h) is now defined by absolutely
convergent integrals have no problem differentiating
under the integral. Fix h and set

w(k, K)
271
m’wcall

a-+100 —AK
— / h>‘2/ 2 € cosh
)\

a—100

ky/1/4 + 2/\] dA.

Then W satisfies a heat equation (with killing) on
the domain [0, c0) X [0, c0)

82

81@'2@
1 _ o0 .
= —w —2—— 0.

4 0K

but the "time-derivative" 8% has the wrong sign.
(Try to solve heat equations against the natural time
direction ...)

Mathematically, such equations have exponential blow-
up of all Fourier-modes and the oscillations seen be-
fore become understandable.



Dealing with lll-posedness:

e Recall our standing assumptions (in particular p =
0) and that normalized BS-prices only depend only
log-strike k and total variance y = o2T.

e Let g denote the law of total variance. As observed
by Hull /White

() o) = [~ cps(h,y)dg(y) =: [Lg()I().

(~ convolution using a BS-integral kernel).

00
0

e Suffices to invert this relation such as to find the law
g.Then simply price

ELf((@)7)] = | J(4)dg(y)

e How to invert (x)? Similar to getting sharp pictures
from Hubble ... (again, an ill-posed problem).



After a discretization can write

Hvar
c; = Z Aij 955 1 =1, ..., #c.
j=1

Naiv guess #var = #c# and invert matrix (badly
conditioned). Ad hoc, stability can be obtained by
Hovar > #c and use Moore-Penrose’s pseudo-inverse
to find the least-square solution

g = AT(A AT)_1 c=:Mc

NB: Matrix-inversion takes place in the "smaller" di-
mension. This punishes (unwanted oscillations) in
the probability vector g.

Example (Heston with BCC parameters): From CIR
bond pricing formula obtain explicit c.f. of total
variance. Now can price variance calls using the
Carr/Madan techniques in quasi-closed form.

Alternatively, we compute call-price (also in quasi-
closed form) with BCC parameters but zero correla-
tion and use the machinery above.



VarCall
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Figure 4: Blue line from quasi-closed form based on CIR
formula. Red line from Moore-Penrose approach.

Heston /CIR dynamics for instantaneous variance

dvy = —A(vy — V)dt + n\/U_tdBt

and consider variance calls with payoffs

(/OTvtdt—K>+

with BCC-fit: vg = ¥ = 0.04, A\ = 1.15, n = 0.39

E|((z)p — K)T| =B




e The quality of the Moore-Penrose inversion deterio-
rates for high vvol n ~ 1 and high variances-strikes
K which arise naturally in the pricing of Capped
Variance Swaps.

e To get stable result in such regimes follow the stan-
dard procedure in the theory of ill-posed problems.

Minimize
NStrikes nyar 2
g — O(g)= > > gicps(ki,vi) | — (k)
j=1 i=1
= 2
+€1 X Z 9;
1=1
+e2 x d(p, 9)

The Moore-Penrose inversion is a special case of the
above with e = 0,¢e7 — 0. The very last term with
€> weight serves as a distance between g and some a-
priori probability vector p. An example for a distance
d between two probability vectors is given by

> piln[pi/ai].
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Figure 5: Heston with modified BCC parameter; n = 1
instead of 0.39

How to choose a good a priori law p? Take a 2 pa-
rameter family of laws (e.g. log-normal) and match
variance and volatiliy swap.



e Recap: for var-swaps and zero-correlation vol-swaps

E(z)p = /O = dk o(k) 4€/? cosh [k /2]

o0 k
By@r = [ dke®) (\[50G)+V2roo (k) ) e
e Matytsin showed: if z = dy (k) = _k;(f)(\l;)TT/z

then

B()r] = [ dzN'(2) opriea (k (2)

Var-swap price directly from the smile!

e Similar for vol-swap?

N



e Observe how dp comes into play although our setup
is far more general than Black-Scholes.

e Tounderstand dj (k) need to understand oy, 15¢q (F)-

e Fundamental result by Roger Lee

2
o4 .k
B = lim sup Zmpll:ed( )E [0, 2]

k—o00

p = sup {q ; ES%+q < oo}

thenB:2—4(\/p2—|—p—p) resp. 0 if p = oo.

(Similar formula for k — —o0)

e Interpretation: implied (variance) smile is asymptot-
ically linear with slope 3

e Too naiv: in Merton’'s jJump model we have p = oo
but smile is certainly not flat!



e [F Benaim] Implied variance in Merton is linear with
logarithmic correction. Proof based on saddle point

approximation.

e Other results: Hagan's SABR formula is wrong in

the wings ...



