What Can Rational Investors Do About Excessive Volatility and Sentiment Fluctuations?

Bernard Dumas

Alexander Kurshev

Raman Uppal

INSEAD, Wharton, CEPR, NBER

London Business School

London Business School, CEPR

October 2005

Our objective

Agents in financial markets claimed to exhibit behavior that deviates from rationality – overconfidence leading to "excessively volatility"

- Suppose a Bayesian, intertemporally optimizing investor ("smart money") operates in this financial market:
- ► We wish to understand:
 - **1.** What **investment strategy** this investor will undertake?
 - 2. What effect this strategy will have on equilibrium prices?
 - **3.** Whether this will ultimately eradicate the source of **excess volatility**?

► We do this by building an **equilibrium model of investor sentiment**.

What we do: Contribution

- **1. Model**: Equilibrium of financial market with two populations:
 - Bayesian (rational) learners; Imperfect (irrational) Bayesian learners
 - Extend model in Scheinkman and Xiong (2004)

(general equilibrium, risk averse agents, shortsales allowed)

2. Effect on prices, volatility and correlation

A few rational investors are not enough to eliminate the effect of irrational traders

3. Optimal portfolios

- Profit from predictability, but more sophistication is needed
- 4. Survival of irrational traders (Kogan-Ross-Wang-Westerfield; Yan)
 - Their rate of impoverishment is quite slow

Model: Output and information structure

Exogenous process for aggregate output

• Output uncertainty: first source of risk (δ shock)

$$\frac{d\delta_t}{\delta_t} = \mathbf{f}_t dt + \sigma_\delta dZ_t^\delta,$$

• Expected value of rate of growth of dividends f is stochastic

$$df_t = -\zeta \left(f_t - \overline{f} \right) dt + \sigma_f dZ_t^f; \quad \zeta > 0,$$

Expected growth rate is not observed by any investor; investors continuously form (filter) estimates of it, based on δ and a signal *s*:

$$ds_t = f_t dt + \sigma_s dZ_t^s,$$

Population A is deluded

Group A: Irrational traders

• They believe steadfastly that

***** innovations in signal have correlation $\phi \ge 0$ with innovations in f, when, in fact, true correlation is **zero**

$$ds_t = f_t dt + \sigma_s \phi dZ_t^f + \sigma_s \sqrt{1 - \phi^2} dZ_t^s.$$

- They overreact to signal and cause excess volatility in stock market
- Otherwise, behave optimally
- Degree of irrationality captured by a single parameter: ϕ

► Group B: Rational traders ("smart money").

Model

Result of filtering (in terms of B's Wiener)

$$d\widehat{f}_{t}^{A} = \left[-\zeta\left(\widehat{f}^{A} - \overline{f}\right) + \left(\frac{\gamma^{A}}{\sigma_{\delta}^{2}} + \frac{\phi\sigma_{s}\sigma_{f} + \gamma^{A}}{\sigma_{s}^{2}}\right)\left(\widehat{f}_{t}^{B} - \widehat{f}^{A}\right)\right] dt + \frac{\gamma^{A}}{\sigma_{\delta}^{2}}\sigma_{\delta} dW_{\delta,t}^{B} + \frac{\phi\sigma_{s}\sigma_{f} + \gamma^{A}}{\sigma_{s}^{2}}\sigma_{s} dW_{s,t}^{B} \\ d\widehat{f}_{t}^{B} = -\zeta\left(\widehat{f}^{B} - \overline{f}\right) dt + \frac{\gamma^{B}}{\sigma_{\delta}} dW_{\delta,t}^{B} + \frac{\gamma^{B}}{\sigma_{s}} dW_{s,t}^{B}.$$

- Group A is called "overconfident" because the steady-state variance of f as estimated by Group A, γ^A, decreases as φ rises.
- Group A has more volatile beliefs than Group B because conditional variance of \hat{f}^A monotonically increasing in ϕ .
- ► Difference of opinion: $\hat{g} \triangleq \hat{f}^B \hat{f}^A$ So, $\hat{g} > 0$ implies Group B relatively optimistic compared to Group A.

Sentiment

Change from *B* to *A*'s probability measure given by η :

$$\frac{d\eta_t}{\eta_t} = -\widehat{g}\left(\frac{dW^B_{\delta,t}}{\sigma_\delta} + \frac{dW^B_{s,t}}{\sigma_s}\right).$$

- ▶ η is a measure of sentiment shows how Group A over- or underestimates the probability of a state relative to Group B.
- Girsanov's theorem tells how current disagreement gets encoded into η :
 - For instance, if A is currently comparatively optimistic $(\hat{f}^A > \hat{f}^B)$, Group A views positive innovations in δ as more probable than B.
 - This is coded by Girsanov as positive innovations in η for those states of nature where δ has positive innovations.

Model

Diffusion matrix of state variables

Four state variables $\{\delta, \eta, \hat{f}^B, \hat{g}\}$. Driven by only two Brownians, W^B_{δ} and W^B_s because f is unobserved.

$$\begin{split} \delta \cdots & \left[\begin{array}{ccc} \delta \sigma_{\delta} > 0 & 0 \\ -\eta \frac{\widehat{g}}{\sigma_{\delta}} & -\eta \frac{\widehat{g}}{\sigma_{s}} \\ \frac{\gamma^{B}}{\sigma_{\delta}} > 0 & \frac{\gamma^{B}}{\sigma_{s}} > 0 \\ \frac{\gamma^{B} - \gamma^{A}}{\sigma_{\delta}} \ge 0 & \frac{\gamma^{B} - (\phi \sigma_{s} \sigma_{f} + \gamma^{A})}{\sigma_{s}} \le 0 \end{array} \right] \end{split}$$

• Two distinct effects of imperfect learning:

1. Instantaneous: \hat{g} has nonzero diffusion, so disagreement is stochastic.

2. Cumulative: \hat{g} affects diffusion of η , so disagreement drives sentiment.

Objective functions

► Market is assumed complete; use static formulation of dynamic problem

▶ Problem of Group *B*:

$$\sup_{c} \mathbb{E}^{B} \int_{0}^{\infty} e^{-\rho t} \frac{1}{\alpha} \left(c_{t}^{B} \right)^{\alpha} dt,$$

subject to the static budget constraint:

$$\mathbb{E}^B \int_0^\infty \xi_t^B c_t^B dt = \overline{\theta}^B \mathbb{E}^B \int_0^\infty \xi_t^B \delta_t dt,$$

 \blacktriangleright Group A's problem under B's measure

$$\sup_{c} \mathbb{E}^{\boldsymbol{B}} \int_{0}^{\infty} \boldsymbol{\eta_{t}} \times e^{-\rho t} \frac{1}{\alpha} \left(c_{t}^{A} \right)^{\alpha} dt,$$

subject to the static budget constraint:

$$\mathbb{E}^{B} \int_{0}^{\infty} \xi^{B}_{t} c^{A}_{t} dt = \overline{\theta}^{A} \mathbb{E}^{B} \int_{0}^{\infty} \xi^{B}_{t} \delta_{t} dt.$$

Complete-market equilibrium

- Definition: An equilibrium is a price system and a pair of consumptionportfolio processes such that
 - investors choose their optimal consumption-portfolio strategies, given their perceived price processes;
 - 2. the perceived security price processes are consistent across investors;
 - **3.** commodity and securities markets clear.
- ► The aggregate resource constraint is:

$$\delta_t = c_t^A + c_t^B$$

$$\delta_t = \left(\frac{\lambda^A \xi_t^B e^{\rho t}}{\eta_t}\right)^{\frac{1}{\alpha - 1}} + \left(\lambda^B \xi_t^B e^{\rho t}\right)^{\frac{1}{\alpha - 1}}$$

Pricing measure and consumption-sharing rule

$$\xi_{t}^{B} = e^{-\rho t} \delta_{t}^{\alpha - 1} \left[\left(\frac{\eta_{t}}{\lambda^{A}} \right)^{\frac{1}{1 - \alpha}} + \left(\frac{1}{\lambda^{B}} \right)^{\frac{1}{1 - \alpha}} \right]^{1 - \alpha} \right]$$

$$c_{t}^{A} = \delta_{t} \times \omega(\eta_{t}) \quad c_{t}^{B} = \delta_{t} \times (1 - \omega(\eta_{t}))$$

$$\omega(\eta_{t}) \triangleq \frac{\left(\frac{\eta_{t}}{\lambda^{A}} \right)^{\frac{1}{1 - \alpha}}}{\left(\frac{\eta_{t}}{\lambda^{A}} \right)^{\frac{1}{1 - \alpha}} + \left(\frac{1}{\lambda^{B}} \right)^{\frac{1}{1 - \alpha}}}$$

absolute risk tolerance of A to total absolute risk tolerance

Linear consumption-sharing rule because same degree of risk aversion.

Stochastic slope because of the improper use of signal by Group A.

M	0	d	e

Solving for equilibrium

► Can solve for pricing measure and consumption as a function of δ_t , and current value of change of measure, η_t .

$$\xi_t^i = \delta_0^{\alpha - 1} \exp\left(-\int_0^t r dt - \frac{1}{2}\int_0^t \left\|\boldsymbol{\kappa}^i\right\|^2 dt - \int_0^t \left(\boldsymbol{\kappa}^i\right)^{\mathsf{T}} dW^i\right).$$

- Given the constant multipliers λ^A and λ^B , and given exogenous process for δ and η , we have now characterized the complete-market equilibrium.
- ► To relate the Lagrange multipliers λ^A and λ^B to initial endowments. requires the calculation of the wealth of each group.

Conclusion

Securities markets implementation of complete-market equilibrium

- ► Financial securities available:
 - 1. Equity, which is a claim on total output
 - 2. Consol bond
 - 3. Instantaneously riskless bank deposit
- ▶ The equilibrium price of a security, with payoff $\in \{1, \delta_u, c_u^B\}$:

$$\mathsf{Price}\left(\delta,\eta,\widehat{f}^B,\widehat{g},t\right) \,\triangleq\, \mathbb{E}^B_{\delta,\eta,\widehat{f}^B,\widehat{g}} \int_t^\infty \frac{\boldsymbol{\xi}^B_u}{\boldsymbol{\xi}^B_t} \times \mathsf{payoff}\, du.$$

Computing expected values to obtain prices and wealth

- ► To compute equity and bond prices and wealth, need the joint conditional distribution of η_u and δ_u , given δ_t , η_t , \hat{f}_t^A , \hat{g}_t at t.
- Not easy to obtain joint distribution but its characteristic function $\mathbb{E}^B_{\widehat{f}^B,\widehat{g}}\left[\left(\frac{\delta_u}{\delta}\right)^{\varepsilon}\left(\frac{\eta_u}{\eta}\right)^{\chi}\right]$; $\varepsilon, \chi \in \mathbb{C}$ can be obtained in closed form.

► Three effects:

- **1.** Effect of growth and variance of δ
- **2.** Effect of variance of η ($\varepsilon = 0$)
- **3.** Effect of correlation between δ and η

Results The interest rate

► Average belief

$$\widehat{f}^{M} \triangleq \widehat{f}^{A} \times \omega(\eta) + \widehat{f}^{B} \times (1 - \omega(\eta)).$$

▶ Holding \widehat{f}^M fixed, \widehat{g} represents the effect of pure **dispersion of beliefs**

The rate of interest can then be written as:

$$r\left(\eta, \hat{f}^{M}, \hat{g}\right) = \rho + (1 - \alpha) \hat{f}^{M} - \frac{1}{2} (1 - \alpha) (2 - \alpha) \sigma_{\delta}^{2}$$

$$-\frac{1}{2} \left(\frac{\alpha}{1 - \alpha}\right) \left(\frac{1}{\sigma_{\delta}^{2}} + \frac{1}{\sigma_{s}^{2}}\right) \hat{g}^{2} \times \omega(\eta) \times [1 - \omega(\eta)].$$

▶ The interest rate is **increasing** in \widehat{f}^M (for all α) and \widehat{g} (for $\alpha < 0$).

Market Prices of Risk

► The market prices of risk in the eyes of Population *B* and *A* are:

$$egin{aligned} \kappa^B\left(\eta,\widehat{g}
ight) &= \left[egin{aligned} \left(1-lpha
ight)\sigma_\delta\ 0 \end{array}
ight]+\widehat{g} imes\omega\left(\eta
ight) imes\left[egin{aligned} rac{1}{\sigma_\delta}\ rac{1}{\sigma_s} \end{array}
ight],\ \kappa^A\left(\eta,\widehat{g}
ight) &= \left[egin{aligned} \left(1-lpha
ight)\sigma_\delta\ 0 \end{array}
ight]-\widehat{g} imes\left[1-\omega\left(\eta
ight)
ight] imes\left[egin{aligned} rac{1}{\sigma_\delta}\ rac{1}{\sigma_s} \end{array}
ight]. \end{aligned}$$

- ▶ Under agreement ($\hat{g} = 0$), the prices of risk include a reward for output risk W_{δ} , but zero reward for signal risk W_s .
- With disagreement, investors realize that probability measure of other population will fluctuate randomly. Hence, require a risk premium for vagaries of others.

Benchmark Parameter Values

The parameter values that we specify are based on estimation of models similar to ours in Brennan-Xia (2001).

Name	Symbol	Value
Parameters for aggregate endowment and the signal		
Long-term average growth rate of aggregate endowment	\overline{f}	0.015
Volatility of expected growth rate of endowment	σ_{f}	0.03
Volatility of aggregate endowment	σ_δ	0.13
Mean reversion parameter	ζ	0.2
Volatility of the signal	σ_s	0.13
Parameters for the agents		
Agent A's correlation between signal and mean growth rate	ϕ	0.95
Agent B's correlation between signal and mean growth rate		0
Agent A's initial share of aggregate endowment	λ^B/λ^A	1
Time-preference parameter for both agents	ho	0.20
Relative risk aversion for both agents	$1 - \alpha$	3

Plots

- ► All plots have on the *x*-axis
 - Either \hat{g} measuring **disagreement**.
 - Or, ω measuring relative size of irrational group.
- ► All plots have two curves for rationality and **irrationality**:
 - A red-dotted curve representing the case of $\phi=0.00$
 - A blue-dashed curve representing the case of $\phi=0.95$

Prices: Effect of irrationality and disagreement

Irrationality leads to a drop in prices of equity and bonds.

▶ Prices decrease with disagreement.

Prices: Effect of heterogeneity

▶ Even modest population of irrational traders makes sizable difference.

▶ Heterogeneity increases further the drop in prices.

Volatilities : Effect of irrationality and disagreement

Dispersion of beliefs and presence of irrational traders increase volatility (same is true for correlation)

Volatilities : Effect of heterogeneity

Presence of a few rational investors not sufficient to drive down volatility.

Portfolio of Group B: **Total**

- ▶ If rationality ($\phi = 0$) and agreement ($\hat{g} = 0$): 100% in equity, 0% in bonds because both investors identical
- ▶ If rationality but $\hat{g} \neq 0$, B still 100% in equity and speculates on future growth with only bond
- Under irrationality, B holds less equity than he/she would in a rational market, (unless wildly optimistic). Scared of noise.

Portfolio of Group *B***: Static and Intertemporal Hedging**

lntertemporal hedge driven mostly by desire to hedge \hat{g} fluctuations

Survival of Population *A*—**Irrational agents**

- ► This figure shows expected value of Population *A*'s consumption share as a function of time measured in years.
- This is survival of traders who are fickle: sometimes overoptimistic, sometimes overpessimistic

Conclusions

- ▶ We have modeled excessive volatility arising from
 - excessive fluctuations of anticipations of irrational investors
- Even a modest-sized irrational population makes quite a difference
- ► What rational investor can do:
 - Take positions on current differences in beliefs
 - Hedge against future revisions in:
 - ★ Market's beliefs
 - ★ Their own beliefs
 - Bonds are useful instruments in doing so
- Irrational traders survive a long time
 - Excessive volatility is not easy to "arbitrage"
 - Excessive volatility, if it is there, is likely to remain