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Introducing a multi-factor jump-
diffusion model for commodities

This presentation draws on my papers “A 
multi-factor jump-diffusion model for 
Commodities” and “Pricing commodity 
options in a multi-factor jump-diffusion 
model using Fourier Transforms” 
(submitted for publication).



Empirical observations on the 
commodities markets 1

• Spot commodity prices exhibit mean 
reversion.

• Futures (and forward) commodity prices 
have instantaneous volatilities which 
usually (not always) decline with increasing 
tenor.

• Jumps are somewhat more common and 
certainly much larger in magnitude than in 
other markets (eg equities or fx).



Empirical observations on the 
commodities markets 2

• A common feature in commodities (esp. 
Gas and Electricity) is that when there is a 
jump, the spot and short-dated futures (or 
forward) prices jump by a large amount but 
long-dated contracts hardly jump at all (to 
our knowledge no existing models have 
accounted for this feature). 

• Convenience yields are usually highly 
volatile.



Commodities
• Now let’s start to look at our model.
• We would like to capture the stylised 

empirical features of the commodities 
which we have just noted.

• We want a no-arbitrage model which 
automatically fits the initial term structure 
of futures (or forward) commodity prices.



Key Assumptions
• We assume the market is frictionless, (ie no 

bid-offer spreads, continuous trading is 
possible, etc) and arbitrage-free.

• No arbitrage  => existence of an equivalent 
martingale measure (EMM).

• In this talk, we work exclusively under the 
(or a) EMM.



Spot commodity prices
• We denote the value of the commodity at 

time        by       . We define today to be 
time        and the value of the commodity 
today is       . 

• (Value of the commodity means “spot 
price” but in some markets spot is hard to 
define). 
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Spot commodity prices
• We do NOT assume that the spot is 

tradeable (except as the deliverable on a 
futures contract at maturity).



Stochastic Interest-rates
• We denote the (continuously compounded) 

risk-free short rate, at time     , by       and 
we denote the price of a zero coupon bond, 
at time       maturing at time      by          .  
We assume that bond prices follow the 
extended Vasicek process, namely, 
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• where         and          are positive constants.

• Define the state variable:

• ETS can write          and             in terms of 

rσ rα
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The model
• Let us denote the futures commodity price 

at time      for delivery at time       by    

• We take as given our initial (ie at time        ) 
term structure of futures commodity prices.

• In the absence of arbitrage, 
• Futures prices are martingales under the 

EMM. (Cox et al. (1981)).
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The model
• Then we assume that the dynamics of 

futures commodity prices in the EMM are:
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• is the number of Brownian factors (for 
example, 1, 2, 3 or 4).

• The form of the volatility functions           
can be somewhat general at this time but we 
assume they are deterministic.

• is the number of Poisson processes.
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• For each       ,                  ,             denotes 
standard Brownian increments. We denote the 
correlation (assumed constant) between            
and             by        , for each        , and the 
correlation (assumed constant) between               
and             by           for each         and      .

• if                           
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Jump processes
• For each         ,                     ,                 are 

the (assumed) deterministic intensity rates 
of the         Poisson processes. 

• for each           are non-negative 
deterministic functions. We call these the 
jump decay coefficient functions.

• are the spot jump amplitudes.
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Assumptions about the spot jump 
amplitudes   mtγ

• Assumption 2.1 in the paper:
• The spot jump amplitudes are (known) 

constants. In this case, the jump decay 
coefficient functions               can be non-
negative (but otherwise arbitrary) 
deterministic functions.  

( )ubm



Assumptions about the spot jump 
amplitudes   mtγ

• Assumption 2.2 in the paper:
• The spot jump amplitudes are assumed to be 

independent and identically distributed 
random variables (assumed independent of 
everything else). In this case, the jump 
decay coefficient functions must be equal to 
zero.  ie                  for all ( ) 0≡tbm t



Multiple Poisson processes
• All satisfy either Assumption 2.1 or 2.2
• But, if we have more than one Poisson 

process, we can mix the assumptions
• Eg if 4 Poisson processes, we could have eg

3 satisfying assumption 2.1 and 1 satisfying 
Assumption 2.2 



Implications for completeness

• If all spot jump amplitudes are constants 
(assumption 2.1) (and there are a sufficient 
number of futures contracts of different 
maturities), then the market is complete 
(and hence the EMM is unique).

• Else the market is not complete (EMM not 
unique but assume “fixed” by the market).



Implications for arbitrage
• It is not wholly obvious but the assumption 

of no-arbitrage requires a condition 
(analogous to the HJM drift condition). This 
in turn, means we assume random jump 
amplitudes (assumption 2.2) have an extra 
condition ie  

• Bjork, Kabanov and Runggaldier (1997) 
• Crosby (2005)       

( ) 0≡tbm



• It is convenient to define:

• This is a deterministic quantity.

( ) ( ) ( )













−

















−≡ ∫∑

=

1expexp,
1

T

t
mmtNmt

M

m
mm duubEtTte γλ



• Then by Ito: 
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Implications
• Gas, Electricity: Short end of futures curve 

jumps a lot, long end hardly jumps at all 
(existing models do not seem to have this).

• Gold: Jumps are less of a feature (but they 
do happen). 

• “Gold trades somewhat like a currency”.
• ie jumps cause parallel shift in futures (and 

forward) curve.



• Also
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• By differentiating with respect to      , we get the 
dynamics of                         ,  
but we then find that in general                       
would be non-Markovian but we would like it to 
be a Markov process in a finite number of state 
variables.                        
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• We consider the functional form for the 
volatilities:

where            ,              and         

are deterministic functions.
Why?
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Gaussian state variables:
• Define the state variables:

• And for each                  
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Poisson state variables

• Define the state variable (for each          ) :

• Then with some algebra….
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• We have the following expression for the 
futures commodity price              at time         to 
time        in terms of the initial (ie at time       ) 
futures commodity price and the state 
variables:
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Convenience Yields

• We show in the paper that: 
• Our model automatically generates stochastic 

convenience yields.
• The convenience yields also exhibit jumps, except in 

the special case that                    for all                
• We do not need to make any assumptions about the 

stochastic process for convenience yields or its 
market price of risk.

( ) 0≡tbm m



Mean reversion in spot 
commodity prices

• In the paper, we show that the value of the 
commodity ie                       follows a mean-
reverting jump-diffusion process.

• We also show how the jump decay coefficient 
functions            ,  if they are non-zero (ie
assumption 2.1 only), can also contribute to the 
mean reversion effect.

• Jump decay coefficient functions analogous to 
mean reversion rates.
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Monte Carlo Simulation

• How can we simulate futures commodity 
prices in this model?

• About 3 slides ago I wrote down an 
expression for the futures commodity price 
in terms of its initial value and the state 
variables: 



( ) ( ) ( ) ( )
0

2 2
0

1

1, , exp , ,
2

t K

Hk P
kt

H t T H t T s T s T dsσ σ
=

  = − +     
∑∫

( ) ( ) ( ) ( ) 


















−−∫ ∑ ∑∑
= =

−

=

dsTsTsTsTs
t

t

K

k

K

k
HkPPHk

k

j
HjHkHkHj

0
1 1

1

1
,,2,,2

2
1exp σσρσσρ

( )( ) ( ) ( )
exp 1exp r

P P
r r

T t
X t Y t

α
α α

 − −
−  

 
( ) ( ) ( )

1 1
exp exp

TK K

Hk Hk Hk
k k t

Y t a u du X t
= =

   
+ −        

∑ ∑ ∫

( ) ( ) ( ) 


























−





















−∑ ∫∫

=

M

m

t

t
mNm

T

t
m dsTsetXduub

1
0

,expexp



Monte Carlo Simulation

• Therefore, we can easily do Monte Carlo 
simulation if we can simulate the state 
variables:

• Gaussian state variables are straightforward.
• So lets focus on the Poisson state variables.



Poisson
• By definition, the probability                  that 

there are           jumps on the Poisson 
Process            in the time period       to      
is:

( ) ( )
( )

!
exp;, 0

0

0
m

n
t

t
mt

t
mmm n

duu

duunttQ

m























−=

∫
∫

λ

λ

( )mm nttQ ;,0

mn
mtN 0t t



• We also need the following result (an 
extension of a result in Karlin and Taylor 
(1975) “A first course in stochastic 
processes”):



Proposition
• Suppose that we know that there have been 

jumps between time         and time        . 
Write the arrival times of the jumps as 

. The conditional joint 
density function of the arrival times, when 
the arrival times are viewed as unordered 
random variables, conditional on              is:
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• (As an aside, if intensity rates are all 
constants => uniform)

• Simulate          by simulating Poisson.
• Simulate arrival times.

mn



• Then Poisson state variable:
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Poisson state variables

• Hence we can simulate the Poisson state 
variables.

• Hence we can simulate futures commodity 
prices.

• Also there is no discretisation error bias in 
the Monte Carlo simulation.



Assumption 2.2

• The only assumption, in the case of 
assumption 2.2, that we have made thus far 
is that the spot jump amplitudes are 
independent and identically distributed.



Assumption 2.2
• We now specialise assumption 2.2 and 

assume that the spot jump amplitudes, for 
each       , are normally distributed with 
mean          and standard deviation        .mβ mυ

m



Assumption 2.1

• Assumption 2.1 is unchanged. We write the 
known constant spot jump amplitude as mβ



Pricing of standard options

• We would like to price standard (plain 
vanilla) European options in a 
computationally efficient manner

• (Might allow us to get implied parameters 
from market prices of options).

• However, futures commodity prices are 
NOT log-normally distributed.



• The key to pricing standard European 
options is the following observation:

• CONDITIONAL on the number of jumps 
and their arrival times, futures commodity 
prices ARE log-normally distributed.

• Then bring standard results into play 
(Merton (1976) and Jarrow and Madan
(1995))



• We wish to price, at time      , a European (non-
path-dependent) option maturing at time        , 
written on the futures commodity price, where the 
futures contract matures at time
(with                      )                           

• The payoff of the option at time         is 
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• Conditional on the number of jumps         , 
for                      and the arrival times 

of these jumps, the value of 
the option at time           is:
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• So using standard results about conditional 
expectations and the results earlier:



• The price of the option at time        is: t
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Standard European Options on 
futures

• To obtain the form for the price of a 
standard European options on futures, 
whose payoff is 

Replace   

by:

( )( )( )0,,max 21 KTTH −η

( ) ( )( )





















− ∫ mnmmm

T

t
t m

sssnTTHDduurExp ,...,,|,exp 2121

1



Standard European options on 
futures

• (looks like Black (1976) formula)
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• Where 

• (note this term is simply because of the 
stochastic interest-rates – it is the 
instantaneous covariance between bond 
prices and futures commodity prices)
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• And (this term depends on number of jumps and 
their arrival times)
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Options continued
• Also we can semi-analytically value:
• Futures-style options (both European and 

American) on futures contracts. 
• Note that many exchange traded options are 

of this type and exchange traded options are 
often the most liquid and have the smallest 
bid-offer spreads.



Options continued
• We can also semi-analytically value:
• Standard European options on forwards.
• Standard European options on the spot.



Options continued
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• Lets look at this formula in more depth.
• Poisson mass functions rapidly tend to zero 

once the number of jumps >= mean number 
of jumps (=> can truncate infinite sum).

• Need to integrate over arrival times. How?



• Lets look at this formula in more depth.
• Poisson mass functions rapidly tend to zero 

once the number of jumps >= mean number 
of jumps

• Need to integrate over arrival times. How?
• Monte Carlo   - We call this the MCIATJ 

methodology in the paper.



• Use Monte Carlo to simulate the arrival 
times of the jumps, conditional on the 
number of jumps.

• In the special case that the intensity rates 
are constants (particularly straightforward), 
then the arrival times are uniform on 

• (if NOT use inverse transformation 
method).

[ ]1,Tt



• It sounds computationally intensive but it 
isn’t.

• In the paper, we price 30 options of 5 
different strikes and 6 different maturities

• We use anti-thetic variates.
• We use a Control Variate (see paper for 

details).



• The options are all standard European calls 
on futures prices.

• We demonstrate in the paper that it is 
possible to price all 30 options in < 0.51 
seconds

• This is < 0.017 seconds per option
• All standard errors < 0.003 % of spot 

(mostly even less than 0.001 % of spot).
• MCIATJ is fast for short-dated options.



Calibration
• This means we can obtain the model 

parameters from the market prices of 
options by doing a least-square fit.

• MCIATJ relatively slow for long-dated 
options.

• Is there an even faster way of pricing 
standard European options?



Fourier Transforms
• Many authors have shown that it is possible 

to price standard European options easily if 
the characteristic function of the terminal 
asset price is known analytically.

• Carr and Madan (1999), Heston (1993), Lee 
(2004), Sepp (2003), Duffie et al. (2000) 

• Characteristic function is Fourier Transform 
of the probability density function.



Problem

• In our model, the characteristic function is not 
analytic if any of the Poisson processes satisfy 
Assumption 2.1 with                    (can be expressed 
as an integral but it involves sines and cosines => 
tricky double (oscillatory) integral).

( ) 0>tbm



FTPS methodology
• However, we show that it is possible to 

derive a rapidly convergent power series 
expansion for terms in the characteristic 
function which converges to (say) 10-11

accuracy (or better) after typically about 10 
to 40 terms in the series.

• Therefore, very fast, accurate and easy on a 
computer.

• We call this the FTPS methodology.



• Multiply FT of payoff by characteristic 
function. A single one-dimensional integral 
(using eg Simpson’s rule) then gives the 
option price.

• This is true even with multiple Brownian 
motions and multiple Poisson processes.



With FTPS (Fourier Transform)  
methodology:

• Can price the same 30 options in < 0.016 
seconds (MCIATJ was 0.51 seconds) 

• => less than 1 millisecond per option.
• Can trade time against accuracy.
• But our FTPS (Fourier Transform) 

methodology is at least 10 times (usually 
even better) more accurate than the Monte 
Carlo integration over the arrival times of 
the jumps (MCIATJ methodology).



Summary
• The model is arbitrage-free.
• Automatically fits initial futures (or 

forward) commodity price curve.
• Spot price exhibits mean reversion.
• Long-dated futures can jump less than 

short-dated futures.
• Generates stochastic convenience yields 

without further ado.



Summary cont’d
• Can price exotics via Monte Carlo.
• Can price standard European options via:
• A Monte Carlo based (MCIATJ) algorithm 

or Fourier Transform based (FTPS) 
algorithm. 

• FTPS is faster and more accurate.



Suggestions for further research 1
• Asian commodity options (also called 

commodity swaptions) – approximate 
Characteristic Function ??.

• Examine whether or not arbitrage is 
possible in case of exponentially dampened 
jumps AND random jump amplitudes.



Suggestions for further research 2
• American Options? PDE based approach? 

Fourier Transform approach?
• Spread options? See Dempster and Hong 

(2000) Judge Institute of Management 
Working paper WP26/2000 (published in: 
Proceedings of the First World Congress of 
the Bachelier Finance Society, Paris 
(2000)).
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