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In a system containing a large number of interacting stochastic processes, there will typically
be many non-zero correlation coefficients. This makes it difficult to either visualize the system’s
inter-dependencies, or identify its dominant elements. Such a situation arises in Foreign Exchange
(FX) which is the world’s biggest market. Here we develop a network analysis of these correlations
using Minimum Spanning Trees (MSTs). We show that not only do the MSTs provide a meaningful
representation of the global FX dynamics, but they also enable one to determine momentarily
dominant and dependent currencies. We find that information about a country’s geographical ties
emerges from the raw exchange-rate data. Most importantly from a trading perspective, we discuss
how to infer which currencies are ‘in play’ during a particular period of time.

PACS numbers: 89.75.Fb, 89.75.Hc, 89.65.Gh

I. INTRODUCTION

There is enormous interest in the properties of com-
plex networks [1–3]. There has been an explosion of pa-
pers within the physics literature analyzing the struc-
tural properties of biological, technological and social
networks; the main results of which are summarized in
[3]. Such networks or ‘graphs’, contain n nodes or ‘ver-
tices’ {i} connected by M connections or ‘edges’. In the
case of physical connections, such as wires or roads, it
is relatively easy to assign a binary digit (i.e. 1 or 0)
to the edge between any two nodes i and j according to
whether the corresponding physical connection exists or
not. However, for social networks such as friendship net-
works [3], and biological networks such as reaction path-
ways [3], the identification of network connections is less
clear. In fact it is extremely difficult to assign any par-
ticular edge as being a definite zero or one – instead, all
edges will typically carry a weighting value ρij which is
analog rather than binary, and which is in general neither
equal to zero nor to one. The analysis of such weighted
networks is in its infancy, in particular with respect to
their functional properties and dynamical evolution [4].
The main difficulty is that the resulting network is fully-
connected with M = n(n − 1) connections between all
n nodes. In symmetric situations where ρij ≡ ρji, this
reduces to M = n(n− 1)/2 connections, but is still large
for any reasonable n.

An interesting example of such a fully-connected
weighted network is provided by the set of correlation
coefficients between n stochastic variables. Each node
i corresponds to the stochastic variable xi(t) where i =
1, 2, . . . , n, and each of the n(n − 1)/2 connections be-
tween pairs of nodes carries a weight given by the value of
the correlation coefficient ρij (see definition below). For
any reasonable number of nodes the number of connec-

tions is very large (e.g. for n = 110, n(n − 1)/2 = 5995)
and hence it is extremely difficult to deduce which cor-
relations are most important for controlling the overall
dynamics of the system. Indeed, it would be highly de-
sirable to have a simple method for deducing whether
certain nodes, and hence a given subset of these stochas-
tic processes, are actually ‘controlling’ the correlation
structure [5]. In the context of financial trading, such
nodal control would support the popular notion among
traders that certain currencies can be ‘in play’ over a
given time period. Clearly such information could have
important practical consequences in terms of understand-
ing the overall dynamics of the highly-connected FX mar-
ket. It could also have practical applications in other
areas where n inter-correlated stochastic process are op-
erating in parallel.

With this motivation, we present here an analysis of
the correlation network in an important real-world sys-
tem, namely the financial currency (i.e. FX) markets.
Although the empirical analysis presented is obtained
specifically for this financial system, the analysis we pro-
vide has more general relevance to any system involving
n stochastic variables and their n(n − 1)/2 correlation
coefficients. There is no doubt that currency markets
are extremely important [6] – indeed, the recent fall in
the value of the dollar against other major currencies is
quite mysterious, and has attracted numerous economic
‘explanations’ to reason away its dramatic decline. The
currency markets, which represent the largest market in
the world, have daily transactions totalling trillions of
dollars, exceeding the yearly GDP (Gross Domestic Prod-
uct) of most countries.

The technical approach which we adopt, is motivated
by recent research within the physics community by Man-
tegna and others [7–14] and concerns the construction
and analysis of Minimum Spanning Trees (MST), which
contain only n−1 connections. Mantegna and co-workers
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focused mainly on equities – by contrast, we consider
the case of FX markets and focus on what the time-
dependent properties of the MST can tell us about the
FX market’s evolution. In particular, we investigate the
stability and time-dependence of the resulting MST, and
introduce a methodology for inferring which currencies
are ‘in play’ by analyzing the clustering and leadership
structure within the MST network.

The application of MST analysis to financial stock (i.e.
equities) was introduced by the physicist Rosario Man-
tegna [7]. The MST gives a ‘snapshot’ of such a system;
however, it is the temporal evolution of such systems,
and hence the evolution of the MSTs themselves, which
motivates our research. In a series of papers [10–12], On-
nela et al. extended Mantegna’s work to investigate how
such trees evolve over time in equity markets. Here we
follow a similar approach for FX markets. One area of
particular interest in FX trading – but which is of interest
for correlated systems in general – is to identify which (if
any) of the currencies are ‘in play’ during a given period
of time. More precisely, we are interested in understand-
ing whether particular currencies appear to be assuming
a dominant or dependent role within the network, and
how this changes over time. Since exchange rates are
always quoted in terms of the price of one currency com-
pared to another, this is a highly non-trivial task. For
example, is an increase of the value of the euro versus
the dollar primarily because of an increase in the intrin-
sic value of euro, or a decrease in the intrinsic value of
the dollar, or both? We analyze FX correlation networks
in an attempt to address such questions. We believe that
our findings, while directly relevant to FX markets, could
also be relevant to other complex systems containing n
stochastic processes whose interactions evolve over time.

II. MINIMUM SPANNING TREE (MST)

Given a correlation matrix (e.g. of financial returns) a
connected graph can be constructed by means of a trans-
formation between correlations and suitably defined dis-
tances [8]. This transformation assigns smaller distances
to larger correlations [8]. The MST, which only contains
n − 1 connections, can then be constructed from the re-
sulting hierarchical graph [8, 15]. Consider n different
time-series, xi where i ∈ {1, 2, ...n}, with each time-series
xi containing N elements (i.e. N timesteps). The corre-
sponding n × n correlation matrix C can easily be con-
structed, and has elements Cij ≡ ρij where

ρij =
〈xixj〉 − 〈xi〉〈xj〉

σiσj

(1)

where 〈...〉 indicates a time-average over the N datapoints
for each xi, and σi is the sample standard deviation of
the time-series xi. From the form of ρij it is obvious that

C is a symmetric matrix. In addition,

ρii =
〈x2

i 〉 − 〈xi〉
2

σ2
i

≡ 1, ∀ i (2)

hence all the diagonal elements are identically 1. There-
fore C has n(n − 1)/2 independent elements. Since the
number of relevant correlation coefficients increases like
n2, even a relatively small number of time-series can
yield a correlation matrix which contains an enormous
amount of information – arguably ‘too much’ informa-
tion for practical purposes. By comparison, the MST
provides a skeletal structure with only n − 1 links, and
hence attempts to strip the system’s complexity down to
its bare essentials. As shown by Mantegna, the practical
justification for using the MST lies in its ability to pro-
vide economically meaningful information [7, 8]. Since
the MST contains only a subset of the information from
the correlation matrix, it cannot tell us anything which
we could not (in principle) obtain by analyzing the ma-
trix C itself. However, as with all statistical tools, the
hope is that it can provide an insight into the system’s
overall behavior which would not be so readily obtained
from the (large) correlation matrix itself.

To construct the MST, we first need to convert the cor-
relation matrix C into a ‘distance’ matrix D. Following
Refs. [7, 8], we use the non-linear mapping:

dij(ρij) =
√

2(1 − ρij) (3)

to get the elements dij of D [16]. Since −1 ≤ ρij ≤ 1,
we have 0 ≤ dij ≤ 2. This distance matrix D can be
thought of as representing a fully connected graph with
edge weights dij . In the terminology of graph theory, a
‘forest’ is a graph where there are no cycles [17] while
a ‘tree’ is a connected forest. Thus a tree containing n
nodes must contain precisely n − 1 edges [3, 17]. The
minimum spanning tree T of a graph is the tree con-
taining every node, such that the sum

∑

dij∈T
dij is a

minimum. There are two methods for constructing the
MST — Kruskal’s algorithm and Prim’s algorithm [9].
We used Kruskal’s algorithm, details of which are given
in [18].

CLUSTER ANALYSIS

Whilst the impetus for this research came from the
MST work of Mantegna and colleagues in the econo-
physics community, the task of finding a hierarchical
clustering of a set of timeseries falls firmly within the
established field of cluster analysis. There are two dis-
tinct steps necessary in a cluster analysis. First one must
define a meaningful distance between the objects one
wishes to cluster (the distance measure), then one can
implement a clustering procedure to group the objects
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together. An introduction to the most common distance
measures and clustering methods is given in [19], which
also contains evidence that the choice of clustering pro-
cedure has more effect on the quality of the clustering
than the distance measure chosen.

The clustering procedure used to form the MST is
known in cluster analysis as the single-linkage cluster-
ing method (also known as the nearest-neighbour tech-
nique) [20, 21]. This is the simplest of an important
group of clustering methods known collectively as Ag-
glomerative Hierarchical Clustering methods. The main
problem with the MST (single-linkage method) is that
it has a tendency to link poorly clustered groups into
‘chains’ by successively joining them through their near-
est neighbours. Hence, one would expect the hierarchy
produced by the MST to represent larger distances (anti-
correlated) less reliably than the smaller distances (highly
correlated). Since we are attempting to identify highly-
clustered groups this will not be a problem. However,
in other situations — for example, if one were attempt-
ing to use an MST to identify poorly correlated or anti-
correlated stocks for use in portfolio theory — it may be
preferable to use a more sophisticated clustering method.

III. DATA

1. Raw Data

The empirical currency data that we investigated
are hourly, historical price-postings from HSBC Bank’s
database for nine currency pairs together with the price
of gold from 01/04/1993 to 12/30/1994 [22]. Gold is
included in the study because there are similarities
in the way that it is traded, and in some respects
it resembles a very volatile currency. The currency
pairs under investigation are AUD/USD, GBP/USD,
USD/CAD, USD/CHF, USD/JPY, GOLD/USD,
USD/DEM, USD/NOK, USD/NZD, USD/SEK [23]. In
the terminology used in FX markets [23], USD/CAD
is counter-intuitively the number of Canadian dollars
(CAD) that can be purchased with one US dollar (USD).
We must define precisely what we mean by hourly data,
as prices are posted for different currency pairs at
different times. We do not want to use average prices
since we want the prices we are investigating to be prices
at which we could have executed trades. Hence for
hourly data, we use the last posted price within a given
hour to represent the (hourly) price for the following
hour.

We emphasize that the n stochastic variables which we
will analyze correspond to currency exchange rates and
hence measure the relative values of any two currencies.
It is effectively meaningless to ask the absolute value of
a given currency, since this can only ever be measured
with respect to some other financial good. Thus each

currency pair corresponds to a node in our network. We
are concerned with the correlations between these cur-
rency exchange rates, each of which corresponds to an
edge between two nodes. A given node does not corre-
spond to a single currency.

2. Data Filtering

As with all real-world systems, the issue of what consti-
tutes correct data is complicated. In particular, there are
some subtle data-filtering (or so-called ‘data-cleaning’)
issues which need to be addressed. Such data problems
are, by contrast to the physical sciences, a reality in most
disciplines which deal with human timescales and activ-
ity. In our specific case, we are interested in calculating
both the instantaneous and lagged correlations between
exchange-rate returns. Hence it is neccessary to ensure
that (a) each time series has an equal number of posted
prices; (b) the n’th posting for each currency pair corre-
sponds, to as good an approximation as possible, to the
price posted at the same timestep tn for all n ∈ {1, ..., N}.
For some of the hourly timesteps, some currency pairs
have missing data. The best way to deal with this is
open to interpretation. Is the data missing simply be-
cause there has been no price change during that hour, or
was there a fault in the data-recording system? Looking
at the data, many of the missing points do seem to occur
at times when one might expect the market to be illiquid.
However, sometimes there are many consecutive missing
data points — even an entire day. This obviously reflects
a fault in the data recording system. To deal with such
missing data we adopted the following protocol. The FX
market is at its most liquid between the hours of 08:00
and 16:00 GMT [24]. In an effort to eradicate the effect
of ‘zero returns’ due to a lack of liquidity in the market
– as opposed to the price genuinely not moving in con-
secutive trades – we only used data from between these
hours [25]. Then, if the missing data were for fewer than
three consecutive hours, the missing prices were taken to
be the value of the last quoted price. If the missing data
were for three or more consecutive hours, then the data
for those hours were omitted from the analysis. Since
we must also ensure completeness of the data at each
point, it is then necessary that the data for those hours
are omitted from all currency pairs under investigation
[26]. We believe that this procedure provides a sensible
compromise between the conflicting demands of incorpo-
rating all relevant data, and yet avoiding the inclusion of
spurious zero-returns which could significantly skew the
data.
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3. Stationarity

Once we have cleaned up the exchange-rate data for
each currency pair, whose associated price we will hence-
forth label as Pi(t), we turn this value into a financial
return

ri(tn) = ln

(

Pi(tn+1)

Pi(tn)

)

. (4)

Since we will be calculating correlations, we need to be
confident that our return distributions are stationary. A
useful probe of stationarity is to calculate the autocorre-
lation for each time-series. A stationary time-series will
have an autocorrelation function which rapidly decays to
zero [27], whereas a non-stationary time-series will have
an autocorrelation function which decays to zero very
slowly (if at all). The autocorrelation is defined as

ρi(τ) =
〈xi(t + τ)xi(t)〉 − 〈xi(t + τ)〉 〈xi(t)〉

σi,τσi

(5)

where 〈...〉 indicates a time-average over the N − τ el-
ements and σi,τ , σi are the sample standard deviations
of the time-series xi(t + τ) and xi(t), respectively. To
illustrate this point, Figure 1 shows the autocorrela-
tion of both the price and return for the currency pair
AUD/USD over the two year period of interest. It can
be clearly seen that this confirms the assertion that the
returns are stationary whilst the prices themselves are
not. Thus we can, with confidence, calculate correlations
between different currency-pair returns.
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FIG. 1: (Color online) Autocorrelation of the price and return
for the currency pair AUD/USD (i.e. the Australian dollar
versus the US dollar).

4. Foreign Exchange Data

In addition to the problems outlined above which are
common to the analyses of all such real-world data, there

are further issues that are specific to FX data and which
make the study of FX and equities fundamentally dif-
ferent. When producing the MST for the returns of
the stock which make up the FTSE100 index, one cal-
culates the returns from the values of the price of the
stock in the same currency — specifically, UK pounds
(GBP). With FX data, however, we are considering ex-
change rates between currency pairs. Thus should we
consider GBP/USD or USD/GBP? And does it indeed
make a difference which one we use? Since the correla-
tion is constructed to be normalized and dimensionless,
one might be tempted to think that it does not matter
since the value of the correlation will be the same and
only the sign will be different. However, it is important
when constructing the MST since there is an asymmetry
between how positive and negative correlations are rep-
resented as distances. In particular, the MST picks out
the smallest distances — i.e. the highest correlation. A
large negative correlation gives rise to a large distance
between nodes. Thus a connection between two nodes
will be missing from the tree even though it would be
included if the other currency in the pair were used as
the base currency.

Consider the following example. There is a large neg-

ative correlation between the returns of the two cur-
rency pairs GBP/USD and USD/CHF [28]. Conversely,
if we put them both with USD as the base currency, we
get a large positive correlation between USD/GBP and
USD/CHF. Thus our choice will give rise to a fundamen-
tally different tree structure. For this reason, we perform
the analysis for all possible currency-pairs against each
other. Since we are analysing ten currency pairs, this
gives us eleven separate currencies and hence 110 possi-
ble currency pairs (and hence n = 110 nodes). However,
there are constraints on these timeseries and hence an
intrinsic structure is imposed on the tree by the relation-
ships between the timeseries. This is commonly known
as the ‘triangle effect’. Consider the three exchange-rates
USD/CHF, GBP/USD and GBP/CHF. The nth element
of the timeseries for GBP/CHF is simply the product
of the nth elements of USD/CHF and GBP/USD. This
simple relationship between the timeseries gives rise to
some relationships between the correlations. More gen-
erally, with three time-series P1(t),P2(t),P3(t) such that
P3(t) = P1(t)P2(t), there exist relationships between the
correlations and variances of the returns. If we define the
returns ri such that ri = lnPi for all i, then we have:

r3 = r1 + r2 . (6)

Thus

Var(r3) = Var(r1 + r2) (7)

= E((r1 + r2)
2) − (E(r1 + r2))

2 (8)

For currency pairs, it is valid to assume that the expected
value of the return is zero [29]. Hence this expression
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simplifies to

σ2
3 = E(r2

1 + r2
2 + 2r1r2) (9)

= σ2
1 + σ2

2 + 2Cov(r1, r2) (10)

= σ2
1 + σ2

2 + 2σ1σ2ρ12 (11)

where σ1, σ2, σ3 are the variances of the returns r1(t),
r2(t), r3(t) while ρ12 is the correlation between the re-
turns r1(t) and r2(t). Finally we obtain

ρ12 =
σ2

3 − (σ2
1 + σ2

2)

2σ1σ2

(12)

Hence there is a structure forced upon the market by the
triangle effect. This is not a problem since all the cross-
rates we include in the tree do exist and the correlations
calculated are the true correlations between the returns.
Even though the values of these correlations have some
relationships between them, they should be included in
the tree since it is precisely this market structure that
we are attempting to identify. We do, however, need to
confirm that this structure which is being imposed on the
market is not dominating our results.

5. Checking Data Validity

We performed a simple check on the data by calcu-
lating the minimum and maximum return for each cur-
rency pair. For example, if the rate for USD/JPY was
entered as 1.738 instead of 173.8 then this would give
rise to returns of approximately ±1. As a result of this
check, we could confirm that there were no such errors
in our dataset. We then drew scatter plots of the returns
against time, plus histograms of the return distribution
in order to check that there were no unusual points on
the graph. The next check that we performed is slightly
more subtle. The correlation between two variables is
related to the gradient of the regression line between the
variables [27]. However, this gradient is very susceptible
to outliers so we need to ensure that our data does not
contain points which are sufficiently outlying as to jus-
tify deletion. To check this, one can plot scatter-graphs of
returns from different currency pairs against each other.
Since we have 110 currency pairs, there are 5995 possible
scatter-graphs (one for each of the n(n − 1)/2 indepen-
dent correlation coefficients). Obviously it is unfeasible
to plot all of these. However, as we have seen, all the
cross-rates are formed from the USD rates. Therefore
we can just plot the 45 scatter-graphs of USD/A against
USD/B where A 6= B. Figure 2 shows this scatter plot
for USD/DEM vs USD/GBP. It can be seen that there
are no such outlying points. This figure is typical of all
the 45 possible plots.
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FIG. 2: (Color online) Scatter plot of returns for USD/DEM
(i.e. the US dollar versus the German mark) against
USD/GBP (i.e. the US dollar versus the UK pound)

IV. DIRECTED TREES

In [30], the Minimum Spanning Tree approach was gen-
eralized by considering a directed graph. Lagged cor-
relations were investigated in an attempt to determine
whether the movement of one stock price ‘preceded’ the
movement in another stock price. We now investigate
whether this approach yields useful results here. First
we should define what we mean by lagged correlation.
If we have two time-series, xi(t) and xj(t) where both
time-series contain N elements, the τ -lagged correlation
is given by

ρij(τ) =
〈xi(t + τ)xj(t)〉 − 〈xi(t + τ)〉〈xj(t)〉

σi,τσj

(13)

where 〈...〉 indicates a time-average over the N − τ ele-
ments and σi,τ , σj are the sample standard deviations of
the time-series xi(t+τ) and xj(t), respectively. Note that
autocorrelation is simply the special case of this where
i = j. Armed with this definition, we can now look at
our data to see whether there are any significant lagged
correlations between returns of different currency pairs.
Figure 3 shows the lagged correlation between the returns
of each pair of currencies when the prices of those cur-
rencies are given with GBP as the base currency. In the
figure, AUD vs USD (lagged) refers to the lagged corre-
lation between GBP/AUD (at time t+τ) and GBP/USD
(at time t). The results in this figure are representative of
the results from all currency pairs included in our study.

Figure 3 clearly shows that the approach considered in
[30] will not yield anything useful here for FX. If such
lagged correlations do exist between currency pairs, they
occur over a timescale smaller than one hour. In other
words, the FX market is very efficient. This should not
come as a surprise — the FX market is approximately
200 times as liquid as the equities market [6].
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FIG. 3: (Color online) Lagged correlation between different
currency pairs when GBP is the base currency. As explained
in the text, AUD vs USD (lagged) refers to the lagged corre-
lation between GBP/AUD (at time t+ τ) and GBP/USD (at
time t)

V. THE CURRENCY TREE

Creating all the possible cross-rates from the 11 cur-
rency pairs gives rise to a total of n = 110 different time-
series. It is here that the approach of constructing the
MST comes into its own, since 110 different currencies
yields an enormous correlation matrix containing 5995
separate elements. This is far too much information to
allow any practical analysis by eye. However, as can be
seen from Figure 4, the hourly FX tree is quite easy to
look at. Rather than a mass of numbers, we now have a
graphical representation of the complex system in which
the structure of the system is visible.

Before analysing the tree in detail, it is instructive to
consider first what effect the constraints of Eq. (12) (the
‘triangle effect’) will have on the shape of the tree. Figure
5 illustrates this. The data used in this figure is the
same data as in Fig. 4, however the price-series for the
currencies in USD were randomized before the cross-rates
were formed. This process gives prices for the various
currencies in USD which are random, and will hence have
negligible correlation between their returns. Thus Fig. 5
shows the structure forced on the tree by the triangle
effect.

This tree resulting from randomizing data as described
above, is actually very different in character from the true
tree in Figure 4. At first glance it might appear that
some aspects are similar — currencies show some clus-
tering in both cases. However, in the tree of real cross-
rates there are currency-clusters forming about any node,
whereas in Figure 5 there are only clusters centred on the
USD node. This is not surprising: after all, what do the
‘CHF/everything’ rates all have in common in the case
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FIG. 4: (Color) The Minimum Spanning Tree representing
the correlations between all hourly cross-rate returns from
the years 1993 and 1994.

of random prices other than the CHF/USD rate? The
best way to interpret Fig. 5 is that we have a tree of
USD nodes (which are spaced out since their returns are
poorly correlated) and around these nodes we have clus-
ters of other nodes which have the same base currency,
and which are effectively the information from the USD
node plus noise. This exercise shows us that the MST
results are not dominated by the triangle effect. In an
effort to show this in a more quantitative way, we inves-
tigate the proportion of links that are present in both
trees. Less than one third of the edges in Fig. 4 are
present in Fig. 5.

Another more quantitative comparison is to compare
the degree distribution of the tree from the random price
series with that of the tree from real price data. This is
shown graphically in Fig. 6. Again, this further high-
lights the differences between the two trees.

Now that we have produced the tree, how does one in-
terpret it? Despite the initial impression, the tree is ac-
tually very easy to interpret. It contains coloured nodes,
each of which represents a particular currency pair. For
the reasons explained earlier, currency pairs are quoted
both ways round: USD/JPY appears with USD as the
base currency, as is normal market convention, but so
does JPY/USD. This gives all currencies the chance to
stand out as a cluster, as will be seen shortly. The
currency-pair nodes are each colour coded, according to
the labelled base currency. Broadly speaking, each node
is linked to the nodes representing the currency-pairs to
which it is most closely correlated. The observation that
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FIG. 5: (Color) The Minimum Spanning Tree formed from
randomized data for the USD prices. This shows only the
structure imposed on the tree by the triangle effect
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FIG. 6: (Color online) Comparison of the degree distributions
for the trees shown in Figure 4 (Real Data) and Figure 5
(Randomized Data)

certain currency-pairs cluster together means that they
have been moving together consistently over the moni-
tored period.

The most interesting feature of Figure 4 is the cluster-
ing of nodes which have the same base currency. For ex-
ample, one can see a cluster of 9 AUD nodes. This obser-
vation demonstrates that over this two year period, the
Australian Dollar has been moving systematically against
a range of other currencies during this time. To use the
prevailing industry term, the AUD is ‘in play’. The same
is also true for the SEK, JPY and GOLD clusters.
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GOLDNZD

GOLDSEK

GOLDUSD

FIG. 7: (Color online) The cluster of GOLD exchange-rates
from Fig. 4

It is encouraging that the cluster of Gold exchange
rates links currencies in a sensible way. This cluster is
re-drawn in Figure 7. It can be seen that the nodes
in this cluster are grouped in an economically meaning-
ful way: remarkably, there is a geographical linking of
exchange-rates. The Australisian nodes, AUD and NZD,
are linked, as are the American ones (USD and CAD).
The Skandinavian currencies, SEK and NOK, are also
linked. Finally, there is a European cluster of GBP, CHF
and EUR. This provides a useful check that our results
are sensible. Indeed if such geographical clustering had
not arisen, it would be a good indication that something
was wrong with our methodology.

Now that it is possible to identify clusters of currencies,
we would like to quantify how clustered they are. This
can be done by finding the level one has to partition the
hierarchical tree associated with the MST [15] to get all
the nodes with, for example, USD as the base currency
into the same cluster. This results in a self-clustering

distance for each currency. The smaller this distance
is, the more tightly all the nodes for that currency are
clustered. An alternative way to think of this is as the
maximum ultrametric distance between any two nodes
for that currency.

We are now in a position to compare the results pro-
duced by the MST with those from the original distance
matrix. Let us compare the self-clustering distance for
each currency with the maximum Euclidean Distance be-
tween any two nodes with that base currency and also
with the average Euclidean Distance between all nodes
with that base currency. This is shown in Figure 8. It
can be seen that the agreement between the two results
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FIG. 8: (Color) Comparison of the results from the MST with
those from the original correlation matrix

is very good. Not only does the MST rank the clusters
in the same way as the original distance matrix does, it
gives results which agree better with the average distance
than with the maximum Euclidean distance. Hence, the
results for the MST and the original distance matrix are
not only in agreement, the MST results are also robust
with respect to a single, large edge being contained be-
tween two nodes with the same base currency. As men-
tined above, the MST has the advantage over standard
network representations since it only requires n − 1 con-
nections.

VI. STABILITY AND TEMPORAL EVOLUTION
OF THE CURRENCY TREE

We now investigate the single-step survival ratio of the
edges

σδt =
|Et ∩ Et+δt|

|E|
(14)

where Et and Et+δt represent the set of edges present in
the trees formed from a dataset of length T=1000 hours
[31] beginning at times t and t + δt respectively, in order
to see how this ratio depends on the value chosen for δt.
This ratio must tend to one as δt approaches 0 for our
results to be meaningful. The results are plotted in Fig.
9 and it can be seen that it is indeed the case that this
ratio tends to one as δt approaches 0. Thus the topology
of the MST is stable.

Next we investigate the time-dependence of the tree.
Onnela [9] defined the k multi-step survival ratio to be:

σδt,k =
|Et ∩ Et+δt ∩ . . . ∩ Et+kδt|

|E|
(15)

Thus if a link disappears for only one of the trees in
the time t to t + δt and then comes back, it is not
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FIG. 9: (Color online) Single Step survival ratio as a function
of δT

counted in this survival ratio. This seems a possibly
overly-restrictive definition which might underestimate
the survival. We will therefore also consider the more
generous definition

σδt,k =
|Et ∩ Et+kδt|

|E|
. (16)

This quantity will, for large values of k, include cases
where the links disappear and then come back several
timesteps later. It therefore tends to overestimate the
survival since a reappearance after such a long gap is
more likely to be caused by a changing structure than by
a brief, insignificant fluctuation.
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FIG. 10: (Color) Multi-step survival ratio of the FX tree’s
connections, as a function of time. The graph shows the two
definitions described in the text, which tend to overestimate
(blue) and underestimate (red) the survival effect.

Figure 10 shows both definitions, and uses a time-
window of length T = 1000 hours and a time-step δt = 1
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hour. It can be seen from the figure that the two lines
form a ‘corridor’ for the multi-step survival ratio. This is
because the over-restrictive definition of Eq. (15) under-
estimates the survival and the over-generous definition
of Eq. (16) over-estimates the result. It is particularly
noteworthy that even with the over-restrictive definition
of Eq. (15), the survival of links after the end of two
years is only just below fifty percent (i.e. 54/109). In
other words, there are strong correlations existing be-
tween exchange-rate returns that are extremely long-
lived.

VII. INTERPRETATION OF TREES FROM
RECENT DATA

We know from our analysis that clusters occur in the
MST, and that these clusters change over time. Next we
illustrate the significance of this in practice. We will ap-
proach this by analyzing two trees which are one calendar
month apart.

Figure 11 shows an example of a currency tree from a
period in June 2004. Figure 11 shows a strong, brown,
NZD cluster near the bottom of the tree. The NZD is
‘in play’, to use the prevailing industry term introduced
above. The self-clustering distance for NZD is 0.845.
The same is true for the yellow-coloured Canadian dol-
lar (CAD), which has also formed a cluster, with a self-
clustering distance of 0.932. Other clusters are also ev-
ident, including a red Swiss franc (CHF) cluster, which
has formed near the top of the tree. In contrast, the
Sterling currency-pairs are dispersed around the tree, in-
dicating that there is little in common in their behaviour.
In short, Sterling is not ‘in play’.

If the trees were static, this would be the end of the
story. However, we have already shown that the trees
do change over time. Figure 12 shows the equivalent
currency-tree one month later. The CAD cluster is still
evident and, in fact, has strengthened: all nine CAD
nodes are linked together and the self-clustering distance
is now at the smaller value of 0.808. The NZD cluster is
still evident, this time near to the top of the Figure and
is, in fact, slightly stronger with a self-clustering distance
of 0.78. More interesting are the clusters which have
changed. The CHF cluster has completely disintegrated;
the CHF nodes are scattered over the tree. Hence the
Swiss franc is no longer in play. Conversely, there is
now a American dollar (USD) cluster which has formed,
indicating that the dollar has become more important in
determining currency moves.

In short, it has become possibly to identify currencies
which are actively in play and are effectively dominating
the FX market. Sometimes, when currencies are in play,
it will be obvious to traders: for example, when there
is a large and sustained USD move. However, this is
not always the case, and our currency-trees are able to
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FIG. 11: (Color) Currency tree (MST) for a 2 week period in
June 2004.

provide an indication of how important (i.e. how much
in play) a particular currency is. In addition to using
the tree as a graphical tool, it is possible to quantify
how clustered a particular currency is by calculating the
self-clustering distance.

VIII. CONCLUSIONS

We have provided a detailed analysis of the Minimal
Spanning Trees associated with empirical Foreign Ex-
change data. This analysis has highlighted various data-
related features which make this study quite distinct from
earlier work on equities.

We have shown that there is a clear difference between
the currency trees formed from real markets and those
formed from randomized data. For the trees from real
markets, there is a clear regional clustering. We have
also investigated the time-dependence of the trees. Even
though the market structure does change rapidly enough
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FIG. 12: (Color) Currency tree (MST) for a 2 week period in
July 2004.

to identify changes in which currency-pairs are clustering
together, there are links in the tree which last over the
entire two year period. This shows that there is a certain
robust structure to the FX markets. We have also devel-
oped a methodology for interpreting the trees which has
practical applications: the trees can be used to identify
currencies which are in play. Whilst this does not have
predictive power, it helps one to identify more accurately
the state the market is currently in. Armed with this in-
formation, one can be more confident of the predictions
made from other models. In future work, we will look at
trying to isolate the effect of news on the FX market – in
other words, the extent to which external news ‘shakes’
the FX tree. Of particular interest is whether particular
clusters have increased robustness over others, or not.
In addition, we shall be investigating how tree structure
depends on the frequency of the data used.
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