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Documentation

Work available as working paper
wp on my web site at:
www.mth.kcl.ac.uk/˜shaww/web_page/papers/
Tdistribution06.pdf

Final version to appear in the Journal of Computational
Finance, Vol. 9 issue 4 (autumn 06), as “Sampling
Student’s T Distribution - use of the inverse cumulative
distribution function”
There are further electronic resources on my web site
as documented in the working paper/publication.

Terminology: The inverse cumulative distribution function
has historically been known as the Quantile function.
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Goal

Much work on correlation issues expressed via copulas
Work on Quasi-Monte-Carlo methods
Both need inverse CDFs of marginals to work in general
What about the marginals?
Try to develop technology for distributions of interest
First job: the T-distribution - parallel Moro on Normal?
Little done outside basic statistical work
Abramowitz and Stegun, Hill (1970) on numerics
I take no view on merits of copulas!
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Plan of Talk

Topics to look at:
Proper definition of Student’s T Distribution
“Closed-form” inverse CDF
Cunning techniques for simulation in low-level
programming
Some interesting new results
The “resolvent polynomial” method
General power and asymptotic series
Lots of technical detail in PDF/handout
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Definition of T distribution

We shall begin by defining the Student’s T-Distribution in a
way that makes manifest one method of its simulation. We
let Z0, Z1, . . . Zn be standard normal random variables and
set

χ2
n = Z2

1 + · · · + Z2
n

The density function of χ2
n is easily worked out, using

moment generating functions, and is

qn(z) =
1

2Γ(n
2 )

e−z/2

(

z

2

)
n
2
−1

and gives a random variable with a mean of n and a
variance of 2n.
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Normal variable + random variance

We now define a “normal variable with a randomized
variance” in the form:

T =
Z0

√

χ2
n/n

To obtain the density f(t) of T we note that

f(t|χ2
n = ν) =

√

ν

2πn
e−

t2ν
2n

Then to get the joint density of T and χ2
n we need to multiply

by qn(ν).
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The T PDF

Finally, to extract the univariate density for T , which we
shall call fn(t), we integrate out ν. We observe that

∫ ∞

0
f(t|χn = ν)qn(ν)dν

=
1√
nπ

Γ[n+1
2 ]

Γ[n2 ]

1

(1 + t2/n)
n+1

2

= fn(t)

A sample from this distribution can easily be obtained using
n + 1 samples from the standard normal distribution. Known
(to some), as is use of a normal variate divided by the
square root of a scaled sample from χ2, that being obtained
by other methods.
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Bailey’s (1994) Method

Best known method to date for sampling without inverting
from uniforms was published by R. Bailey as recently as
1994. He gave the polar method for the T analogous to the
well-known method for the Normal: (you do not get two
independent samples though)
1. Sample two uniform variates u and v from [0, 1] and let

U = 2u − 1, V = 2v − 1;
2. Let W = U2 + V 2. If W > 1 return to step 1 and
resample;

3. T = U
√

n(W−2/n − 1)/W .
This wonderful algorithm also has the manifest limit that
step 3 produces the result T = U

√

(−2 log W )/W as n → ∞,
which is the well known polar formula for the Normal case.
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The Direct Sampling Method

We want to get a grip on the use of the elementary result:

T = F−1
n (U)

to define a sample from the T-distribution directly, where U
is uniform and Fn is the cumulative density function for the
T distribution with n degrees of freedom. We use the F−1

notation to denote the functional inverse (and not the
arithmetical reciprocal!).
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Why do this?

We might be MUCH more efficient
Exhibit the polynomial method, which is!
In Quasi-Monte-Carlo want to sample e.g. basket size
m using space-filling hypercube.
Polar-Marsaglia/Box-Muller map uses hypercube
dimensions 2m.
We have same motivation as Moro (RISK, 1995) to cut
down to m by use of direct inverse.
Inverse CDFs helpful in copula-based pricing via
simulation
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The exact forward CDF

Fn(x) =

∫ x

−∞

fn(t)dt

Fn(x) =
1√
nπ

Γ[n+1
2 ]

Γ[n2 ]

∫ x

−∞

1

(1 + t2/n)
n+1

2

dt

Fn[x] =
1

2
+

xΓ
(

n+1
2

)

√
nπΓ

(

n
2

) 2F1

(

1

2
,
n + 1

2
;
3

2
;−

x2

n
)

)

Fn[x] =
1

2

(

1 + sgn(x)(1 − I( n
x2+n

)

(

n

2
,
1

2

))

Uses the regularized beta function Ix(a, b) = Bx(a,b)
B(a,b)
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Formal Inversion

B(a, b) is the ordinary β-function and Bx(a, b) is the
incomplete form

Bx(a, b) =

∫ x

0
t(a−1)(1 − t)(b−1)dt

This may be formally inverted to give

F−1
n [u] =

√

√

√

√

√n





1

I−1
If[u< 1

2
,2u,2(1−u)]

(

n
2 , 1

2

) − 1





×sgn
(

u −
1

2

)
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Use of formal inverse

If one can access an accurate representation of the inverse
β-function then one can work directly with the formal
inverse. As an example, we can use a representation in
Mathematica or other suitable symbolic system to visualize
the inverse for various values of n. This is not
computationally efficient any more than the inverse error
function is an efficient way of sampling from a Normal, but a
good check.
Also only OK for advanced mathematical computation
languages. We shall see later how to write down series for
these functions that are more directly useful in low-level
languages such as C++. Such representations do not give
any insight into what is happening.
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Array of Inverse CDFs

0.2 0.4 0.6 0.8 1

-4

-2

2

4

Plot of inverse for the cases n = 1, 2, 3, 4, 5, 6, 7, 8,∞
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Getting some insight into inversion

Tabulate the first few:

n Fn(x)

1 1
2 + 1

π tan−1(x)

2 1
2 + x

2
√

x2+2

3 1
2 + 1

π tan−1
(

x√
3

)

+
√

3x
π(x2+3)

4 1
2 +

x(x2+6)
2(x2+4)3/2

5 1
2 + 1

π tan−1
(

x√
5

)

+
√

5x(3x2+25)
3π(x2+5)2

6 1
2 +

x(2x4+30x2+135)
4(x2+6)5/2

Odd n a mix of algebraic and trigonometric functions (hard),
even n always algebraic. More tractable. Defer non-integer
n.
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The beautiful algebra of even n

The case of even n can be massively simplified. We set

p = n + x2

α = 1 − 4(u −
1

2
)2

and manipulate the formulae arising from the family of
equations

u = Fn(x)

We obtain an interesting sequence of purely polynomial
equations, about half of whose terms vanish! We call these
the “resolvent polynomials” of the T distribution.
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The Resolvent Polynomials

n = 2 : αp − 2 = 0

n = 4 : αp3 − 12p − 16 = 0

n = 6 : αp5 − 135p2 −
1215

4
p −

2187

2
= 0

n = 8 : αp7 − 2240p3 − 7168p2 − 35840p − 204800 = 0

n = 10 : αp9 −
196875p4

4
−

1640625p3

8
−

10546875p2

8
−

615234375p

64
−

2392578125

32
= 0

We now proceed to extract some solutions. The on-line
supplement code to generate the resolvent polynomial
equations for even n ≤ 20 and exhibits them.
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Problem is now Polynomial Solution

Exact solutions can be written down. We already knew
n = 1 case from Cauchy distribution:

x = tan(π(u −
1

2
))

The case n = 2 was known to Hill in 1970. This is now trivial
as the resolvent polynomial is linear. After some
simplification we obtain

x =
2
√

2
(

u − 1
2

)

√

1 − 4
(

u − 1
2

)2

Efficient Methods for managing Student’s T Distribution – p. 19/40



The case n = 4

The resolvent polynomial equation is now a cubic in
reduced form (no quadratic term). A cubic in reduced form
may be solved by exploiting the identity

(p−A−B)∗(p−Aω−Bω2)∗((p−Aω2−Bω) ≡ p3−3ABp−A3−B3

where ω = e
2πi
3 is the standard cube root of unity. We just

have to solve some auxiliary equations for A and B
(modern formulation of Tartaglia’s solution!) Some work
and simplification gives us:

p =
4√
α

cos

(

1

3
cos−1 √α

)

where, as before, x = sign(u − 1
2)
√

p − 4, α = 1 − 4(u − 1
2)2.
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Solution for higher n

Basically use your favourite polynomial solver. Paper
suggests Newton-Raphson with a sensible seed value.
Highly efficient due to nearly half the coefficients being
zero. For example, n = 6 scheme is

pk+1 =
2
(

8αp5
k − 270p2

k + 2187
)

5
(

4αp4
k − 216pk − 243

)

For n = 8 we have

pk+1 =
2

7

(

3pk +
640 (pk (pk (pk + 4) + 24) + 160)

pk
(

αp5
k − 960pk − 2048

)

− 5120

)

You can blast out inverses very fast and hence do fast MC
sampling by applying these maps to samples from a
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Comments on n = 4

There is more reason to consider this case than mere
inversion “doability”. The case n = 4 has finite variance. As
we decrease n from∞ then n = 4 is the point at which the
kurtosis becomes infinite. Therefore an interesting case
from a risk management view, as it represents a good
alternative base case to consider along with normal case.
So perhaps VaR simulations might be tested in the
log-Student-(n = 4) case as well as log-normal case. Note
that the variance also diverges as n → 2+.

Recent independent evidence supports n = 4 as an
interesting case for purely financial reasons - Fergusson
and Platen (AMF, Spring 2006) suggest that n = 4 T is a
good representation of index returns in a global setting.
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Managing general real n

These polynomial results are very pretty but do not extend
to n odd. An approach to case n = 3 is discussed in the
paper. It looks like we may have exhausted the simple and
elegant methods and now need some more symbolic
firepower. We are trying to solve

u −
1

2
=

1√
nπ

Γ[n+1
2 ]

Γ[n2 ]

∫ x

0

1

(1 + s2/n)
n+1

2

ds

So x is an odd function of u − 1/2. We work with the
problem in the normalized power series form:

x = F−1
n (u) = v +

∞
∑

k=1

ckv
2k+1, v = (u − 1/2)

√
nπ

Γ[n2 ]

Γ[n+1
2 ]
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Symbolic Power Series Solution

We use a non-linear iteration to obtain the coefficients as:

c1 =
1

6
+

1

6n

c2 =
7

120
+

1

15n
+

1

120n2

c3 =
127

5040
+

3

112n
+

1

560n2 +
1

5040n3

c4 =
4369

362880
+

479

45360n
−

67

60480n2 +
17

45360n3 +
1

362880n4

and so on. The written paper goes up to c9; the on-line
material has terms up to c30.
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Series vs exact, n = 11, terms to c9

0.2 0.4 0.6 0.8 1

0.05

0.1
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0.3

0.35

0.2 0.4 0.6 0.8 1

-2

-1

1

2

Efficient Methods for managing Student’s T Distribution – p. 25/40



A series for the tail

We proceed as before, and a little experimentation tells us
what series to seek. We solve for x as a function of w,
where

(1 − u)
√

nπ
Γ(n

2 )

Γ(n+1
2

= w =

∫ ∞

x

1

(1 + s2

n )
n+1

2

ds

The series solution is written in the following form

x =
√

n
(√

nw
)−1/n

(

1 +
∞

∑

k=1

(
√

nw)
2k
n d(k)

)

and giving the problem to a symbolic cruncher gives the
results
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Tail series coefficients

d1 = −
(n + 1)

2(n + 2)

d2 = −
n(n + 1)(n + 3)

8(n + 2)2(n + 4)

d3 = −
n(n + 1)(n + 5)

(

3n2 + 7n − 2
)

48(n + 2)3(n + 4)(n + 6)

d4 = −
n(n + 1)(n + 7)

(

15n5 + 154n4 + 465n3 + 286n2 − 336n + 64
)

384(n + 2)4(n + 4)2(n + 6)(n + 8)

and so on, with more terms in the paper.

Efficient Methods for managing Student’s T Distribution – p. 27/40



Combination for n = 3

Take 9-term power and 6 term tail (very short series!) and
compare with exact solution. The graph shows the error.

0.5 0.6 0.7 0.8 0.9

0.0002

0.0004

0.0006

0.0008

0.001
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Other material in paper

Hazards of Cornish-Fisher expansions
Making senses of the Excel function TINV
Other benchmarks cases
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Summary of Results on Simulation

The iCDF in terms of inverse β-functions, suitable for
benchmark computations;
Exact solutions for the iCDF in terms of elementary
functions for n = 2, 4, which are themselves of interest
to “fat-tailed finance” applications;
Fast iterative Newton-Raphson techniques the iCDF for
even integer n ≤ 20.
A power series for the iCDF valid for general real n
accurate except in the tails;
A generalized power series for the tails that is good for
low to modest n;
A summary of known results on the Cornish-Fisher
expansions, including tail problems.
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