
Informational Herding in Financial Markets

University Finance Seminar, Judge Business School

16 June 2006

Daniel Sgroi
Faculty of Economics and Churchill College,

University of Cambridge



Overview
• Part 1: What is informational herding?

• Part 2: Herding in financial markets

• Part 3: Multiple states & signals



Part I: What is Informational Herding?



Introduction
• Herding as an idea is prevelent in economics, finance, sociology and beyond, and relates to
the observed clustering of human behaviour.



Introduction
• Herding as an idea is prevelent in economics, finance, sociology and beyond, and relates to
the observed clustering of human behaviour.

• Informational herding began with Banerjee (1992) and Bikhchandani et al. (1992) and

focuses on a rational motivation for herding.



Introduction
• Herding as an idea is prevelent in economics, finance, sociology and beyond, and relates to
the observed clustering of human behaviour.

• Informational herding began with Banerjee (1992) and Bikhchandani et al. (1992) and

focuses on a rational motivation for herding.

— Agents have private information ("signals"), and can also observe public information.



Introduction
• Herding as an idea is prevelent in economics, finance, sociology and beyond, and relates to
the observed clustering of human behaviour.

• Informational herding began with Banerjee (1992) and Bikhchandani et al. (1992) and

focuses on a rational motivation for herding.

— Agents have private information ("signals"), and can also observe public information.

— Public information is a history of all the actions not information of predecessors.



Introduction
• Herding as an idea is prevelent in economics, finance, sociology and beyond, and relates to
the observed clustering of human behaviour.

• Informational herding began with Banerjee (1992) and Bikhchandani et al. (1992) and

focuses on a rational motivation for herding.

— Agents have private information ("signals"), and can also observe public information.

— Public information is a history of all the actions not information of predecessors.

— Rational agents use Bayes rule to update the prior, with the public and private infor-
mation they possess.



Introduction
• Herding as an idea is prevelent in economics, finance, sociology and beyond, and relates to
the observed clustering of human behaviour.

• Informational herding began with Banerjee (1992) and Bikhchandani et al. (1992) and

focuses on a rational motivation for herding.

— Agents have private information ("signals"), and can also observe public information.

— Public information is a history of all the actions not information of predecessors.

— Rational agents use Bayes rule to update the prior, with the public and private infor-
mation they possess.

— An agent herds on the public belief if his action is independent of his private signal
(Chamley, 2004).



Introduction
• Herding as an idea is prevelent in economics, finance, sociology and beyond, and relates to
the observed clustering of human behaviour.

• Informational herding began with Banerjee (1992) and Bikhchandani et al. (1992) and

focuses on a rational motivation for herding.

— Agents have private information ("signals"), and can also observe public information.

— Public information is a history of all the actions not information of predecessors.

— Rational agents use Bayes rule to update the prior, with the public and private infor-
mation they possess.

— An agent herds on the public belief if his action is independent of his private signal
(Chamley, 2004).

— If all agents herd there is an informational cascade (Chamley, 2004).



Introduction
• Herding as an idea is prevelent in economics, finance, sociology and beyond, and relates to
the observed clustering of human behaviour.

• Informational herding began with Banerjee (1992) and Bikhchandani et al. (1992) and

focuses on a rational motivation for herding.

— Agents have private information ("signals"), and can also observe public information.

— Public information is a history of all the actions not information of predecessors.

— Rational agents use Bayes rule to update the prior, with the public and private infor-
mation they possess.

— An agent herds on the public belief if when his action is independent of his private signal
(Chamley, 2004).

— If all agents herd there is an informational cascade (Chamley, 2004).

• Key assumptions: agent’s action not information is observable (information may be im-
puted), agent’s private information is bounded in quality, agents have the same quality of

private information.
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• A sequence of agents arrives at the doors of the restaurants and must decide where to eat.

• One restaurant is definitely better (the state, X ∈ {A,B}).

• The prior probabilty of the better restaurant being A is q = 0.55.

• Agent i has private information (signals) xi correct with probability 0.6.

• Suppose x1 = a: now 1’s action (a1) is to select A, 2 immediately herds, and a cascade on

A begins (opposing signals cancel).

• Suppose x1 = b: now a1 = a, and suppose x2 = b, then a2 = b, and so on with ai = b ∀i
(inference stops when the cascade starts: no more imputed signals).

• Note that xi = {a, b, b, b, ...} (observable, the "history") yields ai = {A,A,A,A, ...}: an
incorrect cascade.
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The Restaurant Example
• More generally a cascade on A begins whenever#A−#B ≥ 1, and a cascade on B whenever
#A−#B ≤ −2. For no cascade we need a1 = B, a2 = A, a3 = B, and so on, the likelihood

of which falls to zero very quickly.

• Easily generalised for any prior < 1 or reasonble indifference rule - the basic results that

a cascade always starts in the limit, and that an incorrect cascade always has positive

probability hold.

• Also a sequence is not necessary, endogenous time models work just as well (Chamley and
Gale, 1994).



Part II: Herding in Financial Markets



Traders as Potential Herders
• A trader can buy either A or B (not both) at zero cost (could be buy/sell, short/long,

buy/not, etc.).



Traders as Potential Herders
• A trader can buy either A or B (not both) at zero cost (could be buy/sell, short/long,

buy/not, etc.).

• An investor with t predecessors who observes a history of actions Ht will choose A if and

only if Pr (A | Ht, x) > 1/2.



Traders as Potential Herders
• A trader can buy either A or B (not both) at zero cost (could be buy/sell, short/long,

buy/not, etc.).

• An investor with t predecessors who observes a history of actions Ht will choose A if and

only if Pr (A | Ht, x) > 1/2.

• An investor who is Bayes rational will follow his own private informaiton, and thereby reveal
it, unless he is herding.



Traders as Potential Herders
• A trader can buy either A or B (not both) at zero cost (could be buy/sell, short/long,

buy/not, etc.).

• An investor with t predecessors who observes a history of actions Ht will choose A if and

only if Pr (A | Ht, x) > 1/2.

• An investor who is Bayes rational will follow his own private informaiton, and thereby reveal
it, unless he is herding.

• A cascade on asset X starts when an investor should buy X regardless of his own signal, i.e.

when Pr (X | Ht, x) > 1/2 for x = a, b.



Traders as Potential Herders
• A trader can buy either A or B (not both) at zero cost (could be buy/sell, short/long,

buy/not, etc.).

• An investor with t predecessors who observes a history of actions Ht will choose A if and

only if Pr (A | Ht, x) > 1/2.

• An investor who is Bayes rational will follow his own private informaiton, and thereby reveal
it, unless he is herding.

• A cascade on asset X starts when an investor should buy X regardless of his own signal, i.e.

when Pr (X | Ht, x) > 1/2 for x = a, b.

• Depending on priors and signal precisions, this requires a different number of (imputed) a
or b signals.
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• A trader can buy either A or B (not both) at zero cost (could be buy/sell, short/long,

buy/not, etc.).

• An investor with t predecessors who observes a history of actions Ht will choose A if and

only if Pr (A | Ht, x) > 1/2.

• An investor who is Bayes rational will follow his own private informaiton, and thereby reveal
it, unless he is herding.

• A cascade on asset X starts when an investor should buy X regardless of his own signal, i.e.

when Pr (X | Ht, x) > 1/2 for x = a, b.

• Depending on priors and signal precisions, this requires a different number of (imputed) a
or b signals.

• Exactly as in the restaurant example, if say the prior is Pr (A) = 0.55, and Pr(a | A) =
Pr (b | B) = 0.6, then an A-cascade starts when #A − #B ≥ 1, and a B-cascade when

#A−#B ≤ −2.
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...No! Where are the prices?



Flexible Prices
• In their simplest setting Avery & Zemsky (1998) add a flexible price to the above model.

Could also have noise traders, and hence non-negative profits for the market maker, but we

will stick to the simplest setting.



Flexible Prices
• In their simplest setting Avery & Zemsky (1998) add a flexible price to the above model.

Could also have noise traders, and hence non-negative profits for the market maker, but we

will stick to the simplest setting.

• Let Pt be the market price of asset A in round t and assume a successful asset pays out 10

in the end. Hence, Pt = 10Pr (A | Ht).



Flexible Prices
• In their simplest setting Avery & Zemsky (1998) add a flexible price to the above model.

Could also have noise traders, and hence non-negative profits for the market maker, but we

will stick to the simplest setting.

• Let Pt be the market price of asset A in round t and assume a successful asset pays out 10

in the end. Hence, Pt = 10Pr (A | Ht).

• The price of B is always 10− Pt since Pr (A | Ht) = 1− Pr (A | Ht).



Flexible Prices
• In their simplest setting Avery & Zemsky (1998) add a flexible price to the above model.

Could also have noise traders, and hence non-negative profits for the market maker, but we

will stick to the simplest setting.

• Let Pt be the market price of asset A in round t and assume a successful asset pays out 10

in the end. Hence, Pt = 10Pr (A | Ht).

• The price of B is always 10− Pt since Pr (A | Ht) = 1− Pr (A | Ht).

• The optimal choice is clear, invest if and only if 10Pr (A | Ht, x)− Pt > 0, i.e. if and only if

x = a, and likewise B is the optimal choice if and only if x = b.



Flexible Prices
• In their simplest setting Avery & Zemsky (1998) add a flexible price to the above model.

Could also have noise traders, and hence non-negative profits for the market maker, but we

will stick to the simplest setting.

• Let Pt be the market price of asset A in round t and assume a successful asset pays out 10

in the end. Hence, Pt = 10Pr (A | Ht).

• The price of B is always 10− Pt since Pr (A | Ht) = 1− Pr (A | Ht).

• The optimal choice is clear, invest if and only if 10Pr (A | Ht, x)− Pt > 0, i.e. if and only if

x = a, and likewise B is the optimal choice if and only if x = b.

• So investors follow their own private information, since the price already incorporates the
information present in the history of actions.



Flexible Prices
• In their simplest setting Avery & Zemsky (1998) add a flexible price to the above model.

Could also have noise traders, and hence non-negative profits for the market maker, but we

will stick to the simplest setting.

• Let Pt be the market price of asset A in round t and assume a successful asset pays out 10

in the end. Hence, Pt = 10Pr (A | Ht).

• The price of B is always 10− Pt since Pr (A | Ht) = 1− Pr (A | Ht).

• The optimal choice is clear, invest if and only if 10Pr (A | Ht, x)− Pt > 0, i.e. if and only if

x = a, and likewise B is the optimal choice if and only if x = b.

• So investors follow their own private information, since the price already incorporates the
information present in the history of actions.

• Note also that price is a martingale w.r.t. public information, so E [Pt+1 | Ht] = Pt ∀t, so
The only scope to make money is on private information, not on the history of prices, as we

would expect in an efficient market.



Flexible Prices
• In their simplest setting Avery & Zemsky (1998) add a flexible price to the above model.

Could also have noise traders, and hence non-negative profits for the market maker, but we

will stick to the simplest setting.

• Let Pt be the market price of asset A in round t and assume a successful asset pays out 10

in the end. Hence, Pt = 10Pr (A | Ht).

• The price of B is always 10− Pt since Pr (A | Ht) = 1− Pr (A | Ht).

• The optimal choice is clear, invest if and only if 10Pr (A | Ht, x)− Pt > 0, i.e. if and only if

x = a, and likewise B is the optimal choice if and only if x = b.

• So investors follow their own private information, since the price already incorporates the
information present in the history of actions.

• Note also that price is a martingale w.r.t. public information, so E [Pt+1 | Ht] = Pt ∀t, so
The only scope to make money is on private information, not on the history of prices or

actions (the same thing), as we would expect in an efficient market.

• As everyone follows their own signal herding cannot occur!



Flexible Prices
• In their simplest setting Avery & Zemsky (1998) add a flexible price to the above model.

Could also have noise traders, and hence non-negative profits for the market maker, but we

will stick to the simplest setting.

• Let Pt be the market price of asset A in round t and assume a successful asset pays out 10

in the end. Hence, Pt = 10Pr (A | Ht).

• The price of B is always 10− Pt since Pr (A | Ht) = 1− Pr (A | Ht).

• The optimal choice is clear, invest if and only if 10Pr (A | Ht, x)− Pt > 0, i.e. if and only if

x = a, and likewise B is the optimal choice if and only if x = b.

• So investors follow their own private information, since the price already incorporates the
information present in the history of actions.

• Note also that price is a martingale w.r.t. public information, so E [Pt+1 | Ht] = Pt ∀t, so
The only scope to make money is on private information, not on the history of prices or

actions (the same thing), as we would expect in an efficient market.

• As everyone follows their own signal herding cannot occur!



• Confirmed in recent experimental work (Cipriano and Guarino, 2005; Drehmann et al, 2005)

40



Part III: Multiple States & Signals
What follows is based on a recent working paper by Hamid Sabourian and Andreas Park, who

I am working with as part of an ongoing ESRC and CERF funded project.

Full proofs of all the assertions can be found on Andreas Park’s website at the University of

Toronto on:

http://www.chass.utoronto.ca/~apark/research.html

Following the link to

Herding in models of Sequential Trades with monotonic Signals.
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• The security is a single risky asset has three possible liquidation values V ∈ {V1, V2, V3} =
{0, V, 2V }, V > 0.

• The prior distribution on Vi is common knowledge and symmetric around V2. Thus, Pr(V1) =
Pr(V3). Symmetry is for simplification as it reduces the degrees of freedom.

• At each date t one trader arrives in an exogenous and random sequence. They can only

trade at the point in time when they arrive.

• Two kinds of traders: informed agents and noise traders, to allow us to avoid the no-trade
outcome. Noise traders have no information and trade randomly. These traders are not

necessarily irrational, but they trade for reasons not included in this model, such as liquidity.

• The informed agents are risk neutral and rational. Each receives a private, conditionally
i.i.d. signal S ∈ {S1, S2, S3} about V.
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Sequential Trading II
• Assume the signals are ordered s.t. S1 < S2 < S3.

• In each t the entering trader is informed with probability μ > 0 and a noise trader with

probability 1− μ > 0.

• Trade is organised by a market maker. He has no private information and is subject to
competition thus makes zero-expected profit. In every t, prior to the arrival of a trader, he:

— Posts a bid-price PB
t = E

£
V | Ht, a sale at time t at PB

t

¤
at which he is willing to buy

the security;

— An ask-price PA
t = E

£
V | Ht, a buy at time t at PA

t

¤
at which is willing to sell the

security.

— On average, incurs losses trading against the informed. To compensate the market
maker profits from noise traders by setting a spread: PA

t > E [V | Ht] > PB
t , with this

spread (PA
t − PB

t ) increasing with μ.
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Sequential Trading III
• The set of possible actions for each trader is A ∈ {buy, hold, sell}. The informed trader’s
optimal choice (assume indifferent agents trade):

— buy if E [V | Ht, St] ≥ PA
t

— sell if PB
t ≥ E [V | Ht, St]

— hold otherwise.

• At each t, a noise-trader buy, hold or sale occurs with the same probability γ = (1− μ)/3.

• The structure of the model is common knowledge. The identity of a trader and his signal
are private information. Everyone can observe past trades and prices.

• The history of trades together with the realised transaction prices at t is denoted by Ht =

((a1, P1), . . . , (at−1, Pt−1)).
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Properties of the Signal Distribution
• We assume signals are strictly monotonic in the sense of MLRP: For any signals Sl < Sh

and any values Vl < Vh, Pr(Sl | Vl) Pr(Sh | Vh) > Pr(Sl | Vh) Pr(Sh | Vl).

• This is the standard assumption in models that use informative signals. This very strong
restriction is made to show herding is possible even under such restrictive conditions (stronger

than FOSD).

• EG (note the U -shape of the middle signals here):

Pr(S | V ) V1 V2 V3

S1 0.3 0.2 0.02

S2 0.6 0.5 0.59

S3 0.1 0.3 0.39



Glossary
MLRP: (alternative statement)
Let V be the value of the security and let S be the value of the signal. Let f(S | V ) be the pdf

of S for each V . Then the statement that f() has the monotone likelihood ratio property (MLRP)

is the same as the statement that:

for Vl < Vh, f(S | Vh)/f(S | Vl) is increasing in S.

This says that S is positively related to V , and something stronger, something like: of two

outcomes, the worse one (Sl) will not become relatively more likely than the better one (Sh) if V

were to rise. By relatively more likely is meant that the likelihood ratio, above, rises.

FOSD:
Let the possible returns from two states of the world be be described by statistical distributions

Sl and Sh, conditional on the value of the state V . The payoff distribution implied by Sh first-order

stochastically dominates that implied by Sl if for every possible V , the probability of getting a

high payoff is never better in Sl than in Sl.

Basically higher signals mean higher expected returns.
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MLRP Signal Distribution: 3 values, 3 signals

Pr(Si|Vi)

S3

S2

S1

V1 V2 V3

negative bias

Financial Market Herding – p. 12/23



Definition of Herding in this Framework
• Definition. A trader with signal S engages in herd-buying in period t after history Ht iff

— Before anything happens the trader has a negative opinion and would sell, soE [V | S] <
PB
1 .

— After a history Ht the S-trader buys, so E [V | Ht, S] > PA
t .

— Prices move into the direction of the herd, so E [V | Ht] > E(V ).

• Herd selling is defined analogously.

• So can there be herding with MLRP signals in a multiple state world?



Yes!

• A set of necessary and sufficient conditions for herding are:

— ‘Enough’ noise;

— U-shaped signal distribution for signal S2;

— Negative bias in the S2-distribution for buy-herding, positive bias for sell-herding.

• Note that under the MLRP U -shape can only occur on the middle sginals.
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Intuition
• The S2-type’s information comes from extreme sources - either V1 or V3.

• Opinion is volatile, the "middle" trader is prone to switch sides if there is sufficient evidence
of high values.

• His average opinion (his expectation) is close to the public expectation E [V | Ht], though

made up of these extreme views.

• But negative bias means he would sell before anything happens.

• We need a sufficiently small bid-ask spread to trigger a switch of opinion (recall definition
of a herd) - achieved through sufficient noise! (recall bid-ask spread increases in percentage

of informed).



Implications
• Here, once buy-herding starts then further buys will increase the herders’ expectation more
than the market maker’s and thus the herd is not broken. As a result,

— Prices may move significantly during herding and herding can persist (if buying persists
and no sales, herding will not stop).

— Once herding starts, buying will also get more likely as S3- and S2-types buy.

— The herd is quite robust — breaking it gets more difficult the more buys there are.
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Implications
• Here, once buy-herding starts then further buys will increase the herders’ expectation more
than the market maker’s and thus the herd is not broken. As a result,

— Prices may move significantly during herding and herding can persist (if buying persists
and no sales, herding will not stop).

— Once herding starts, buying will also get more likely as S3- and S2-types buy.

— The herd is quite robust — breaking it gets more difficult the more buys there are.

• Similar story for sell-herding.

• How large can the price movements during buy-herding be?

— Depends on the prior distribution.

— With Pr(V2) near 1 it can start at V2 and with sufficiently many buys it can approach
V3.



Contrarian Behaviour
• Define a buy-contrarian as someone who acts against the crowd and changes his opinion
(simlarly to herder) so:

— Before anything happens the trader has a negative opinion and would sell, soE [V | S] <
PB
1 .

— After a history Ht the S-trader buys, so E [V | Ht, S] > PA
t .

— Contrarians act against the movement of prices, so E [V | Ht] < E(V ).



Contrarian Behaviour
• Define a buy-contrarian as someone who acts against the crowd and changes his opinion
(simlarly to herder) so:

— Before anything happens the trader has a negative opinion and would sell, soE [V | S] <
PB
1 .

— After a history Ht the S-trader buys, so E [V | Ht, S] > PA
t .

— Contrarians act against the movement of prices, so E [V | Ht] < E(V ).

• And for "contrarian" behaviour we need:

— ‘Enough’ noise;

— Hill-shaped signal distribution for signal S2;

— Negative bias in the S2-distribution for buy-herding, positive bias for sell-herding.



Summary & Conclusions
• Informational herding can explain clustering on rational grounds.

• It may need multiple states/signals to work in a financial market.

• With multiple states/signals we can have all the hallmarks of herding, such as suboptimal
outcomes, long-lasting incorrect behaviour, extreme outcomes, etc. in financial markets.

• For more realism:

— News constantly breaks, do old cascades will make way for new ones;

— Traders don’t work in a sequence, so need to add the ability to wait (especially here as
waiting means you can observe others);

— As the model grows in complexity Bayesian updating becomes more difficult, as does
the entire decision-making process.

• We are working on these extensions now, both thoeretically and through laboratory experi-
mentation.
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