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Abstract 

A recent paper, Crosby (2005), introduced a multi-factor jump-diffusion model which would allow 
futures (or forward) commodity prices to be modelled in a way which captured empirically observed 
features of the commodity and commodity options markets. However, the model focused on modelling 
a single individual underlying commodity. In this paper, we investigate an extension of this model 
which would allow the prices of multiple commodities to be modelled simultaneously in a simple but 
realistic fashion. We then price a class of simple exotic options whose payoff depends on the difference 
(or ratio) between the prices of two different commodities (for example, spread options), or between 
the prices of two different (ie with different tenors) futures contracts on the same underlying 
commodity, or between the prices of a single futures contract as observed at two different calendar 
times (for example, forward start or cliquet options). We show that it is possible, using a Fourier 
Transform based algorithm, to derive a single unifying form for the prices of all these aforementioned 
exotic options and some of their generalisations. Although we focus on pricing options within the 
model of Crosby (2005), most of our results would be applicable to other models where the relevant 
“extended” characteristic function is available in analytical form. 
 
 
1. Introduction 
 
    Our aim, in this paper, is to price a class of simple European-style exotic commodity options within 
an extension of the Crosby (2005) model. One of the features of the commodities markets is that 
options which are considered “exotic” for other asset classes are very common in the commodities 
markets. Consider an option which pays the greater of zero and the difference between the prices of 
two commodities minus a fixed strike (which might in practice, be zero). These options are very 
actively traded. When the commodities are crude oil and a refined oil product (such as heating oil or jet 
fuel), an option on the price difference is called a crack spread option. These crack spread options are 
actively traded, not only in the OTC market but also, on NYMEX, the New York futures exchange. 
When one of the commodities is coal, spread options are called dark spread options and when one of 
the commodities is electricity, spread options are called spark spread options. Phraseology apart, all 
these options are options on the difference between the prices of two commodities. The prices in 
question might be the futures prices to some given tenors or the spot prices of two different 
commodities. In this paper, we will focus on the case when the prices in question are futures 
commodity prices because, we can easily include the case of spot prices as a special case of the former 
(ie as a futures contract which matures at the same time as the option maturity).  
    Another phraseology that is also used for spread options is that of “primary” commodity and 
“daughter” commodity. A “primary” commodity might be, for example, a very actively traded blend of 
crude oil (in practice, either Brent or WTI) and a “daughter” commodity would then be either a much 
less actively traded blend (eg Bonny Light from Nigeria or Dubai) of crude oil or a refined petroleum 
product such as heating oil, jet fuel or gasoline. The price movements of the “daughter” commodity 
would closely, but not perfectly, follow those of the “primary” commodity. In practice, many spread 
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options involve a “primary” commodity and a “daughter” commodity although, clearly, spread options 
on two seemingly unrelated commodities, such as natural gas and a base metal, are possible. 
    It would be possible to approximate the prices of spread options by making ad-hoc assumptions such 
as assuming the price spread is normally or log-normally distributed. However, such assumptions are 
ad-hoc and are inconsistent with the assumptions typically made about the dynamics of the individual 
commodities. The disadvantages of these approaches are discussed in, for example, Dempster and 
Hong (2000) and Garman (1992). We will briefly mention one disadvantage of modelling price spreads 
ie (arithmetic) price differences as log-normal. Because, of the way that crude oil is refined, through 
fractional distillation, into a basket of refined products, one would expect the basket of refined products 
to be always worth more than the same quantity of crude oil and that the difference is the (positive) 
cost of refining. One might therefore be tempted to expect that the price of a particular refined 
petroleum product (for example, heating oil or aviation fuel) is always higher (when measured in the 
same units) than the price of crude oil. In fact, whilst a positive price differential is the more common 
situation, it is empirically observed (see, for example, Geman (2005)) that sometimes an imbalance of 
supply and demand in the international markets results in a negative price differential, albeit usually for 
just short periods of time. It is also observed that, over a period of time, the spot price of a benchmark 
grade of crude oil (such as Brent or WTI) can trade both more expensively and, at different times, more 
cheaply than a given, less actively traded grade of crude oil (such as Bonny Light or Dubai). Clearly, it 
would not be appropriate, therefore, to model (arithmetic) price differences as log-normal. So therefore, 
in this paper, we will look at pricing spread options without ad-hoc assumptions about the price spread 
and consistent with each of the two commodities following the dynamics of the model of Crosby 
(2005).  
    Quite often the fixed strike of the spread option is, in fact, zero and we will call these “zero strike” 
spread options. These are the type we will focus on, in this paper. The “zero strike” type of spread 
option (an option to exchange one asset for another) was first considered by Margrabe (1978) for the 
case of log-normally distributed asset prices. See also Rubinstein (1991a), (1991b) and Geman (2005) 
and the references therein. Duffie et al. (2000) consider the pricing of some simple types of exotic 
options for assets (bonds (both risk-free and defaultable), foreign exchange rates and equities) 
following affine jump-diffusion processes. Deng (1998) considers the pricing of spread options on spot 
commodity prices where the underlying spot commodity prices follow affine jump-diffusion processes. 
In addition, Dempster and Hong (2000) have considered spread options (including the more difficult 
case of “non-zero-strike”) on options where the underlying assets can follow more general stochastic 
processes, including processes with stochastic volatility. Duffie et al. (2000), Deng (1998) and 
Dempster and Hong (2000) all use Fourier Transform methods. 
    There are other actively traded variants on spread options, including options on the price ratio (rather 
than the price difference). Another variant is that the underlying is actually a single physical 
commodity but the spread involves the price difference (or ratio) between two futures contracts on that 
same commodity but with two different tenors. These could be viewed as options on the slope of the 
futures commodity curve.  A somewhat different variant again is that a single commodity futures 
contract is observed at two different calendar times. This gives rise to forward start and ratio forward 
start (single leg cliquet) options. Using Fourier Transform methods, we will derive a single unifying 
form for all these exotic options and some of their generalisations. 
    It is well-known (see Geman (2005) and Crosby (2005) and the references therein) that jumps are an 
important feature of the commodities and commodity options markets, being both more frequent and 
larger in magnitude than in, for example, the equity and foreign exchange markets. 
    In Crosby (2005), we introduced a multi-factor jump-diffusion model for commodities and 
commodity options. It is an arbitrage-free model consistent with any initial term structure of futures 
commodity prices. The model incorporates multiple jump processes into the dynamics of futures 
commodity prices. It also allows for a specific empirically observed feature, common in the 
commodities markets (especially for energy related commodities eg natural gas and electricity), that 
when there are jumps in futures commodity prices, the short end of the futures commodity price curve 
jumps by a larger magnitude than the long end of the futures commodity price curve. This is a feature 
that did not seem to have appeared in the literature before. In fact, Deng (1998), and several other 
papers, such as Hilliard and Reis (1998) and Clewlow and Strickland (2000), include jumps in models 
for spot commodity prices. None of these models are consistent with any initial term structure of 
futures commodity prices but even if time-dependent drift terms were introduced to allow for this, they 
are only able to produce jumps which cause parallel shifts in the term structure of (log) futures 
commodity prices. We also allow for these latter types of jumps (see Assumption 2.2 in section 2) but, 
in addition, through an exponential dampening feature, we also allow for jumps (see Assumption 2.1 in 
section 2) which cause long-dated futures commodity prices to jump by smaller magnitudes than short-
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dated futures commodity prices. In Crosby (2005), we explain how jumps which cause parallel shifts in 
the term structure of (log) futures commodity prices are empirically more suitable for modelling 
options on gold (in this respect, gold “trades like a currency”). On the other hand, the exponentially 
dampened type of jumps are more suitable for modelling most other commodities (especially natural 
gas and electricity). 
    A feature of “primary” and “daughter” commodities is that, it is observed empirically that, when 
there are jumps in the price of the “primary” commodity, then there are also simultaneous jumps in the 
price of the “daughter” commodity, albeit, generally of a different magnitude.  
    In this paper, we consider two commodities which we will label Commodity 1 and Commodity 2. 
We consider how we can adapt the Crosby (2005) model to realistically handle the case of two 
different commodities. Heuristically, we suppose that there are background (for example, economic) 
factors which influence the dynamics of futures commodity prices. These background factors are 
represented mathematically as Brownian motions and Poisson processes. To provide some heuristic 
intuition as to how the Poisson processes relate to the dynamics of futures commodity prices, we 
consider the following: One could imagine there being factors which caused the futures prices of both 
natural gas and electricity to jump simultaneously whilst there could also be factors (an outage, for 
example) which caused electricity prices to jump but did not cause jumps in the futures prices of 
natural gas. Equally there could be factors which always caused simultaneous jumps in the futures 
prices of crude oil and the futures prices of a refined petroleum product (although, of course, the 
magnitudes of the jumps could be different). At the other end of the spectrum, one could imagine 
modelling the futures prices of two commodities (perhaps a base metal and an energy-related 
commodity) which would have no simultaneous jumps at all. Of course, our aim in this paper is to 
price commodity derivatives for which we need to model commodity prices in the risk-neutral measure 
– it is not to explain price movements in the real-world physical measure. The heuristic intuition above 
is simply designed to provide an insight into our model. 
    In order to cater for all the different possible cases of modelling the futures prices of two different 
underlying commodities, we suppose there are M  Poisson processes which drive all futures 
commodity prices. If, in fact, the price of a particular commodity does not jump in response to a jump 
of a particular Poisson process, we can cater for this by setting the jump size to be identically equal to 
zero. 
    In addition to Poisson processes, futures commodity prices are also driven by multiple Brownian 
motions. The diffusion volatilities associated with the Brownian motions are assumed deterministic but 
otherwise can be specified in a fairly flexible manner (Crosby (2005) provides more details or see 
Miltersen (2003) for a specification which can model seasonality in the term structure of volatilities, 
which is an empirically observed feature of the natural gas markets). 
 In this paper, we assume that interest-rates are stochastic and, therefore (Cox et al. (1981)), futures 
commodity prices and forward commodity prices are not the same. We will work with futures 
commodity prices but, results in, for example, Jamshidian (1993) and Crosby (2005) show that pricing 
options involving forward commodity prices is a straightforward extension.  
 The rest of this paper is organised as follows: In section 2, we consider a simple but realistic 
extension of the Crosby (2005) framework to model two underlying commodities. In section 3, we 
define the payoff of a simple class of exotic options. In section 4, we derive a generic formula for the 
price of these options using Fourier Transform methods. In section 5, we provide some numerical 
examples of our methodology. Section 6 is a short conclusion.  
 
 
2. Extending the model to two underlying commodities 
 
 We will make the standard assumptions that markets are frictionless and arbitrage-free. 
  In this paper, we will work exclusively in the equivalent martingale measure (EMM), in which 
futures commodity prices are martingales, which, depending on the form of the model, may not be 
unique. In essence, in the case of non-uniqueness (which corresponds to market incompleteness) we 
assume that an EMM has been “fixed” through the market prices of standard (plain vanilla) options and 
by an abuse of language call this the (rather than an) EMM. Crosby (2005) provides more details.  

We denote expectations, at time t , with respect to the EMM by [ ]tE . 
We will use the same notation as in Crosby (2005), whenever possible. 
We denote the (continuously compounded) risk-free short rate, at time t , by ( )tr  and we denote the 

price, at time t , of a (credit risk free) zero coupon bond maturing at time T  by ( )TtP , . 
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We assume that interest-rates are stochastic and follow a Gaussian interest-rate model (eg extended 
Vasicek, Babbs (1990), Hull and White (1993)), which is an arbitrage-free model consistent with any 
initial term structure of interest-rates. The dynamics of bond prices under the EMM are (Babbs (1990), 
Heath et al. (1992)): 
 

( )
( ) ( ) ( ) ( )tdzTtdttr

TtP
TtdP

PP ,
,
, σ+= ,  

 

where ( )TtP ,σ  is a purely deterministic function of t  and T , with ( ) 0, =TTPσ , and ( )tdzP  
denotes standard Brownian increments. We will work within a one factor Gaussian (extended Vasicek) 
model in which we write 
  

( ) ( )( )( ) rrrP tTTt αασσ −−−≡ exp1, , where rσ  and rα  are positive constants. However, all 
results in this paper are applicable to any multi-factor Gaussian interest-rate model without further ado.  
 

We consider two commodities, labelled Commodity 1 and Commodity 2. We denote the futures 
price of Commodity i , 2,1=i , at time t  to time T  (ie the futures contract, into which Commodity 

i , 2,1=i , is deliverable, matures at time T ) by ( )TtHi , . Then for each i , 2,1=i , we assume, 
following Crosby (2005), that the dynamics of futures commodity prices under the EMM are: 
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where, for each k , iKk ,...,2,1= , ( )TtkHi ,,σ  are purely deterministic functions of at most t  and 

T , ( )tdz kHi, , for each k , are standard Brownian increments (which can be correlated with each other 

and with ( )tdzP  but we assume the correlations form a positive semi-definite correlation matrix), and 

mtN , for each m , Mm ,...,1= , are independent Poisson processes whose intensity rates, under the 

EMM, at time t , are ( )tmλ  which are positive deterministic functions of at most t . The functions 

( )tb mi, , for each m , and for each i , are non-negative deterministic functions which we call jump 

decay coefficient functions. The parameters mti,γ , for each m , are parameters, which we call spot 

jump amplitudes. For each m , NmtE  denotes the expectation operator, at time t , conditional on a 

jump occurring in mtN . 

 As in Crosby (2005), we assume that the spot jump amplitudes mti,γ  are one of two possible forms, 
which we term those of assumption 2.1 and assumption 2.2, which in turn are linked to two possible 
specifications of the jump decay coefficient functions ( )tb mi, . 

For each m , Mm ,...,1= , we assume that either: 
Assumption 2.1 : 
The spot jump amplitudes mti,γ , for each i , are assumed to be constants, which we denote by mi ,β . In 

this case, the jump decay coefficient functions ( )tb mi,  are assumed to be any non-negative 
deterministic function.                                                                                                                              •       
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Or: 
Assumption 2.2 : 
In this case, the jump decay coefficient functions ( )tb mi, , for each i , 2,1=i , are assumed to be 

identically equal to zero ie ( ) 0, ≡tb mi  for all t  and for each i . For different m , the spot jump 

amplitudes mti,γ  are assumed to be independent and identically distributed random variables, each of 
which is independent of each of the Brownian motions and of each of the Poisson processes. For a 
given m , we assume that, for this m , the spot jump amplitudes are normally distributed with (under 
the EMM) mean mi ,β  and standard deviation mi,υ , for each i , and that the correlation between the 

spot jump amplitudes mt,1γ  and mt,2γ  is J
m,12ρ .                                                                                    •  

 
Remark 2.3 : Note that, in assumptions 2.1 and 2.2, m,1β  need not equal m,2β  and also that one of 

m,1β  or m,2β  may be zero (and for assumption 2.2, likewise m,1υ  and m,2υ ). This allows us to 

capture the effect where, in response to a jump in mtN  at time t , the spot price ( )ttH ,1  of 

Commodity 1 and the spot price ( )ttH ,2  of Commodity 2 may jump by different magnitudes (and 
one may not actually jump at all). 

 
We define the indicator functions, for each m , Mm ,...,1= , ( ) 11 1.2 =m  if assumption 2.1 is 

satisfied, for this m , and ( ) 01 1.2 =m  otherwise and ( ) 11 2.2 =m  if assumption 2.2 is satisfied, for this 

m , and ( ) 01 2.2 =m  otherwise. Then equation 2.1 and assumptions 2.1 and 2.2 imply that  
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 Crosby (2005) provides more information about the consequences of assumptions 2.1 and 2.2 and 
equation 2.1. In short, the consequences are that futures commodity prices are martingales in the EMM 
and (with a suitable (see Crosby (2005)) form for ( )TtkHi ,,σ ) log of the spot prices of both 
Commodity 1 and Commodity 2 exhibit mean reversion in the EMM. It is also shown in Crosby (2005) 
how, when the jumps are of the type of assumption 2.1, jumps can also contribute to the effect of mean 
reversion and that the speed of this jump-related mean reversion is given by the values of the jump 
decay coefficient functions. When there are jumps, in the case of assumption 2.1 (and provided the 
relevant jump decay coefficient functions ( )tb mi,  are strictly positive), the prices of long-dated futures 
contracts jump by smaller magnitudes than short-dated futures contracts because of the exponential 
dampening effect of the jump decay coefficient functions in equation 2.1. This is in accordance with 
stylised empirical observations in most commodities markets, especially energy-related commodities 
such as natural gas and electricity. In the case of assumption 2.2, jumps cause parallel shifts in the (log 
of the) futures commodity prices to all tenors because, in this case, the jump decay coefficient 
functions ( )tb mi,  are identically equal to zero. Stylised empirical observations suggest this is more 
appropriate for gold.  
 

We have deliberately worked with very general forms of the diffusion volatility parameters 
( )TtkHi ,,σ , the intensity rates ( )tmλ  and the jump decay coefficient functions ( )tb mi, . The specific 

functional forms and the values of 1K , 2K  and M  would be chosen by the trader according to her 
intuition of the behaviour of the two underlying commodities. To help with this process, we will briefly 
consider possible specifications of the dynamics of the futures prices of the two commodities. 
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2.1 A possible specification for the jumps and the diffusion volatilities 
 

Suppose that Commodity 1 is WTI grade crude oil. This is the “primary” commodity. It is very 
actively traded and there are many standard European options traded on it whose prices the trader can 
observe in the market. Suppose Commodity 2 is heating oil, a refined petroleum product. This is the 
“daughter” commodity. It is not so actively traded but there are some (but a smaller number than for 
WTI grade crude oil) standard European options traded on it whose prices she can observe in the 
market. We suppose 21 =K , 32 =K  and 1=M . Furthermore, we suppose the two Brownian 
motions driving Commodity 1 are also precisely the first two Brownian motions driving Commodity 2, 
with the same volatility parameters. The third Brownian motion driving Commodity 2 is specific to that 
commodity. More specifically, we assume 
 

( ) ( ) ( )( )tTaTtTt HH −−+== 1111,21,1 exp,, χησσ                                                                  (2.3) 

( ) ( ) ( )( )tTaTtTt HH −−== 222,22,1 exp,, χσσ                                                                         (2.4) 
 
and we assume the diffusion volatility function for the third Brownian motion (driving only 
Commodity 2) is of the form 
 

( ) ( )( )tTaTtH −−= 333,2 exp, χσ                                                                                                 (2.5) 
 

where 1η , 1χ , 2χ , 3χ , 1a , 2a  and 3a  are all constants. 
 
We will drop the first subscripted index for the Brownian motions in this subsection only (ie write 

( ) ( ) ( )tdztdztdz kHkHkH ,,2,1 ≡= , for 2,1=k  and ( ) ( )tdztdz kHkH ,,2 ≡ , for 3=k ). 

We define the correlations (assumed constant), for 3,2,1=i  and 3,2,1=j : 
 

( ) ( )( )tdztdzcorrel jHiHji ,,, ,≡ρ , ( ) ( )( )tdztdzcorrel iHPiP ,, ,≡ρ  
 
We assume that Commodity 1 and Commodity 2 both jump in response to increments in the Poisson 
process tN1  which we assume to be of the type of assumption 2.1 and to have a constant intensity rate 

ie ( ) 11 λλ ≡t , where 1λ  is a constant. The jump decay coefficient functions are identical for each 

commodity and assumed constant ie ( ) ( ) 11,21,1 btbtb ≡≡ , where 1b  is a constant. However, we 

assume the spot jump amplitudes are possibly different ie 1,1β  is not necessarily equal to 1,2β . 
 
Then we can write the dynamics of Commodity 1 and Commodity 2 (under the EMM) as: 
 

( )
( ) ( )( )( ) ( ) ( )( ) ( )tdztTatdztTa

TtH
TtdH

HH 2,221,111
1

1 expexp
,
,

−−+−−+=
−

χχη                               

                      ( ) ( ) ( )( )( )( ) ( )dtTtedNtTbtdzTt tPP ,1expexp, 1,1111,1 −−−−+− βσ                        (2.6) 
 

( )
( ) ( )( )( ) ( ) ( )( ) ( )tdztTatdztTa

TtH
TtdH

HH 2,221,111
2

2 expexp
,
,

−−+−−+=
−

χχη                               

                      ( )( ) ( )tdztTa H 3,33 exp −−+ χ                                                                                       
 

                      ( ) ( ) ( )( )( )( ) ( )dtTtedNtTbtdzTt tPP ,1expexp, 1,2111,2 −−−−+− βσ             (2.7) 
 

If we define ( ) ( )
( )TtH

TtHTtR
,
,,

1

2
1/2 ≡  and ( ) ( )

( )ttH
ttHtC

,
,

1

2
1/2 ≡ , then by Ito’s lemma, 
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( )
( ) ( )( ) ( ) ( ) ( )( )dttTaTttdztTa

TtR
TtdR

PPH −−+−−=
− 3333,33

1/2

1/2 exp,exp
,
,

χσρχ    

( )( ) ( )( )( ) ( )( )( )( )dttTatTatTa −−+−−+−−− 222,31111,333 expexpexp χρχηρχ     
   

( ) ( )( )( )( ) ( ) ( )( )dtTteTtedNtTb t ,,1expexp 1,11,2111,11,2 −−−−−−+ ββ                               (2.8) 
 
Note the form of the diffusion volatility term which only depends on the Brownian increments 

( )tdzH 3, . In fact, utilising results in section 3 of Crosby (2005), it is now clear, from equation 2.8, that 

the SDE for ( )tC 1/2  can be written either in the form  
 

( )( ) ( ) ( )( )( ) ( ) ( ) tHJ dNtdzdttCtatCd 11,11,23,31/231/2 lnln ββχ −++−Λ= ,                        (2.9) 
 
or, equivalently and alternatively, in the form  
 

( )( ) ( ) ( )( )( ) ( ) ( ) tHD dNtdzdttCtbtCd 11,11,23,31/211/2 lnln ββχ −++−Λ= ,                      (2.10) 
 

where ( )tJΛ  and ( )tDΛ  are stochastic mean reversion levels whose exact forms can easily be 
obtained utilising the methodology leading to proposition 3.9 of Crosby (2005), albeit at the expense of 
some algebra (in fact, ( )tJΛ  is a pure-jump stochastic process and ( )tDΛ  is a pure-diffusion 
stochastic process).  
  We see that the log ratio ( )tC 1/2ln  of the spot prices of the two commodities is a mean reverting 
stochastic process (under the EMM). This is an attractive feature for modelling, for example, the case 
where Commodity 1 is crude oil (the “primary” commodity) and Commodity 2 is a refined petroleum 
product (the “daughter” commodity) such as heating oil, because, heuristically, we would expect the 
price differential (and therefore also the log ratio) in the long-term to not move too far away from a 
long-run mean level which reflects the cost of the refining process. However, in the short-term, the log 
price ratio (and therefore also the arithmetic price difference) can go negative in line with the stylised 
empirical observations made in section 1. 

We will also briefly mention how this model might be calibrated. Usually, there will be fewer 
actively traded options on the “daughter” commodity than on the “primary” commodity. One could 
estimate the parameters of the process for the “primary” commodity by calibrating to the market prices 
of standard options (see also Crosby (2006)). In our example above, there would be eleven parameters, 
namely 1η , 1χ , 2χ , 1a , 2a , 2,1ρ , 1,Pρ , 2,Pρ , 1λ , 1b  and 1,1β . Having determined these eleven 
parameters, one could take these as given. Then one could estimate the remaining six parameters, 
namely 3χ , 3a , 1,3ρ , 2,3ρ , 3,Pρ , 1,2β , from the market prices of standard options on the 
“daughter” commodity. There would typically, be fewer actively traded options on the “daughter” 
commodity but, equally, there are fewer parameters to estimate. Of course, it would require an 
empirical investigation, beyond the scope of this paper, to determine how feasible our suggested 
calibration mechanism might be. 

In our example above, we have considered the dynamics of two commodities (“primary” and 
“daughter”) where intuition suggests they will move closely (but not perfectly) together. Of course, in 
the case of two seemingly unconnected commodities such as, for example, natural gas and a base 
metal, a different specification of the jumps and the diffusion volatilities would be chosen. For 
example, we might consider two Poisson processes, with the first Poisson process tN1  only causing 

jumps in Commodity 1 (by having 01,1 ≠β  and 01,2 =β ) and the second Poisson process tN 2  only 

causing jumps in Commodity 2 (by having 02,1 =β  and 02,2 ≠β ). We would also specify the 
diffusion terms differently. The example above is just meant for illustration.  

We have illustrated how the model could be applied in a specific case of interest but, for this rest of 
this paper, we now return to considering the general case, as we turn our attention to pricing a class of 
exotic commodity options. 
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3. A class of exotic commodity options 
 
 Our aim is to price a European-style option whose payoff is the greater of zero and a particular 
function involving the futures price, at time 1,1T , of Commodity 1 deliverable at (ie the futures contract 

on Commodity 1 matures at) time 1,2T  and the futures price, at time 2,1T , of Commodity 2 deliverable 

at (ie the futures contract on Commodity 2 matures at) time 2,2T , where 1,12,1 TT ≤ , 1,11,2 TT ≥  and 

2,12,2 TT ≥ . The payoff is known at time 1,1T  but is paid at (a possibly later) time payT . Note 

2,11,1 TTTpay ≥≥ . 
More mathematically, we price a European-style option whose payoff is: 
  

( ) ( )[ ]
( )[ ] ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
0,

,
,,

max
2,22,12

2,22,12
*

1,21,11
α

ε

η
TTH

TTHKTTH
, at time payT ,                                               (3.1) 

 
where 1=η  if the option is a call and 1−=η  if the option is a put. Note ε  and α  are constants 

and, furthermore, *K  is a constant which might, for example, account for different units of 
measurement. The reason for investigating options with this class of payoffs is that it contains as 
special cases a number of option types of interest, all of which are actively traded in the OTC 
commodity options markets. 
 

We will now briefly outline (for the case of call options) some of these special cases: 
 
Spread (crack spread or dark spread or spark spread) options 

These are options on the difference in price between two different underlying commodities. Their 
payoffs can be defined (for the “zero strike” case) via equation 3.1 with 1=ε  and 0=α . In practice, 
we usually have 2,11,1 TT = . If the underlying prices, on which the option payoff is determined, are 

spot prices, then we also set 1,21,1 TT =  and 2,22,1 TT = .                                                                      •                                     
 
Ratio spread or relative performance options 

These are options on the ratio of the price of two different underlying commodities. Their payoffs 
can be defined via equation 3.1 with 1=ε  and 1=α . In practice, we usually have 2,11,1 TT = . If the 
underlying prices, on which the option payoff is determined, are spot prices, then we also set 

1,21,1 TT =  and 2,22,1 TT = .                                                                                                                    •                                     
 
Options on futures commodity price curve spreads  

These are options on a single underlying physical commodity but with futures commodity contracts 
of different tenors ie 2,21,2 TT ≠ . Their payoffs can be defined via equation 3.1 with 

( ) ( )••≡•• ,, 21 HH . Typically, we have 2,11,1 TT = , 1=ε  and, either 0=α  or 1=α .              •  
 
Forward start options 

These are options on a single underlying commodity in which 2,1T  is strictly less than 1,1T . The 
payoff is the greater of zero and the difference between the futures commodity price to a given tenor at 
some calendar time and the futures commodity price to the same tenor at some earlier calendar time. 
Their payoffs can be defined via equation 3.1 with ( ) ( )••≡•• ,, 21 HH , 1=ε  and 0=α . For the 

case just described, one would have 2,21,2 TT =  but other variants are possible. For example, forward 

start options on the spot commodity price would have 1,21,1 TT =  and 2,22,1 TT = .                             •  
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Ratio forward start options  
Note that these options might also be called single-leg cliquets by analogy with terminology in the 

equity options markets. These are also options on a single underlying commodity in which 2,1T  is 

strictly less than 1,1T . The payoff is the greater of zero and the ratio of the futures commodity price to a 
given tenor at some calendar time and the futures commodity price to the same tenor at some earlier 
calendar time (minus a constant strike term). Their payoffs can be defined via equation 3.1 with 

( ) ( )••≡•• ,, 21 HH , 1=ε  and 1=α . Again, one could also have ratio forward start options on the 

spot commodity price with 1,21,1 TT =  and 2,22,1 TT = .                                                                        •  
 

Of course, we can also price options which are generalisations or mixtures of the special cases noted 
above. For example, ε  and α  need not be integers.  

We should also make a brief comment about the time payT  at which the option payoff is paid. The 

most common situation, in practice, is that payT  would be set equal to 1,1T . However, occasionally, we 
observe in the OTC markets that commodity options are traded where the payoff is deferred for a short 
period of time after 1,1T  (and this is not just the standard two working day spot settlement but might, 

for example, be a period of a few weeks). For example, it might be that payT  is set equal to the 
maturity of one of the underlying futures contracts. 

We will now return, for the rest of the paper, to the completely general case of considering the class 
of exotic options whose payoff is given by equation 3.1. 
 
 
4. Fourier Transform methodology 
 

In this section, we will use a Fourier transform methodology, to price European-style options whose 
payoff is defined in equation 3.1. We will proceed along the lines of Sepp (2003) who considers the 
case of standard European options (on a single underlying asset). 

Define, for times tt ≥1  and tt ≥2 : 
 

( ) ( )
( )[ ]

( )
( )[ ] ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≡ εε

2,22

1,21

2,222

1,211
2,221,21 ,

,
,
,

log;,,,
TtH
TtH

TtH
TtH

tTtTtY .                                         (4.1) 

 
 The price of the European-style option, whose payoff is given by equation 3.1, at time t , (for 

1,12,1 TTt ≤≤ ) is: 
 

( ) ( ) ( )[ ]
( )[ ] ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
− ∫ 0,

,
,,

maxexp
2,22,12

2,22,12
*

1,21,11
α

ε

η
TTH

TTHKTTH
dssrE

payT

t
t  

( ) ( ) ( )tMtMtM 321 −+=                                                                                                               (4.2) 
 

where ( ) ( ) ( ) ( ) ( )[ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+
≡ −∫ αη

2,22,121,21,111 ,,exp
2

1 TTHTTHdssrEtM
payT

t
t                         (4.3) 

and ( ) ( ) ( ) ( )[ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
≡ −∫ αεη

2,22,12
*

2 ,exp
2

1 TTHKdssrEtM
payT

t
t                                           (4.4) 
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and ( ) ( )
⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−≡ ∫

payT

t
t dssrEtM exp3   

              ( )[ ] ( )
( )[ ] ( )( )

⎥
⎥
⎦

⎤

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
− *

2,22,11,21,1
2,22

1,21
2,22,12 ,;,,,exp

,
,

min, KtTTTTY
TtH
TtH

TTH ε
αε               (4.5)                                    

 
The last set of equations follows from a simple algebraic arrangement. 

We focus, firstly, on ( )tM 3 . 
 

Define ( )( ) ( )
( )[ ] ( )( ) ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
≡ *

2,22,11,21,1
2,22

1,21
2,22,11,21,1 ,;,,,exp

,
,

min;,,, KtTTTTY
TtH
TtH

tTTTTYf ε   

and then write 
 

( )( )tTTTTYf ;,,, 2,22,11,21,1  in (inverse) terms of its Fourier Transform ( )zf̂  ie write 
 

( )( ) ( )( ) ( )∫
∞+

∞−

−=
i

i

iz

iz

dzzftTTTTizYtTTTTYf ˆ;,,,exp
2
1;,,, 2,22,11,21,12,22,11,21,1 π

                         (4.6) 

 
where z  is complex. Results in Lewis (2001), Sepp (2003) and Crosby (2006) show that, by taking the 
Fourier Transform of ( )( )tTTTTYf ;,,, 2,22,11,21,1 , which exists provided 10 << iz , where iz  is 
the imaginary part of z , then:  
 

( ) ( )
( )[ ]

( )[ ]
( )

1

1,21

2,22
*

2
2,22

1,21

,
,1

,
,ˆ

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

−
=

iz

TtH
TtHK

izzTtH
TtH

zf
ε

ε                                                             (4.7) 

 

Furthermore, by substituting equation 4.6 into equation 4.5, ( )tM 3  is given by: 
 

( ) ( )[ ] ( )( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
− ∫∫

∞+

∞−

−
i

i

pay iz

iz

T

t
t dzzftTTTTizYTTHdssrE ˆ;,,,exp

2
1,exp 2,22,11,21,12,22,12 π

αε

( ) ( )[ ] ( )( ) ( )∫ ∫
∞+

∞−

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

i

i

payiz

iz

T

t
t dzzftTTTTizYTTHdssrE ˆ;,,,exp,exp

2
1

2,22,11,21,12,22,12
αε

π
 

( ) ( )∫
∞+

∞−

−Φ≡
i

i

iz

iz

dzzfTTTTtz ˆ,,,,;
2
1

2,22,11,21,1π
                                                                                (4.8)         

 
where ( )≡−Φ 2,22,11,21,1 ,,,,; TTTTtz   

    ( ) ( )[ ] ( )( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
− −∫ tTTTTizYTTHdssrE

payT

t
t ;,,,exp,exp 2,22,11,21,12,22,12

αε                            (4.9) 

 
and where we use Fubini’s theorem to justify the interchange of the integral and the expectation 
operator. We will call ( )2,22,11,21,1 ,,,,; TTTTtz−Φ  the “extended” characteristic function (we have 
borrowed the terminology from Duffie et al. (2000) but our definition is somewhat different). 
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We now collect the equations above into the form of a proposition. 

 
Proposition 4.1 : The price of the European-style option, at time t , whose payoff is defined in 
equation 3.1, is: 
 

( ) ( ) ( ) ( )∫
∞+

∞−

−Φ−+
i

i

iz

iz

dzzfTTTTtztMtM ˆ,,,,;
2
1

2,22,11,21,121 π
                                                  (4.10) 

 
Proof : From equations 4.2 and 4.8.                                                                                                         •  
 
Remark 4.2 : Note that equation 4.10 holds independently of the specific model for futures commodity 
prices. So, for example, we could consider extensions of the Crosby (2005) model which allow for, for 
example, stochastic volatility or alternative specifications of the jump processes (in the manner of 
Heston (1993), Duffie et al. (2000) and Barndorff-Nielsen and Shephard (2001)) and equation 4.10 
would still be applicable, provided that the “extended” characteristic function can be calculated. 
Equation 4.10 (with minor modifications) could also be useful for options involving other asset classes 
such as equities (see Duffie et al. (2000)) or inflation (see Mercurio (2005), where it is shown that the 
valuation of derivatives on year-on-year inflation involves calculations very similar to valuing ratio 
forward start (cliquet) options). However, for the sake of brevity, we will not pursue this point further 
in this paper. 
 

In the appendix, we write down the “extended” characteristic function when the dynamics of futures 
commodity prices are given by equation 2.1. From the form of the “extended” characteristic function, 
we can also easily obtain explicit forms for ( )tM 1  and ( )tM 2  (see the appendix).  
 We can now calculate the option price, via equation 4.10 provided the integral is well-defined, 
which requires 10 << iz . One choice (as in Lewis (2001) and Sepp (2003)) is to evaluate the 

integral along the straight line given by 2iuz += , where u  is real. 
 With this choice, the price of the European-style option at time t , whose payoff is defined in 
equation 3.1, is: 
 

( ) ( ) ( ) ( )∫
∞

+−−Φ−+
0

2,22,11,21,121 2ˆ,,,,;21 duiufTTTTtiutMtM
π

,                                 (4.11) 

 
where we have also used the fact that the integrand is even in u  to change the lower limit of the 
integration from ∞−  to zero. We will not write down the option price formula in its most explicit 
form as it is rather long and would not greatly enhance intuition. Equations for ( )tM1  and ( )tM 2  are 

in the appendix and ( )2ˆ iuf +  can be obtained from equation 4.7.  
If the “extended” characteristic function were to be completely analytic, then it would be 

straightforward to evaluate the integral in equation 4.11. In particular, we can compute option prices 
using a single one-dimensional integration irregardless of how many Brownian motions and Poisson 
Processes drive the futures commodity prices. If all the Poisson processes satisfy assumption 2.2, and 
provided that ( )∫ dssmλ  is easily evaluated (and, of course, in practice, one would choose a form for 

the intensity rates ( )smλ  so that ( )∫ dssmλ  can be evaluated analytically), then this would be the 

case in our model. Unfortunately, if any of the Poisson processes satisfy assumption 2.1, then our 
“extended” characteristic function involves integrals (see the second, third, fourth and fifth lines of 
equation A.1 in the appendix) which means that evaluating equation 4.11 involves at least a double 
integral. This is certainly computationally feasible but equally performing a double integral will be 
considerably slower than a single integral. Crosby (2006) shows how calculation times can be speeded 
up, when pricing standard (plain vanilla) European options, by using power series expansions of terms 
appearing in the characteristic function. A similar idea can be used here provided we make some 
simplifying assumptions. 

  
 As in Crosby (2006), we make the following assumption: 
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Assumption 4.3 : We will henceforth assume that, for each m , Mm ,...,1= , ( ) mm s λλ ≡  and, for 

each i , ( ) mimi btb ,, ≡  are constants. Furthermore, we assume that, if for this m , the jumps satisfy 

assumption 2.1, then 0, >mib . (This condition is not restrictive since if mib ,  were to equal zero, we 
could treat it as in the case of assumption 2.2 which is much simpler).                                                  •                        
                                                                           
 This means that we can use the power series expansions of Crosby (2006) for the terms on the 
second, third and fourth lines of the “extended” characteristic function (see equation A.1) (into which 
we would substitute 2iuz += , where u  is real). 
 In order to rapidly compute the following term (the fifth line) in equation A.1 (into which, again, we 
would substitute 2iuz += ): 
 

( ) ( ) ( ) ( ) ( )( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−∑ ∫

=

M

m

T

t
mmmmmm dsTsizTsizs

1
1,2,1,12,2,2,21.2

2,1

,,exp1exp φβφβεαελ , 

 
we will make the following additional assumption: 
 
Assumption 4.4 : We will henceforth assume that, for each m , mb ,1  and mb ,2  are identically equal ie 

that mmm bbb ≡≡ ,2,1 , say.                                                                                                                    •  
 
Remark 4.5 : Crosby (2005) shows that futures commodity prices can be written in terms of a number 
of Gaussian state variables and M  Poisson jump state variables. It can therefore be shown that 
assumption 4.4 is equivalent to saying (for assumption 2.1) that the futures prices of Commodity 1 and 
Commodity 2 are driven by the same jump state variables. It is shown in Crosby (2005) that our model 
is consistent with mean reversion, under the EMM. Not only that, but it is also shown that, when the 
jump processes are of the type of assumption 2.1, then jumps can also contribute to the effect of mean 
reversion and that the speed of this jump-related mean reversion is equal to the associated jump decay 
coefficient function. Hence assumption 4.4 is also equivalent to assuming that, after a jump, there is a 
common speed of jump-related mean reversion in Commodity 1 and Commodity 2. Although it would 
be an empirical matter, beyond the scope of this paper, to fully justify assumption 4.4, this assumption 
does, therefore, have some economic intuition. In addition, we note that assumption 4.4 is obviously a 
non-assumption in the special case when the option is on a single underlying commodity (see section 3, 
for example, options on futures commodity price curve spreads, forward start options and ratio forward 
start options), since it must hold. 
 

With assumption 4.4, we can make a similar type of power series expansion which we specify in the 
next proposition.  
 
Proposition 4.6 : Define ( )( )startmstart TTb −−≡ expψ  and ( )( )endmend TTb −−≡ expψ , with  

TTT endstart ≤≤ . Then: 
 

( ) ( )( )( ) ( )startendm

T

T
mm TTdssTbi

end

start

−=−−+∫ λωωλ expexp 21  

( ) ( ) ( ) ( )( )
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ +−+
+ ∑

∞

=1

2
2

2
1

!
sincos1

n

n
start

n
end

n

m

m

n
nin

nb
θθψψωωλ

                                      (4.12) 

where 1ω  and 2ω  are real numbers, independent of s , and where θ , is defined as follows: 

Firstly, define θ , 20 πθ ≤≤ , via 2
2

2
12cos ωωωθ +≡ , then: 
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If 01 ≥ω  and 02 ≥ω , then θθ = , else if 01 ≥ω  and 02 <ω , then θπθ −= , else if 01 <ω  

and 02 ≥ω , then θπθ −= 2 , else if 01 <ω  and 02 <ω , then θπθ += . 
 
Proof: This proposition is just a slight generalisation of proposition 3.3 in Crosby (2006) and can be 
proved in an identical fashion. Therefore, the proof is omitted1.                                                             •                      
 

All the integrals (see the second, third, fourth and fifth lines of equation A.1) which appear in the 
“extended” characteristic function can be nested in a form which enables them to be evaluated by 
proposition 4.6, provided assumptions 4.3 and 4.4 hold. Hence, we can quickly and easily evaluate the 
“extended” characteristic function. We can also evaluate ( )tM1  and ( )tM 2  (see appendix) in the 
same way. We can then very rapidly, using standard one dimensional numerical integration techniques, 
compute the integral in equation 4.11 and hence also compute the price of the European-style option 
whose payoff is defined in equation 3.1. 
 
 
5. Numerical examples and results 
 

In this section, we will provide four numerical examples, labelled examples 1, 2, 3 and 4, of our 
methodology, the results of which are in tables 1, 2, 3 and 4 respectively. In all four examples, we 
value European-style options, whose payoff is defined in equation 3.1, using equation 4.11.  

We evaluate the integral with respect to u  in equation 4.11 using Simpson’s rule with 1024 points. 
We truncate the upper limit of the integral when the value of u  is such that the integrand is less than 
10-8. We truncate the infinite series in equation 4.12 when the value of an additional term in the series 
has converged to less than 10-12. 

In all four examples, we assume that the futures prices of Commodity 1 to all maturities are 40 and 
the futures prices of Commodity 2 to all maturities are 41. We assume that the interest-rate yield curve 
is flat with a continuously compounded risk-free rate of 0.044 and that interest-rates follow a one factor 
extended Vasicek model in which ( ) ( )( )( ) rrrP tTTt αασσ −−−≡ exp1, , 

where 012.0=rσ  and 125.0=rα . 
In all four examples, we use the same form for the diffusion parameters as in equations 2.3 to 2.5 in 

section 2.1. That is, we suppose 21 =K  and 32 =K  and, furthermore, we suppose  

12.01 =η , 22.01 =χ , 25.02 =χ , 242.03 =χ , 9.01 =a , 7.02 =a , 5.13 =a . 

We assume all correlations are 0.05 ie for all 3,2,1=i  and 3,2,1=j :  

05.0, =jiρ  and 05.0, =iPρ . Note that all these parameters are just for illustration. 
 

In all four examples, we assume that the maturities of the futures contracts on Commodity 1 are of 
the form ( )365311,11,2 += TT  and on Commodity 2 of the form ( )365912,12,2 += TT  ie the 
futures contracts on Commodity 1 and Commodity 2 mature 31 days and 91 days respectively after 

1,1T  and 2,1T . In all four examples, we set 1,1TTpay ≡ . We specify 1,1T  and 2,1T  in the examples.  

In each example, we value six options and all of them are calls (ie 1=η ). For the first three 

options, 0=α , 1=ε  and the values of *K  are 0.95, 0.975 and 1. The fourth, fifth and sixth options 
have 1=α  and, again, 1=ε  and the values of *K  are 0.95, 0.975 and 1. Thus, we evaluate spread 
options for three different values of *K  and ratio spread options for the same three values of *K  in 
each example.  
 

                                                 
1 It is straightforward to see that the power-series expansion in equation 4.12 will be rapidly convergent. Indeed 
the modulus of the term appearing in the square brackets is guaranteed to be monotonically declining to zero when 

( )2
2

2
1,2max ωω +>n . 
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Example 1 :  
In example 1, we assume 11,1 =T  and 12,1 =T . We assume that there is one Poisson process, 

1M = , and it satisfies assumption 2.1 and it has an intensity rate 512.01 =λ . As in the example in 
section 2.1, both Commodity 1 and Commodity 2 exhibit jumps of non-zero magnitude in response to 
jumps in this Poisson process. We assume 55.11,21,1 == bb , 55.01,1 =β , 35.01,2 =β . We price 
the six different options and the results are in table 1.                                                                             •  
 
Example 2 :  

In example 2, we assume 31,1 =T  and 22,1 =T . This means that the maturities of the futures 
contracts on Commodity 1 and Commodity 2 are approximately 3.08493151 and 2.24931507 years 
respectively. Note that because 2,1T  is strictly less than 1,1T , the options in this example can also be 

viewed as hybrid forward start options (for the first three options where 0=α ) and ratio forward start 
options (for the fourth, fifth and sixth options where 1=α ) involving two different commodities. We 
assume that all the jump parameters are exactly the same as in example 1. We price the six different 
options and the results are in table 2.                                                                                                       •  
 
Example 3 :  

In example 3, we assume 11,1 =T  and 12,1 =T . We use exactly the same diffusion parameters as in 
examples 1 and 2 but to provide a contrast with those examples, we assume that there are two Poisson 
process, 2=M , and they both satisfy assumption 2.1 and they have intensity rates 512.01 =λ  and 

47.02 =λ  respectively. Commodity 1 jumps but Commodity 2 does not jump in responses to jumps 

in this first Poisson process tN1 . Conversely, Commodity 2 jumps but Commodity 1 does not jump in 

responses to jumps in this second Poisson process tN 2 . We assume 55.11,21,1 == bb , 

 55.12,22,1 == bb , 55.01,1 =β , 01,2 =β , 02,1 =β , 35.02,2 =β . We price the six different 
options and the results are in table 3.                                                                                                       •  
 
Example 4 :  

In example 4, we assume 31,1 =T  and 22,1 =T . We assume that there are two Poisson processes 
again and that all the jump parameters are exactly the same as in example 3. We assume that all the 
diffusion parameters are exactly the same as in examples 1, 2 and 3. Note that, as in example 2, 
because 2,1T  is strictly less than 1,1T , the options in this example can also be viewed as hybrid forward 
start and ratio forward start options. We price the six different options and the results are in table 4.   •         
                                                                           

Computations were performed on a desk-top p.c., running at 2.8 GHz, with Microsoft Windows XP 
Professional, with 1 Gb of RAM with a program written in Microsoft C++. The total calculation time 
for all 24 options in examples 1 to 4 was 0.532 seconds or an average of less than 23 milliseconds per 
option. By significantly increasing the number of points in the numerical integration and by 
significantly reducing the tolerances used to truncate the upper limit of the integral (in equation 4.11) 
and the power series expansions (as in equation 4.12), we were able to confirm that in proportional (ie 
proportional to the calculated option prices) terms, all the option prices in tables 1 to 4 are accurate to 
at least one part in 500,000 and, also, that in absolute terms, all the option prices are accurate to at least 
5 decimal places. So our algorithm is both fast and accurate.  
 Note how the option prices in examples 3 and 4 are higher than the corresponding option prices in 
examples 1 and 2 respectively. This is intuitive given the different specifications of the jump processes 
driving futures commodity prices, between, on the one hand, examples 1 and 2, and, on the other hand, 
examples 3 and 4, and given the arguments we presented after equation 2.10. 
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6. Conclusions 
 

We have extended the Crosby (2005) model to simultaneously model the prices of multiple 
commodities. We then priced a class of simple exotic options which includes those whose payoffs 
involve two different underlying commodities, or a single underlying commodity but with futures 
contracts of two different tenors or the price of a single underlying futures contract observed at two 
different calendar times. This class of exotic options includes common exotics such as (crack, dark or 
spark) spread options, ratio spread options, forward start options and ratio forward start options (single 
leg cliquets). We have shown that these exotic options can be priced using Fourier methods in any 
model in which the relevant “extended” characteristic function is known analytically or can be 
computed rapidly. The Crosby (2005) model falls into the latter category. We have provided some 
numerical examples which demonstrate that our methodology is both fast and accurate.  
 Finally, we will briefly mention two possible areas for future research: 

We have focussed, when pricing spread options in this paper, on the “zero strike” case. Dempster 
and Hong (2000) show how “non-zero-strike” spread options can be priced using a two-dimensional 
Fast Fourier Transform methodology combined with an ingenious decomposition of the option payoff 
analogous to Riemann sums. Their approach (combined with assumptions 4.3 and 4.4 and the power 
series expansion of proposition 4.6) could be used to price “non-zero-strike” spread options within the 
framework of this paper. It might also be possible to extend the Dempster and Hong (2000) approach in 
order to price more exotic variations of some of the option types we discussed in section 3.  

In section 2.1, we provided an example of specifying the dynamics of the futures prices of two 
different commodities based on heuristics and trader-intuition. It might be possible to construct a more 
systematic approach based on suitable extensions of the methodology described in section 3 of 
Casassus and Collin-Dufresne (2005). However, we leave this for future research. 
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Appendix  
 

In order to obtain the forms for ( )tM 1  and ( )tM 2 , defined in equations 4.3 and 4.4, we can 
essentially use the “extended” characteristic function (defined in equation 4.9 and given explicitly in 
equation A.1 below), into which we substitute iz =  and 0=z  respectively, then :  
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We will now proceed to write down the “extended” characteristic function when the dynamics of 

futures commodity prices are given by equation 2.1, after defining the following notation: 
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denotes the purely continuous martingale component in the SDE for Commodity i . 
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In order to compute the “extended” characteristic function, we will use the fact that Brownian 

motions and Poisson processes have independent increments. Then by direct calculation: 
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Table 1 : 
 
There is one Poisson process. 11,1 =T , 12,1 =T , ( )3653111,2 +=T , ( )3659112,2 +=T . 

The values of *K  are across the first row and the option prices are in bold across the second row. 
 

0=α , 1=ε  (spread options)               1=α , 1=ε  (ratio spread options) 
0.95 0.975 1.0 0.95 0.975 1.0 

2.64579 2.19204 1.80901 0.05799 0.04737 0.03852 
___________________________________________________________________ 
 
Table 2 : 
 
There is one Poisson process. 31,1 =T , 22,1 =T , ( )3653131,2 +=T , ( )3659122,2 +=T . 

The values of *K  are across the first row and the option prices are in bold across the second row.  
 

0=α , 1=ε  (spread options)             1=α , 1=ε  (ratio spread options) 
0.95 0.975 1.0 0.95 0.975 1.0 

6.04522 5.66903 5.31508 0.17500 0.16471 0.15498 
___________________________________________________________________ 
 
Table 3 : 
 
There are two Poisson processes. 11,1 =T , 12,1 =T , ( )3653111,2 +=T , ( )3659112,2 +=T . 

The values of *K  are across the first row and the option prices are in bold across the second row.  
 

0=α , 1=ε  (spread options)             1=α , 1=ε  (ratio spread options) 
0.95 0.975 1.0 0.95 0.975 1.0 

4.02340 3.63361 3.28715 0.10248 0.09258 0.08379 
___________________________________________________________________ 
 
Table 4 : 
 
There are two Poisson processes. 31,1 =T , 22,1 =T , ( )3653131,2 +=T , ( )3659122,2 +=T . 

The values of *K  are across the first row and the option prices are in bold across the second row.  
 

0=α , 1=ε  (spread options)             1=α , 1=ε  (ratio spread options) 
0.95 0.975 1.0 0.95 0.975 1.0 

6.17001 5.79409 5.43994 0.17959 0.16926 0.15949 
___________________________________________________________________ 
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