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What is a convertible bond?

It is a bond issued by a firm with the following provisions:

• Pays coupons.
In our model, coupons are paid continuously at rate c > 0.

• Can be called by the firm.
In our model, the firm may call at any time the firm value exceeds K
by offering to pay K. K > 0 is the call price.

• Can be converted to stock by the bondholder.
In our model, the bondholder may convert the bond to stock worth a
fraction γ ∈ (0, 1) of the value of the firm. γ is the conversion factor.

• Rules of the call.
If the firm calls, the bondholder may surrender the bond in exchange
for payment K or may convert it to stock worth a fraction γ of the
value of the firm.

Two-person zero-sum game. The firm seeks a call strategy that
minimizes the value of the bond. The bondholder seeks a conversion
strategy that maximizes its value.
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Model assumptions.

• Volatility – Value of firm has constant volatility σ > 0.

• Interest rate – Constant rate of interest r > 0.

• Dividends – Firm continuously pays a fixed fraction δ ∈ (0, 1) of its
equity value as dividends.

Standing Assumption. δ < r.

Notation.

• Value of firm – X(t)

• Value of convertible bond – D(t)

• Equity value of firm – S(t)

• Miller-Modigliani – X(t) = D(t) + S(t)

Dynamics prior to call, conversion and bankruptcy

dX(t) = rX(t) dt + σX(t) dW (t) − c dt−δS(t) dt
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Literature.

M. Brennan and E. Schwartz, Convertible bonds: valuation and
optimal strategies for call and conversion, J. Finance 32 (1977), 1699–
1715.

• Values convertible bond as a contingent claim on the firm value.

• Dividends and coupons are paid at discrete dates.

• Conversion and/or call occurs only immediately prior to dividend pay-
ments. Between dividend payments, firm value evolves as a geometric
Brownian motion.

• Optimal call and conversion policies are found by a backward recursion
over payment dates.
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J. E. Ingersoll, A contingent-claims valuation of convertible secu-
rities, J. Financial Econom. 4 (1977), 289–322.

• Values convertible bond as a contingent claim on the firm value.

• Does not consider the possibility of default, except at maturity.

• Argues that when no dividends are paid, optimal conversion does not
occur until maturity and call should occur the first time γX(t) = K.

• Some qualitative results are stated when dividends are positive and a
function of the firm value.

• Companion paper observes that firms seem to delay call and presents
some possible reasons for this.
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Dynamics prior to call, conversion and bankruptcy.

dX(t) = rX(t) dt + σX(t) dW (t) − c dt−δ
(

X(t) − D(t)
)

dt.

We seek a function g(t, x) such that D(t) = g
(

t, X(t)
)

.

Properties of g.

1. g(t, x) ≥ γx 3. g(t, x) ≤ K for x ≤ K
γ

2. g(t, x) = γx for x ≥ K
γ 4. 0 ≤ g(t, x) − g(t, y) ≤ y − x for y ≥ x.

Let G be the set of continuous functions on [0, T ]×[0,∞) satisfying (1)–(4).

x

y y = x

y = γx

y = g(t, x)

K

K
γ
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Given g ∈ G, s ∈ [0, T ] and x ≥ 0, define X s,x by Xs,x(s) = x and

dXs,x(t)

= rXs,x(t) dt + σXs,x(t) dW (t) − c dt−δ
[

Xs,x(t) − g
(

t, Xs,x(t)
)

]

dt.

Time of bankruptcy:

τ s,x
0

∆
= inf{t ∈ [s, T ] : Xs,x(t) = 0}.

Time of conversion:

τ ∈ Ss,x ∆
=

{

Stopping times θ ∈ [s, T ∧ τ s,x
0 ] ∪ {∞}

}

.

Time of call:

ρ ∈ Ss,x
K

∆
=

{

θ ∈ Ss,x such that Xs,x(θ) ≥ K if θ < τ s,x
0

}

.

Risk-neutral expected payoff of the game:

Jg(s, x, ρ, τ )
∆
= E

[
∫ ρ∧τ∧T

s

e−r(u−s)c du + e−r(ρ∧τ∧T−s)
(

lI{τ≤ρ∧T}γXs,x(τ )

+ lI{ρ<τ}K + lI{ρ=∞,τ=∞}

(

L ∧ Xs,x(T )
)

)

]

.

Par value: L ≤ K

6



Lower value of the game:

vg(s, x)
∆
= sup

τ∈Ss,x
inf

ρ∈S
s,x
K

Jg(s, x, ρ, τ ).

Upper value of the game:

vg(s, x)
∆
= inf

ρ∈S
s,x
K

sup
τ∈Ss,x

Jg(s, x, ρ, τ ).

Theorem 1 (Value of the game). The game corresponding to g has
a value, i.e.,

vg = vg.

We define vg to be this common value.
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Value of vg at maturity.

Define

f (x)
∆
=











x if 0 ≤ x ≤ L,
L if L ≤ x ≤ L

γ ,

γx if x ≥ L
γ .

x

y
y = x

y = γx

y = f(x)
L

L
γ
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Value of vg on boundaries.

t = Tt = 0

x = K
γ

vg = K

vg = 0

vg = f
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Characterization of vg.

Case I: r ≥ c
K . Conversion precedes call and vg is the unique continuous

viscosity solution of

min

{

− vt + rv − (rx − c)vx+δ(x − g)vx−
1

2
σ2x2vxx − c, v − γx

}

= 0

(1)
satisfying the boundary conditions

v(t, 0) = 0, v

(

t,
K

γ

)

= K for 0 ≤ t ≤ T, v(T, x) = f (x) for 0 ≤ x ≤
K

γ
.

(2)

t = Tt = 0

x = K
γ

vg = K

vg = 0

vg = f

L
γConvert

vg = γx

Continue

Idea of proof. h(t, x) = K is a supersolution of (1), so h dominates the
solution v of this equation.
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Characterization of vg (continued).

Case II: δ ≤ c
K . Call precedes conversion and vg is the unique continuous

viscosity solution of

max

{

− vt + rv − (rx − c)vx+δ(x − g)vx−
1

2
σ2x2vxx − c, v − K

}

= 0

(3)
satisfying the boundary conditions (2).

t = Tt = 0

x = K
γ

vg = K

vg = 0

vg = f

L
γ

Call

vg = K

Continue

Idea of proof. h(t, x) = γx is a subsolution of (3) so h is dominated by
the solution v of this equation.
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Overlap of Case I and Case II: δ ≤ c
K ≤ r.

Call and conversion coincide when firm value reaches K
γ , and vg is the

unique viscosity solution of

−vt + rv − (rx − c)vx + δ(x − g)vx −
1

2
σ2x2vxx = c (4)

satisfying the boundary conditions (2).

t = Tt = 0

x = K
γ

vg = K

vg = 0

vg = f

L
γ

Continue

Remark. We have fixed an arbitrary g ∈ G. The function vg is the viscos-
ity solution of (4) subject to (2). We have not assumed Hölder continuity
of g, so we do not know that vg is smooth enough to be a classical solution
of (4).
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Theorem 2 (Fixed point). Let g1 and g2 be in G, and let vg1 and vg2

be as described above. Then vg1 and vg2 are in G and

sup
t,x

∣

∣vg1(t, x) − vg2(t, x)
∣

∣ ≤
δ

r
sup
t,x

∣

∣g1(t, x) − g2(t, x)
∣

∣.

In particular, there exists a unique function g ∈ G such that vg = g.

Idea of proof (Jensen and Ishii):

Use viscosity solution arguments to bound the function

(t, x, y) 7→ vg1(t, x) − vg2(t, y) −
α

2
|x − y|2,

and then let α → ∞.

Remark. Let v∗ be the fixed point of Theorem 2. Prior to call, conversion
and bankruptcy, the price of the bond is

D(t) = v∗
(

t,X(t)
)

,

where

dX(t) = rX(t) dt + σX(t) dW (t) − c dt−δ
[

X(t) − v∗
(

t,X(t)
)]

dt.
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Theorem 3 (Characterization of bond price).

Case I: r ≥ c
K . Conversion precedes call and v∗ is the unique continuous

viscosity solution of the equation

min

{

− vt + rv − (rx − c)vx+δ(x − v)vx−
1

2
σ2x2vxx − c, v − γx

}

= 0

satisfying the boundary conditions (2).

Case II: δ ≤ c
K . Call precedes conversion and v∗ is the unique continuous

viscosity solution of the equation

max

{

− vt + rv − (rx − c)vx+δ(x − v)vx−
1

2
σ2x2vxx − c, v − K

}

= 0

satisfying the boundary conditions (2).

Overlap of Case I and Case II: δ ≤ c
K ≤ r.

Call and conversion coincide when firm value reaches K
γ , and v∗ is the

unique viscosity solution of the equation

−vt + rv − (rx − c)vx + δ(x − v)vx −
1

2
σ2x2vxx = c

satisfying the boundary conditions (2).
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Asymptotic behavior.

For fixed maturity T , let v∗
T (t, x), 0 ≤ t ≤ T , denote the price of the bond

at time t if x is the firm value. This price depends only on the time to
maturity τ = T − t, i.e., there is a function f (τ, x) such that

f (τ, x) = v∗T (t, x).

Theorem 4. The limit

f (x) = lim
τ→∞

f (τ, x), x ≥ 0,

exists and is the price of the perpetual convertible bond.

Idea of proof. One shows that the convergence in Theorem 4 is uniform
in x and that the limiting function f (x) is the unique continuous viscosity
solution of the autonomous versions of the differential equations for the two
cases in Theorem 3.

These equations were shown in

M. Ŝırbu, I. Pikovsky and S. Shreve, Perpetual convertible bonds,
SIAM J. Control Optim. to appear,

to characterize the perpetual convertible bond price.
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Asymptotic behavior (continued).

Case I: r ≥ c
K .

x

y

y = x

y = γx

y = f(x)

K

Ca∗ = K
γCo∗

Large call price.

When r ≥ c/K, the game reduces to the optimal stopping problem of
optimal conversion. Call occurs at firm value K/γ, which is greater than
or equal to the optimal conversion level.
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Asymptotic behavior (continued).

Case II: δ ≤ c
K .

x

y

y = x

y = γx

y = f(x)
K

Ca∗ Co∗ = K
γ

Small call price.

When δ ≤ c/K, the game reduces to the optimal stopping problem of
optimal call. Conversion occurs at firm value K/γ, which is greater than
or equal to the optimal call level.
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Asymptotic behavior (continued).

Overlap of Case I and Case II: δ ≤ c
K ≤ r.

x

y

y = x

y = γx

y = f(x)
K

Ca∗ = Co∗ = K
γ

Intermediate call price.

When δ ≤ c
K ≤ r, call and conversion occur simultaneously at firm

value K/γ.

18



Additional Literature

P. Asquith, Convertible bonds are not called late, J. Finance 50
(1995), 1275–1289.

P. Asquith and D. Mullins, Jr., Convertible debt: Corporate call
policy and voluntary converstion, J. Finance 46 (1991), 1273–1289.

E. Ayache, P. A. Forsyth and K. R. Vetzal The valuation
of convertible bonds with credit risk, Center for Advanced Studies in
Finance, University of Waterloo 2002.

Barone-Adesi, G., A. Bermudez and J. Hatgioannides, Two-
factor convertible bonds valuation using the method of characterit-
ics/finite elements, City University of Business, London, 2001.

A. Bensoussan, M. Crouhy, and D. Galai, Sto- chastic equity
volatility and the capital structure of the firm, Philos. Trans. Roy.
Soc. London Ser. A, 347 (1994), 531–541.

M. Brennan and E. Schwartz, Analyzing convertible bonds, J.
Financial Quantitative Analysis 15 (1980), 907–929.

P. Carayannopoulos, Valuing convertible bonds under the assump-

19



tion of stochastic interest rates: an empirical investigation, Quar-
terly J. Bus. Economics 35 (1996).

W. Chung and I. Nelken, Costing converts, Risk 7(7) (1994), 47–49.

G. Constantinides, Warrant exercise and bond converstion in com-
petitive markets, J. Financial Econom. 13 (1984), 371–397.

G. Constantinides and B. Gundy, Call and conversion of con-
vertible corporate bonds: theory and evidence, Graduate School of
Business, University of Chicago, 1984.

G. Constantinides and R. Rosenthal, Strategic analysis of the
competitive exercise of certain financial options, J. Economic Theory
32 (1984), 128–138.

M. Davis and F. Lischka, Convertible bonds with market risk and
credit risk, Department of Mathematics, Imperial College, London,
1999.

K. Dunn and K. Eades, Voluntary converstion of convertible secu-
rites and the optimal call strategy, J. Financial Economics 23 (1984),
273–301.

20



A. Harris and A. Raviv, A sequential model of convertible debt
call policy, J. Finance 40 (1985), 1263–1282.

T. Ho and M. Pteffer, Convertible bonds: model, value attribution
and analytics, Financial Analysts Journal 52, Sept.–Oct. (1996), 35–44.

J. E. Ingersoll, An examination of corporate call policies on con-
vertible securities, J. Finance 32 (1977), 463–478.

F. Longstaff and E. Schwartz, Valuing risky debt: a new ap-
proach, University of California at Los Angeles, 1993.

B. Loshak, The valuation of defaultable convertible bonds under
stochastic interest rates, Ph.D. dissertation, Krannert Graduate School
of Management, Purdue University, 1996.

J. J. McConnell and E. S. Schwartz, LYON taming, J. Finance
41 (1986), 561–577.

K. Tsiveriotas and C. Fernandes, Valuing convertible bonds with
credit risk, J. Fixed Income 8 (1998), 95–102.

A. B. Yigitbasioglu, Pricing convertible bonds with interest rate,
equity and FX risk, ISMA Center, University of Reading, UK, 2002.

21


