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Motivation

² The objective is to deliver successful investment
strategies in up to 50 stocks using a better under-
standing of the probability laws of returns based
on L¶evy processes.

² We have con¯rmed the superiority of L¶evy processes
to the Gaussian model in numerous studies of the
statistical and risk neutral distributions.

² We expect that investment allocation stands to
gain by employing this better understanding of
returns.



Some Economic
Arguments

² It has long been recognized in economic theory
that beyond mean and variance, the ¯rst two risk
reward statistics there is a preference for skewness
and an aversion to kurtosis.

² We can also construct many portfolios with the
same mean and return variance structure that dif-
fer in the structure of the higher moments and the
investor is not expected to be indi®erent between
these portfolios.

² For these reasons we wish to capture at least
the ¯rst four moments in the design of investent
strategies.



Information Theoretic
Arguments

² With full information we have the resolution of
uncertainty and the outcome is a delta function.

² With some uncertainty one may expect some en-
tropy and a density with a long neck and some
tails or a typical leptokurtic density.

² For zero mean, unit variance maximal uncertainty
occurs at the Gaussian random variable and hence
in some sense, the Gaussian model is investing on
the assumption of zero information.



The Investment Horizon

² Professional investors can reevaluate positions at
a much greater frequency and are often engaged
in what are short horizons.

² This is good for the L¶evy process perspective as
the homogeneity assumption is relatively easy to
maintain over the short horizon.

² In the longer term we do have movements in the
return characteristics and have to cope with sto-
chasticity in volatility, skewness and kurtosis.



The Di±culties

² The ¯rst di±culty in implementing such a plan
is the description and estimation of multidimen-
sional probability laws.

{ Most of our univariate estimation exploits one
dimensional fast Fourier inversion of charac-
teristic functions.

{ The multidimensional counterpart is still well
beyond our computational abilities.



² The second di±culty is the issue of data require-
ments

{ Even in the Gaussian case one runs out of data
if one attempts to estimate very large covari-
ance matrices.

{ Even with the 50 stocks the total number of
parameters to be estimated is quite large if we
allow for a full covariance structure.



² The third di±culty is the solution for the optimal
portfolio in such a multidimensional context.

{ One may attempt to maximize the simulated
expected utility, if one has learned to simulate
from the multidimensional law.

{ Such an approach would be very expensive to
back test and without the back test there is
little hope to be funded for a front test.



A Proposed Solution

² We reduce both the estimation and investment
problems to one dimensional problems.

² These are solved e±ciently and are easily imple-
mented using the methods already developed in
the derivatives literature.

² We performed a back test over 125 non-overlapping
monthly investments.



Strategy

² We postulate returns as a linear mixture of inde-
pendent L¶evy processes called factors.

² We employ Independent Components Analysis (ICA)
to identify the mixing matrix and to extract data
on the factors.

² The ICA analysis produces the large covariance
structure.

² We use univariate methods to estimate the L¶evy
processes on the factors one at a time.



² We reduce the problem of investment in assets to
a sequence of problems of optimal investment in
the factors taken individually.

² These are solved in closed form and the asset in-
vestment is then inferred from the already identi-
¯ed mixing matrix.



The VG Process

² The process may be de¯ned from standard Brown-
ian motion (W(t); t ¸ 0) allowing a drift µ and
volatility ¾ to form

B(t; µ; ¾) = µt+ ¾W(t)

² We now introduce an independent gamma process

(G(t; º); t ¸ 0)

with mean rate unity and variance rate º with
density for the increment g = G(t + h) ¡ G(t)
given by the gamma density
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as a model for a random time change.



The VG Process

² The three parameter VG process (X(t); t ¸ 0) is
then obtained as a time changed Brownian mo-
tion with drift and we have

X(t) = B(G(t;º); µ; ¾)
= µG(t; º) + ¾W (G(t;º))

² This process is quite analytic and tractable in
many of its dimensions and the three parameters
allow one to capture movements in skewness and
kurtosis as well as volatility.



The VG Characteristic
Function

² The characteristic function is particularly analytic
and is easily evaluated by ¯rst conditioning on the
level of the gamma time change and then using
the Laplace transform of the gamma density to
get
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² Inversion using the Fast Fourier transform quickly
gives access to the density that may be employed
in maximum likelihood estimation.



Process Properties

² We learn from the L¶evy Khintchine decomposition
of the characteristic function that the process is
one of ¯nite variation, in fact it can be written
as the di®erence of two gamma processes each
describing separately the process for the market
upticks and down ticks.

² Explicitly we have

ÁX(t)(u) = exp
µZ 1
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where the L¶evy measure kV G(x) takes the form
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The Early Successes

² The ¯rst successes with these processes showed
that they were very capable of explaining the un-
conditional return densities on asset prices.

² The basic model employed for the stock price S(t)
as driven by VG or CGMY was

S(t) = S(0) exp ((¹ + !)t+X(t))

where ! is the convexity correction de¯ned by

EeX(t) = e¡!t:

² I present here a graph for V G on the SPX and
a Chi-Square Table for the major indices.
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TABLE 1
Statistical Estimation

SPX DAX FTSE IBEX NIKKEI
volatility .1679 .2569 .1718 .2222 .2445
¾ .1662 .2545 .1691 .2202 .2424
º .0034 .0031 .0024 .0022 .0024
µ -.0447 -.4548 -.0765 -.3502 .0610
C 13.02 23.04 .2927 2.79 5.11
G 94.64 65.24 51.99 63.08 68.57
M 100.2 78.10 56.37 75.60 66.16
Y .5348 .4925 1.21 .8963 .7982
chisq Gauss 463.5 213.9 211.9 132.7 168.1
chisq VG 47.9 49.4 65.3 35.7 46.2
chisq CGMY 42.0 49.8 48.8 32.2 47.3
pval Gauss 0 0 0 0 0
pval VG 8.82% 41.7% 0.2% 81% 54.7%
pval CGMY 22.6% 40.3% 7.5% 90.6% 50.2%



Risk Neutral
Distributions

² The success with calibrating the prices of options
has been equally good. For multiple maturities we
recognized as stated earlier that a L¶evy process
was inadequate but extensions incorporating sto-
chastic volatility are described in Schoutens (2003).
I present here the CGMYSA christmas tree.
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Single Risky VG Asset

² Consider a short period risky return R in which
we may invest y dollars on a ¯nanced basis to
earn the ¯nal wealth of

W = y(R¡ r)

² If we suppose that R is distributed as

R = ¹+Z

where Z Gaussian with variance ¾2 and mean 0
then the certainty equivalent for exponential util-
ity and risk aversion ½ is

CE = (¹¡ r)y ¡ y
2

2
½¾2



² The solution for the optimal short horizon invest-
ment y¤ is

y¤Gauss =
¹¡ r
½¾2
:

² If we now take Z to be a zero mean VG random
variable we get the formulation

Z = µ(g ¡ 1) + ¾W(g)

where g has the gamma density with variance º
and unit mean.

² The certainty equivalent is now

CE = (¹¡ r¡ µ) y+ 1
º½
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L¶evy Certainty Equivalent

² More generally for the utility function

U(W) = 1¡ exp(¡½W )

² With investment return

y(¹¡ r) + yZ

² and characteristic exponent

E
h
eiuZ

i
= exp(¡ÃZ(u))

² We have

CE = y(¹¡ r) + ÃZ(i½y)
½



The VG Investor

² The optimal investment by exponential utility with
risk aversion ½ in the V G risky asset is

½y¤V G =
Ã
µ
¾2
¡ 1

(¹¡ r ¡ µ)º
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² The investment is long when ¹ > r and short oth-
erwise and scales, like the Gaussian investment,
inversely with the level of risk aversion.

² More generally, exponential utility and all com-
pletely monotone utilities display skewness pref-
erence along with volatility and kurtosis aversion
with the investment being positively related to µ
and negatively related to ¾; º:



The VG Asset Allocator

² The more interesting question is how to spreads
investment dollars across a vector of risky assets
with a view to accessing some diversi¯cation ben-
e¯ts.

² For this purpose the vector of risky assets is mod-
eled as having a unit period return ofR with mean
¹ and a zero mean random component Z with

R = ¹+Z

² Now we incorporate dependence by assuming that
there exist independent random variables X in
principle equal in number to the dimension of R
such that

Z = AX:



A Gaussian Review

² If we take X to be independent Gaussian random
variables then we arrive at the Markowitz invest-
ment solution with zero interest rates of

y¤Gauss =
1
½
§¡1(¹¡ r)

for risk aversion ½ and return covariance matrix
§:

² This is now quite easily implemented for 50 stocks.

² There are problems of data reqirements and ma-
trix inversion if the number of stocks is expanded
to say a 1000:



Gaussian Solution as a
Sequence of Univariate

Problems
² A principal components analysis decomposition of
the covariance matrix § shows that on writing

§ = UDU0

for U orthonormal we have factor excess returns

F = U 0(R¡ r)

² With factor variances given by

E[FF 0] = U 0§U = D

² The factor investments are as for the univariate
problem factor excess return scaled by risk aver-
sion and variance

ey¤i =
[U0(¹¡ r)]i
½Dii



² The asset investment is the one implied by the
optimal univariate factor investment

y¤Gauss = U ey¤

=
1
½
UD¡1U 0(¹¡ r)

=
1
½

h
UDU 0

i¡1
(¹¡ r)

=
1
½
§¡1(¹¡ r)



Using VG Factors

² For the V G case we suppose that the independent
original random variables that were mixed to form
the asset returns all have their own VG law as per

Xi = µi(gi ¡ 1) + ¾iWi(gi)

where the g0is are independent gamma variates
and the Wi are independent Brownian motions.

² The question arises as to how to recover these
hidden VG processes from data on the vector of
asset returns.

² Given the V G processes can we determine the
optimal dollar allocation across assets.



L¶evy Asset Allocation

² For exponential utility and an independent L¶evy
factor structure the allocation problem splits into
univariate problems with optimal factor invest-
ment ey¤.

² The certainty equivalent is now

CE = y0(¹¡ r) + 1
½

X

j
Ãj(i½(y

0A)j)

² We write this in terms of factor investments

ey0 = y0A

² as

CE = ey0
³
A¡1(¹¡ r)

´
+

1
½

X

j
Ãj(i½eyj)



² De¯ning factor excess returns by

³ = A¡1(¹¡ r)

² We have the sequence of univariate problems

CE =
X

j
³j eyj +

1
½
Ãj(i½eyj)



² The certainty equivalent in terms of eyi is additive
with

CE =
nX

i=1

Ã
³ieyi +

1
½ºi

ln
Ã
1 + µiºi eyi ¡

¾2i ºi
2
½2ey2i
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³ =
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y¤V G =
1
½
A¡1ey

² We solve for the univariate V G factor investment
as in the V G investor and then obtain the alloca-
tion across assets using the inverse factor struc-
ture matrix.



Identifying VG Factors
using ICA

² We employ Independent Components Analysis, a
statistical methodology aimed at identifying in-
dependent components from data obtained as an
unknown linear mixture of component readings.

² The methodology is viewed as a generalization
of PCA or principal components as it begins by
recognizing that principal components are deter-
mined only up to a rotation and all rotations yield
the same covariance structure.

² It is also recognized that the Gaussian density is
one that maximizes entropy among all densities
on the line with zero mean and unit variance.



² ICA operates on the assumption that the origi-
nal signals or factor sources have information, are
therefore non-Gaussian and display excess kurto-
sis.

² It is then suggested that mixing leptokurtotic sig-
nals linearly reduces kurtosis and the strategy for
identifying the original factors is that of succes-
sively maximizing the presumed excess kurtosis.

² A more robust criterion suggested is that of max-
imizing the expected logarithm of the hyperbolic
cosine of the proposed factor data.



The ICA Procedure

² A good text book presentation is given in HyvÄarinen,
Karhunen and Oja (2001), Wiley.

² Center the data to zero mean to form

eR = R¡ ¹

² Perform a PCA step and diagonalize the covari-
ance matrix and write

§ = V V 0

² De¯ne the zero mean unit variance orthogonal
random variables

H = V 0 eR:



² Recognize that for all orthonormal matrices U we
must have that UH is still another zero mean,
unit variance, orthogonal set of random variables.

² Find the ¯rst column of the matrix U as on the
unit circle with maximal expected log cosh.

² Find the next column as on the unit circle and or-
thogonal to the ¯rst column, and still maximizing
expected log cosh.

² Continue till all n columns of U have been deter-
mined.

² The ICADATA is

X = UV 0 eR
A = (UV 0)¡1



Estimating VG
Parameters

² We now estimate by univariate maximum likeli-
hood estimation the VG parameters for each of
the factors.

² We may reduce the number of long tailed factors
and treat as idiosyncratic all the components with
a zero excess kurtosis or a factor density that is
Gaussian.

² We view leptokurtoticity as tantamount to the
presence of information and accept as noise the
Gaussian components.



Comparison of VG and
Gaussian Investments

² Having estimated the VG parameters we build
the VG dollar investments across the asset space
and compare the results with those obtained on
the Gaussian strategy.

² We presents results for data on 35 stocks that are
prominent in the S&P 500 index.

² We present graphs of the V G density ¯ts for the
¯rst three ica factors.

² We present a graph of the Chi-Square statistic on
all the ica factors to judge the number of fac-
tors needed before we can get down to Gaussian
components.
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Back Testing the VG
Asset Allocator

² With a view to getting ready for this meeting we
studied the VG Asset Allocator's investments over
a period of 125 non-overlapping intervals of 21
days.

² At the start of each 21 day period the asset al-
locator gets the interest rate prevailing for this
period and determines the amount of dollars to
be invested in each of ¯ve stocks.

² The allocator is fully ¯nanced and can invest as
much as it wants, long or short.

² The allocator uses return data from the previous
1000 days to estimate the covariance matrix and
mean returns for a Gaussian investment.



² For a VG allocation, we perform the ICA analy-
sis to get the ICA data, then employ MLE to
get the parameters for the V G model estimated
on each of the factors using univariate methods.
Finally, we use our analytical expressions for the
optimal V G investment in the ¯ve stocks MMM,
BA, IBM, JNJ, and MCD.

² The period studied is December 1993 to April
2004.



Investment Levels

² The mean investment levels in dollars were

Mean Investment Levels
MMM BA IBM JNJ MCD

Gauss 0.5428 0.1142 0.3402 0.6357 0.5209
VG 255.16 91.34 150.17 281.68 193.68

² The VG investment is also more variable with
greater frequency of short positions

Investment Standard Deviation
MMM BA IBM JNJ MCD

Gauss 0.3387 0.4174 0.3260 0.3391 0.4891
VG 1301 1265 1224 1776 1440



Performance Measures

² We report Sharpe Ratios, Gain Loss Ratios, and
Certainty Equivalents for risk aversion :005 on the
aggregate investment performance

VG Gauss
Sharpe Ratio 0.8757 0.7543
Gain Loss Ratio 2.3909 1.4536
CE 3.0539 0.0230

² We close with graphs of the cumulated cash °ows,
and the CDF of cash °ows.



Conclusion

² The variance gamma process in particular and
L¶evy processes more generally provide an interest-
ing and desirable alternative to Brownian motion
as a model for the local motion.

² They model in addition to volatility, important
components of the distribution of returns, both
statistically and risk neutrally.

² Many tractable improvements in model perfor-
mance can be, and have been accessed using these
models.

² The role played by independent components analy-
sis is possibly interesting.
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