The Curious Incident of the Investment in the Market: Real Options and a Fair Gamble

David Hobson

University of Bath

dgh@maths.bath.ac.uk

http://www.bath.ac.uk/~masdgh

Joint work with Jonathan Evans (Bath) and Vicky Henderson (Princeton)

Introduction I

- Our problem When should a manager sell a real asset ?
 - Decision irreversible
 - Real asset indivisible
 - Incomplete market with a risk-averse agent
- Continuous time, continuous price processes, infinite horizon
- Context: Well studied area of real options Dixit and Pindyck (1994), McDonald and Siegel (1986)
- In complete market (perfect spanning asset) these are standard optimal stopping problems (McKean/Samuelson (1965))
- Alternatively, manager assumed risk-averse to market risks but risk-neutral to idiosyncratic risks (McDonald and Siegel (1986) CAPM argument)
- We will assume the real asset is not traded continuously so manager faces idiosyncratic risks and an incomplete market

Introduction II

• Consider the effect of embedding this optimal asset sale timing problem within a model where there is a financial market in which manager can trade

• Compare two incomplete market situations: in both cases (with or without the financial market) the real asset is not traded

Literature and Motivation

• Real options - Myers (1977), Brennan and Schwartz (1985), McDonald and Siegel (1986), Dixit and Pindyck (1994), ...

- Henderson (2002), Henderson and Hobson (2002), Kahl, Liu, Longstaff (2003)
- Detemple and Sundaresan (1999), Ingersoll (2006), Henderson (2004)
- Kadam, Lakner and Srinivasan (2004)
- Smith and Nau (1995)
- Henderson (2004)
- Miao and Wang (2004)

- I. Asset Sale Problem with No Market Asset
- Risk-averse manager wishes to sell indivisible real asset over infinite horizon
- No alternative investment opportunities
- Zero interest rates throughout for simplicity
- Value received on selling real asset is Y, where

$$\frac{dY}{Y} = \mu dt + \sigma dW$$

where μ, σ constants and W Brownian motion.

• Y_t known at t but manager cannot continuously trade $Y \rightarrow$ Incomplete

- Let $\gamma = 2\mu/\sigma^2$. If $\gamma > 1$, Y grows to ∞ , if $\gamma < 1$, Y tends to zero.
- Manager chooses sale time τ to max expected utility of wealth:

$$\mathcal{V}^N(x,y) = \sup_{\tau} \mathbb{E}[U(x+Y_{\tau})|Y_0=y]$$

• Let $U(x) = \ln(x)$ but generalizes to CRRA

Proposition 1 For $\gamma \leq 0$, $V^N(x, y) = \ln(x + y)$ For $\gamma \geq 1$, $V^N(x, y) = \infty$ For $0 < \gamma < 1$, in exercise region $y \geq x/w^*$

$$V^N(x,y) = \ln(x+y)$$

in the continuation region $y < x/w^*$,

$$V^{N}(x,y) = \ln x + \left(\frac{yw^{*}}{x}\right)^{1-\gamma} \ln(1+1/w^{*}).$$
(1)

where optimal exercise ratio $w^* = w^*(\gamma)$ is the unique solution to

$$(1 - \gamma)\ln(1 + 1/w) - \frac{1}{1 + w} = 0 \tag{2}$$

I. Asset Sale Problem with No Market Asset: Remarks

• Non-degenerate case is $0 < \gamma < 1$ where risk premium $\mu > 0$ but $Y \rightarrow 0$. Risk aversion to idiosyncratic risk causes manager to sell if real asset value is large enough proportion of wealth

• If we considered a risk-neutral manager (U(x) = x), he either waits indefinitely if positive risk premium or sells immediately if negative risk premium. Hinges on whether $\gamma > 0$

• Risk a version induces the manager to reduce uncertainty by selling in case $0<\gamma<1$

• We use $U(x) = \ln x$ so no explicit discounting.

II. Asset Sale Problem Allowing Trading in the Market
Extend the problem to include a traded asset (the market) in which the manager may trade continuously

• Market asset with price process

$$\frac{dP}{P} = \eta dB + \nu dt$$

where $dBdW = \rho dt$.

• Trading wealth X_t^{θ} is self-financing:

$$dX_t^{\theta} = \theta_t (\eta dB + \nu dt)$$

• Manager chooses selling time τ and investment strategy θ in the market to solve:

$$V^{M}(x,y) = \sup_{\tau} \sup_{\theta} \mathbb{E}[U(X^{\theta}_{\tau} + Y_{\tau})|X_{0} = x, Y_{0} = y], \qquad (3)$$

- If market were correlated $\rho \neq 0$ with real asset \rightarrow hedging motive to trade (offset risk). cf. Detemple and Sundaresan (1999), Kahl et al (2003), Viceira (2002)
- If market has positive Sharpe ratio then investment motive to trade.
- We assume traded asset **uncorrelated** with real asset and traded asset has **zero** Sharpe ratio \rightarrow no hedging motive, no investment motive
- X represents a fair gamble since a \mathbb{P} -martingale

Proposition 2 Under the strategy specified by the thresholds (ξ, η) , the value function is

$$V^{M}(x,y) = \begin{cases} \ln(x+y) & x \leq \xi y \\ G(x,y) & \xi y \leq x < \eta y \\ H(x,y) & \eta y < x \end{cases}$$

where

$$G(x,y) = \frac{\xi}{\eta - \xi} \left(\frac{x}{\xi y} - 1 \right) \left(\ln y + \ln \eta + \Theta \right) + \frac{\eta}{\eta - \xi} \left(1 - \frac{x}{\eta y} \right) \left(\ln y + \ln(1 + \xi) \right)$$

and

$$H(x,y) = \ln x + \left(\frac{\eta y}{x}\right)^{1-\gamma} \Theta$$

with

$$\Theta \equiv \Theta(\eta, \xi) = \left[\frac{\eta - \xi + \eta \left(\ln(1 + \xi) - \ln \eta\right)\right)}{\eta + (\eta - \xi)(1 - \gamma)}\right].$$
(4)

Lemma 3 Let γ_{-} be the unique solution in (0,1) of $\Gamma_{-}(\gamma) = 0$ where

$$\Gamma_{-}(\gamma) = (1 - \gamma)(2 - \gamma) \ln\left(\frac{2 - \gamma}{1 - \gamma}\right) - 1$$

Then $\gamma_{-} \sim 0.3492$. Consider now the problem of finding the maximum of $\eta^{1-\gamma}\Theta$ over $-1 < \xi \leq \eta < \infty$. For $0 < \gamma \leq \gamma_{-}$ the max is attained at $\eta = w^*$, $\xi = w^*$ where $w^* = w^*(\gamma)$ is the solution to (2)

For $\gamma_{-} < \gamma \leq 1$ the max is attained at $\eta = \eta^{*}$ where

$$\eta^* = \eta^*(\gamma) = \frac{1-\gamma}{2-\gamma} \left(\frac{1}{1-\gamma} - \ln\left(\frac{2-\gamma}{1-\gamma}\right)\right)^{-1}$$
(5)

and $\xi = \xi^*$ where

$$\xi^* = \xi^*(\gamma) = \frac{\eta^*(2-\gamma)}{1-\gamma} - 1 = \frac{(1-\gamma)\ln((2-\gamma)/(1-\gamma)) - \gamma}{1-(1-\gamma)\ln((2-\gamma)/(1-\gamma))} \quad (6)$$

Proposition 4 (i) For $\gamma \leq 0$, $V^M(x, y) = \ln(x + y)$. (ii) For $0 < \gamma \leq \gamma_- V^M(x, y) = \ln(x + y)$ in the exercise region $y \geq x/w^*$, and in the continuation region $y < x/w^*$

$$V^{M}(x,y) = \ln x + \left(\frac{w^{*}y}{x}\right)^{1-\gamma} \ln(1+1/w^{*})$$

where w^* solves (2). (iii) For $\gamma_- < \gamma < 1$, in the exercise region $x \leq y\xi^*(\gamma)$,

$$V^M(x,y) = \ln(x+y)$$

for $y\xi^*(\gamma) < x < y\eta^*(\gamma)$,

$$V^{M}(x,y) = \frac{\xi^{*}}{\eta^{*} - \xi^{*}} \left(\frac{x}{\xi^{*}y} - 1\right) \left(\ln y + \ln \eta^{*} + \Theta^{*}\right)$$

$$+ \frac{\eta^{*}}{\eta^{*} - \xi^{*}} \left(1 - \frac{x}{\eta^{*}y}\right) \left(\ln y + \ln(1 + \xi^{*})\right)$$

and for $x \ge y\eta^*(\gamma)$,

$$V^{M}(x,y) = \ln x + \left(\frac{\eta^{*}y}{x}\right)^{1-\gamma} \Theta^{*}$$

where η^* and ξ^* are given by (5) and (6) and $\Theta^* = \Theta(\eta^*, \xi^*)$. (iv) For $\gamma \ge 1$, $V^M(x, y) = \infty$

Key result is that the manager's improves his expected utility when he can invest in the market, if $\gamma_{-} < \gamma < 1$

One-Period Model

• We can describe the same features in a one (or perhaps two!)-period binomial model

• Real asset is indivisible; sale is irreversible, agent is risk-averse with decreasing absolute risk aversion.

- Manager offered gambling opportunity
- This opportunity occurs before the movemnets in real asset price.
- Sale decision for the real asset is made ex post.

• Manager has initial wealth x and owns real asset with current value y

- Value of real asset at time 1 is either yu or yd where u > d. Take p = 1/2 for simplicity
- Take u + d > 2 so $\mathbb{E}Y_1 > y$ and ud < 1 so $\mathbb{E} \ln Y_1 < \ln y$. Analogous to $0 < \gamma < 1$
- Manager can sell at time 0 or wait till time 1. Expected utility is

$$\ln(x+y)$$
 if sell at $t=0$

or

$$\frac{1}{2}\ln(x+yu) + \frac{1}{2}\ln(x+yd)$$
 if wait

• Optimal to wait if $y < x/w^*$ where

$$w^* = (1 - ud)/(u + d - 2)$$

Manager with Access to Fair Gamble

• Now let the manager enter a fair gamble at time 0 before deciding whether to sell

- Gamble pays $\pm \epsilon$ with probability $\frac{1}{2}$ in each case
- \bullet The outcome of the gamble is independent of Y
- If the manager did not own the real asset, he would never accept
- a fair gamble with concave utility
- Suppose $y = x/w^*$ and manager accepts the bet. If bet and win,

$$x \to x + \epsilon$$
, $y < (x + \epsilon)/w^*$ wait

If bet and lose,

$$x \to x - \epsilon, \ y > (x - \epsilon)/w^*$$
 sell at time 0

Expected utility is

$$\frac{1}{4} \left\{ \ln(x + \epsilon + xu/w^*) + \ln(x + \epsilon + xd/w^*) \right\} + \frac{1}{2} \ln(x - \epsilon + x/w^*).$$

Writing $\epsilon = x\tilde{\epsilon}/w^*$ and equation solved by w^* ,

$$\ln x + \ln(1+1/w^*) + \frac{1}{4} \left\{ \ln \left(1 + \frac{\tilde{\epsilon}}{w^* + u} \right) + \ln \left(1 + \frac{\tilde{\epsilon}}{w^* + d} \right) + 2 \ln \left(1 - \frac{\tilde{\epsilon}}{w^* + 1} \right) \right\}$$

This utility exceeds $\ln x + \ln(1 + 1/w^*)$ if the final bracket is positive, and expanding this term in $\tilde{\epsilon}$ we see that this happens (for some positive ϵ) provided

$$0 < \frac{1}{w^* + u} + \frac{1}{w^* + d} - \frac{2}{w^* + 1} = \frac{(u + d - 2)}{(w^* + 1)^2}$$

which is true since u + d > 2

IV. A. Interpretation

• We saw in the one-period model that the manager's value function was not concave in initial wealth $x \to$ manager is locally risk seeking and accepted a gamble in some situations

- This underlies the continuous time results as well
- The curious behavior occurs when $\gamma_{-} < \gamma < 1$. When there is no market, manager sells when $Y/x > 1/w^*$ as risk aversion outweighs benefits of waiting

• However if there is a market, the manager can reduce the proportion of wealth in the real asset by trading: If successful, proportion in real asset drops and waits to sell. If unsuccessful, sell real asset (and worse off). When γ large enough, the first effect dominates and worthwhile to gamble

B. The Certainty Equivalent Value of the Right to Sell the Real Asset

- Certainty equivalent value of the right to sell the real asset is cash amount manager would accept in place of the right to sell
 Given by p^N in the no-market setting, solves ln(x + p^N) = V^N(x, y)
- Given by p^M in market setting, solves $\ln(x + p^M) = V^M(x, y)$

C. The Probability of Exercise/Selling

• Market enables manager to trade so that real asset only sold when it forms a higher proportion of wealth than in the no-market case. ie. $1/\xi^* > 1/w^*$

• For fixed $\gamma = 0.5$ the graph shows that probability of ever selling decreases when there is a market asset

Proposition 5 For fixed positive initial wealth, for $\gamma_{-} < \gamma < 1$ and for any initial value y for the real asset, the probability that the real asset is sold is lower in the model with the market than in the no-market situation

• Recall, if the manager trades successfully, he holds onto the real asset for longer and the probability of selling is reduced

• However, if he is unsuccessful, he sells the real asset. There are scenarios where manager with market access sells real asset sooner than manager without the market

D. No-Borrowing Constraints

- We have allowed the manager to borrow against holdings in the real asset, so $X_t \ge -Y_t$
- What happens if we constrain the manager to keep his trading wealth X positive ?
- If $\xi^* > 0$ then constraint has no effect. Define γ^+ to be solution of $\Gamma^+(\gamma) = 0$ where

$$\Gamma^+(\gamma) = (1-\gamma) \ln \quad rac{2-\gamma}{1-\gamma} \quad -\gamma$$

We find $\gamma^+ = 0.5341$. γ^+ is critical γ where constraint has an effect - previously borrowing occurred beyond γ^+ **Proposition 6** For $\gamma^+ < \gamma < 1$, the max of $\eta^{1-\gamma}\Theta(\eta,\xi)$ over $0 \le \xi \le \eta$ is attained at $\xi = 0$ and $\eta = \eta^*$ where $\eta^* = \eta^*(\gamma) = e^{-\gamma/(1-\gamma)}$. Under the no-borrowing constraint the value function becomes for $xe^{\gamma/(1-\gamma)} < y$

$$V^{M}(x,y) = \frac{e^{\gamma/(1-\gamma)}x}{y} \quad \ln y + \frac{1-\gamma}{2-\gamma} \quad + \quad 1 - \frac{e^{\gamma/(1-\gamma)}x}{y} \quad \ln y,$$

and for $y \leq x e^{\gamma/(1-\gamma)}$

$$V^{M}(x,y) = \ln x + \left(\frac{y}{x}\right)^{1-\gamma} \frac{e^{-\gamma}}{(2-\gamma)(1-\gamma)}$$

• If $\gamma^+ < \gamma < 1$, manager only sells when he becomes insolvent, ie. X = 0

E. CRRA Preferences and Limiting Cases

• Extends to CRRA preferences $U(x) = x^{1-R}/(1-R); R > 0$

• For CRRA, the upper threshold (beyond which wait indefinitely) becomes $\min\{R, 1\}$

• Range $(\gamma_{-}(R), 1)$ is where manager chooses to invest in the market. Largest range is for R = 1, log utility. For log, manager chooses to take fair gamble for the widest range of parameter values (Sharpe ratio and volatility of real asset)

As R → 0, U(x) = x, risk-neutral. Here γ₋, γ⁺ → 0 and min{R,1} → 0. Manager sells if γ < 0 and waits indefinitely if γ > 0. Corresponds to special case of McDonald and Siegel (1986)
As R → ∞, γ₋(R), γ⁺(R) → 1 and market is no use. Optimal strategy corresponds to model without a market. Corresponds to exponential utility - wealth factors out so no-market value is concave in x since U is (cf Henderson (2004))

Conclusions

• We have shown that it can be optimal for a risk-averse manager to accept a fair gamble if he is facing idiosyncratic risk in an incomplete market arising from the right to sell a real asset

- Beware of omitting assets which appear not to alter behaviour ...
- A rationale for gambling?
- Our conclusions were robust to choice of CRRA preferences but do not occur for exponential utility
- Investment in the market or fair gamble hinges on indivisibility of the real asset
- Applications to executive stock options where manager receives restricted stock (or options) and asks when to optimally exercise
- Applications to optimal retirement choice.
- Extension to consumption models.