Porfolio Management without

Probability or Statistics

Sjur Didrik Flåm

Keywords:

- Log-optimality,
- Kelly's rule,
- stationarity,
- evolustionary stability,
- stochastic approximation

PLAN

The setting

The adaptive process

Replicator dynamics

Evolutionary stability in two-person games.

Global convergence.

THE SETTING:

discrete time t = 0, 1, ...

assets $a \in A$ (finite),

gross return $X_{t+1}^a \ge 0$ per unit at the end of (t, t+1],

accumulated financial savings S_t

proportion p_t^a into a.

Dynamic

$$S_{t+1} := \langle p_t, X_{t+1} \rangle S_t := (\sum_{a \in A} p_t^a X_{t+1}^a) S_t.$$

NB! "portfolio" always in standard simplex \mathbb{P} .

 $X_t = (X_t^a), t = 0, 1, ... independent \sim X \Rightarrow p$ constant \Rightarrow

$$S_T = \Pi_{t=0}^{T-1} \langle p, X_{t+1} \rangle$$

Strong Law of Large Numbers:

$$\log(S_T^{1/T}) = \frac{1}{T} \sum_{t=1}^T \log \langle p, X_{t+1} \rangle \to E \log \langle p, X \rangle \text{ a.s.}$$

Look for Log-optimal portfolio p,

maximize $E \log \langle p, X \rangle$ s.t. $p \in \mathbb{P}$, (1) More generally,

maximize $E_t \log \langle p_t, X_{t+1} \rangle$ s.t. $p_t \in \mathbb{P}$, (2) using $E_t := E \left[\cdot | \mathcal{F}_t \right]$.

BUT! distribution often unknown!

Problem:

Can a scantly informed, statistically unskilled investor maximize long-run growth?

Kuhn-Tucker conditions for problem (2):

$$E_{t} \begin{bmatrix} X_{t+1}^{a} / \langle p_{t}, X_{t+1} \rangle \end{bmatrix} = 1 \text{ whenever } p_{t}^{a} > 0, \\ E_{t} \begin{bmatrix} X_{t+1}^{a} / \langle p, X_{t+1} \rangle \end{bmatrix} \leq 1 \text{ otherwise.} \end{cases}$$

$$(3)$$

$$IDEA: p_{t}^{a} \text{ should be reduced iff} \\ X_{t+1}^{a} / \langle p, X_{t+1} \rangle < 1.$$

For each $a \in A$ let

NB! not a stochastic gradient method

$$p_{t+1} = \Pr{oj_{\mathbb{P}}\left[p_t + s_t X_{t+1} / \langle p_t, X_{t+1} \rangle\right]}.$$

Log-optimal and Evolutionary Stable Strategies

Suppose return process stationary. Recall: \bar{p} log-optimal iff

 $E[X^{a}/\langle \bar{p}, X \rangle] = 1 \quad \text{whenever } \bar{p}^{a} > 0, \text{ and} \\ E[X^{a}/\langle \bar{p}, X \rangle] \leq 1 \quad \text{otherwise.}$ (6)

Consider 2-person, noncooperative, symmetric game, action space A.

Payoffs to mixed strategy p against \bar{p} :

$$\pi(p,\bar{p}) := \sum_{a \in A} p^a \cdot E\left[X^a / \langle \bar{p}, X \rangle\right].$$
(7)

 (\bar{p}, \bar{p}) a symmetric Nash equilibrium iff

$$\pi(p, \bar{p}) \leq \pi(\bar{p}, \bar{p})$$
 for all $p \in \mathbb{P}$. (8)

Proposition (Log-optimality and equilibrium) A portfolio \bar{p} is unconditioned log-optimal iff it constitutes a Nash equilibrium (\bar{p}, \bar{p}) in the two-person, symmetric game with payoff (7). \Box

Definition $\overline{\mathbb{P}} \subseteq \mathbb{P}$ *evolutionary stable* iff for each $\overline{p} \in \overline{\mathbb{P}}$ $\exists \delta > 0$ such that

 $p \notin ar{P}$, $\|p - ar{p}\| \leq \delta$ & $\pi(p, ar{p}) = \pi(ar{p}, ar{p}) \Rightarrow \pi(ar{p}, p) > \pi(p, ar{p})$

Proposition (Log-optimality and evolutionary stability) The set $\overline{\mathbb{P}}$ of unconditioned log-optimal portfolios is closed convex and evolutionary stable. In fact, it holds for any $p \in \mathbb{P} \setminus \overline{\mathbb{P}}$ that $\pi(\overline{p}, p) > \pi(p, p)$.

Proof. $L(\cdot) := E \log \langle \cdot, X \rangle$ concave & usc. Therefore $\overline{\mathbb{P}} := \arg \max L$ closed convex. p and optimal \overline{p} it holds of course that

p nonopt. & \overline{p} opt. $\Rightarrow L(p) < L(\overline{p})$.

By concavity,

$$L(\bar{p}) \leq L(p) + \left\langle L'(p), \bar{p} - p \right\rangle.$$

Addition yields $\langle L'(p), \bar{p} - p \rangle > 0$. Finally, $\langle L'(p), \bar{p} - p \rangle = \pi(\bar{p}, p) - \pi(p, p) > 0$. \Box

Payoff of pure strategy a against p

$$\pi(a,p) := E\left[X^a / \langle p, X \rangle\right]$$

Replicator dynamics

$$\dot{p}^a = p^a \left[\pi(a, p) - \pi(p, p) \right] \quad \forall a$$
 (9)

Proposition (Asymptotic stability) System (9) is globally asymptotically stable on the relative interior of the simplex. That is, for any initial p_0 , having all $p_0^a > 0$, it holds that each accumulation point of the resulting trajectory is log-optimal.

Proof. Recall that the *relative entropy* (alias *Kullback-Leibler distance*)

$$K(\bar{p},p) := \sum_{a \in A} \bar{p}^a \log \frac{\bar{p}^a}{p^a} \ge 0$$
(10)

"Distance function"

$$\lambda(p) := \min \left\{ K(ar{p}, p) : ar{p} \mid \mathsf{log-optimal}
ight\}.$$
 (11)

 $\lambda(p)$ convex & differentiable. Indeed, when all $p^a > 0$,

$$abla \lambda(p) = rac{\partial}{\partial p} K(\bar{p}, p)|_{\bar{p} = \bar{p}(p)} = -\left[\bar{p}^a/p^a\right] \in \mathbb{R}^A.$$

Thus,

$$rac{d}{d au}\lambda(p(au)) = -\sum_{a\in A}ar{p}^a\left[\pi(a,p)-\pi(p,p)
ight]$$

$$=-\left[\pi(\bar{p},p)-\pi(p,p)\right]<\mathsf{0}.\Box$$

Convergence

Euler's direct method on replicator dynamics:

 $p_{t+1}^a = p_t^a + s_t p_t^a \left[E \left[X^a / \langle p_t, X \rangle \right] - 1 \right].$ Stocahastic approximation theory: DROP E!

Robbins-Monro assumptions: 1) The conditional distribution of X_{t+1} given \mathcal{F}_t depends at most on p_t .

2)

$$\Gamma := \sup\left\{ E \sum_{a} \left\{ X^{a} / \left\langle p, X \right\rangle - 1 \right\}^{2} : p \in \mathbb{P} \right\} < \infty.$$
(12)

Theorem (Global convergence to log-optimality) Under the Robbins-Monro assumption and (12) each cluster point of iteration (4) is almost surely a log-optimal portfolio. In particular, when the latter is unique, convergence to that portfolio obtains a.s.

Proof uses

Robbins-Monro Lemma Suppose $A_t, B_t, C_t, D_t, t = 0, 1, ...$ are finite-valued, non-negative random variables, all measurable with respect to a sigma-field $\mathcal{F}_t \subseteq \mathcal{F}_{t+1}$, which satisfy

$$E\left[\mathcal{A}_{t+1} | \mathcal{F}_t\right] \leq (1 + B_t)\mathcal{A}_t + C_t - D_t.$$
(13)

Then, in the event $\{\sum_t B_t < +\infty, \sum_t C_t < +\infty\}$ it holds that

$$\mathcal{A}_t \to \mathcal{A} < \infty$$
 and $\sum_t D_t < +\infty$ a.s. (14)

As said, in the present case, let \mathcal{F}_t be generated by the return vectors $X_0, ..., X_t$ and other relevant information unveiled up to time t. Plainly, $\mathcal{F}_t \subseteq \mathcal{F}_{t+1}$. Posit

$$\mathcal{A}_t := \mathsf{min}\left\{ \|p_t - ar{p}\|^2 \, / 2 : ar{p} \; \; \mathsf{log-optimal}
ight\}$$

Note that $\mathcal{A}_t = \|p_t - \bar{p}_t\|^2/2 \ge 0$ for a unique \mathcal{F}_t -measurable, log-optimal \bar{p}_t . Also,

$$\begin{aligned} \mathcal{A}_{t+1} &\leq \|p_{t+1} - \bar{p}_t\|^2 / 2 = \|(p_t - \bar{p}_t) + (p_{t+1} - p_t)\|^2 / 2 \\ &\leq \mathcal{A}_t + s_t \sum_{a \in A} (p_t^a - \bar{p}_t^a) \left[X_{t+1}^a / \langle p_t, X_{t+1} \rangle - 1 \right] + s_t^2 \sum_{a \in A} (p_t^a - \bar{p}_t^a) X_{t+1}^a / \langle p_t, X_{t+1} \rangle + s_t^2 \sum_{a \in A} \left[X_{t+1}^a \right] \end{aligned}$$

In this string take conditional expectation $E_t := E[\cdot | \mathcal{F}_t]$ to get inequality (13) with

$$B_{t} := \mathbf{0}, \quad C_{t} := s_{t}^{2} \mathbf{\Gamma},$$

and $D_{t} := -s_{t} \left\{ \sum_{a \in A} (p_{t}^{a} - \bar{p}^{a}) E_{t} \left[X_{t+1}^{a} / \langle p_{t}, X_{t+1} \rangle \right] \right\} \ge \mathbf{0}.$

Now, via condition (II) in (5), since the event $\{\sum_t B_t < +\infty, \sum_t C_t \}$ carries full probability, (14) follows. Whenever $\mathcal{A} > 0$, condition (I) in (5) implies $\sum D_t = +\infty$. Consequently, $\mathcal{A} = 0$ a.s. and this completes the proof. \Box

• P. H. Algoet and T. M. Cover, Asymptotic optimality and asymptotic equipartion properties of log-optimum investment, The Annals of Probability 16, 2, 876-898 (1988).

• T. M. Cover, An algorithm for maximizing expected log investment return, IEEE Trans. Inform. Th. 30, 2, 369-373 (1984).

• T. M. Cover and J. A. Thomas, Elements of Information Theory, J. Wiley, New York (1991).

• M. A. H. Dempster, I. V. Evstigneev and K. R. Schenk-Hoppé, Exponential growth of fixed-mix strategies in stationary asset markets, Finance and Stochastics 7, 263-276 (2003).

• I. V. Evstigneev and K. R. Schenk-Hoppé, From rags to riches: on constant proportions investment strategies, Inter. J. Theoretical and Applied Finance 5, 6, 563-573 (2002).

• T. Hens and K. R. Schenk-Hoppé (eds.) Special Issue on Evolutionary Finance, J. Math. Econ. 1-2, 41 (2005).

• J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press (1998).