Optimal Dynamic Asset Allocation for Defined Contribution Pension Plans

> Andrew Cairns Heriot-Watt University Edinburgh

Joint work with David Blake & Kevin Dowd

Outline for talk

- Problem: Accumulation phase of a DC plan
- Model formulation
- Optimal investment strategy
- Qualitative characteristics
- Quantitative characteristics
 - Comparison of optimal strategy with commercial strategies

Using a toy model: how much room for improvement?

The problem

- Identify sources of risk to investor:
 - investment risk
 - interest-rate risk
 - salary risk
- risk assessment
- guidance for plan members, advisers, regulators

How well does a DC plan match a DB benchmark:

Replacement Ratio =

DC pension final salary

"Model" Occupational DC plan

- Contributions = fixed % of salary
- choice of "commercial" investment strategies
- various asset classes
- static versus dynamic

Typical *default* strategies

Static strategies

• Pension Fund Average

typical mixed fund (\sim 70% in UK/int'l equities)

• Mixed Bonds (50/50)

50% long bonds; 50% cash

 \Rightarrow minimum variance of Replacement Ratio

Default "commercial" strategies:

- Static
- Deterministic lifestyle

Are these strategies the best that we can do?

By how much can they be improved?

- theoretical best
- practical best (not this seminar!)

The model

State variables:

$$Y(t) \;=\;$$
 Salary

W(t) = Accumulated pension wealth

$$r(t) = \text{Risk-free interest rate (one-factor model)}$$

The model: Assets

n+1 sources of risk: $Z_0(t), Z_1(t), \ldots, Z_N(t)$

Cash account, $R_0(t)$:

 $dR_0(t) = r(t)R_0(t)dt$

$$dr(t) = \mu_r(r(t))dt + \sum_{j=1}^N \sigma_{rj}(r(t))dZ_j(t)$$

The model: Assets
Risky assets,
$$R_1(t), \ldots, R_N(t)$$
:
 $dR_i(t) = R_i(t) \left[\left(r(t) + \sum_{j=1}^N \sigma_{ij} \xi_j \right) dt + \sum_{j=1}^N \sigma_{ij} dZ_j(t) \right]$
 $C = \left(\sigma_{ij} \right) = \text{volatility matrix } (N \times N)$
(non-singular)

 $\xi = (\xi_j) = \text{market prices of risk} (N \times 1)$

The model: Salary and contributions

$$dY(t) = Y(t) \Big[(r(t) + \mu_Y(t)) dt \\ + \sum_{j=1}^N \sigma_{Yj} dZ_j(t) \\ + \sigma_{Y0} dZ_0(t) \Big]$$

$\mu_Y(t)$ deterministic

Plan member contributes continuously into DC pension plan at the rate $\pi Y(t)$ for constant π .

The model: Pension wealth, W(t):

$$p(t) = (p_1(t), \dots, p_N(t))$$

= proportion of wealth in risky assets

$$dW(t) = W(t) \left[(r(t) + p(t)'C\xi) dt + p(t)'CdZ(t) \right]$$
$$+ \pi Y(t)dt$$

The model: The pension:

Retirement at a fixed date T.

At T the cost of \$1 for life is

$$a(r(T)) = \sum_{u=0}^{\infty} p(65, u) P(T, T+u, r(T))$$

p(65, u) = survival probability from 65 to 65 + u $P(T, \tau, r) =$ price at T for \$1 at τ given r(T) = r

Replacement ratio:

Repl. Ratio =
$$\frac{Pension(T)}{Y(T)} = \frac{W(T)/a(r(T))}{Y(T)}$$

Teminal utility: = function of replacement ratio

$$u(w, y, r) = \frac{1}{\gamma} \left(\frac{w}{y.a(r)} \right)^{\gamma}$$

 $(\Rightarrow$ type of habit formation)

Reduction of state space:

Sufficient to model r(t) and X(t) = W(t)/Y(t)

$$dX(t) = \pi dt$$

+X(t) $\left[\left(-\mu_Y(t) + p(t)'C(\xi - \sigma_Y) + \sigma_{Y0}^2 + \sigma'_Y\sigma_Y \right) dt - \sigma_{Y0} dZ_0(t) + \left(p(t)'C - \sigma'_Y \right) dZ(t) \right]$

Optimisation: Given strategy p(t)

Expected terminal utility is J(t, x, r; p) =

$$E\left[\gamma^{-1}\left(\frac{X_p(T)}{a(r(T))}\right)^{\gamma} \mid X(t) = x, \ r(t) = r\right]$$

 $X_p(t) = path of X(t)$ given strategy p.

Objective:

Maximise expected terminal utility

over
$$p = \{p(t) : 0 \le t \le T\}$$

$$V(t, x, r) = \sup_{p} J(t, x, r; p)$$
HJB equation \Rightarrow nonlinear PDE
$$V_{t}$$

$$+\mu_{r}(r)V_{r}$$

$$+(\pi - \tilde{\mu}_{Y}(t)x + \sigma'_{Y}(\xi - \sigma_{Y})x)V_{x}$$

$$+\frac{1}{2}\sigma_{r}(r)'\sigma_{r}(r)V_{rr}$$

$$+\frac{1}{2}\sigma_{Y0}^{2}x^{2}V_{xx}$$

$$-\frac{1}{2}(\xi - \sigma_{Y})'(\xi - \sigma_{Y})\frac{V_{x}^{2}}{V_{xx}}$$

$$-(\xi - \sigma_{Y})'\sigma_{r}(r)\frac{V_{x}V_{xr}}{V_{xx}}$$

$$-\frac{1}{2}\sigma_{r}(r)'\sigma_{r}(r)\frac{V_{x}^{2}r}{V_{xx}} = 0.$$

Model \Rightarrow many assets

Optimisation \Rightarrow we require only 3 mutual funds

A Minumum risk fund to match salary risk

B Minimum risk fund to match salary × annuity risk

C Efficient, risky fund

A: Minumum risk fund to match salary risk

Mainly cash

adjusted for correlation between salaries and

other assets

Used to minimise short-term risk

B: Minimum risk fund to match salary × annuity risk

Mainly **bonds**

to minimise *immediate* annuity purchase risk

adjusted for correl. between salaries and other assets

C: Efficient, risky fund

Traditional efficient, risky portfolio with respect to a

salary numeraire

Qualitative remarks

- Investment in Fund C = 1/local RRA
- \bullet Investment in Fund A $\to 0$ as $t \to T$
- Conjecture:

As $T - t \nearrow$, investment in Fund B $\longrightarrow 0$

Problem components:

$$V_{t} + \mu_{r}(r)V_{r} + (\pi - \tilde{\mu}_{Y}(t)x + \sigma'_{Y}(\xi - \sigma_{Y})x)V_{x} + \frac{1}{2}\sigma_{r}(r)'\sigma_{r}(r)V_{rr} + \frac{1}{2}\sigma_{Y0}^{2}x^{2}V_{xx} - \frac{1}{2}(\xi - \sigma_{Y})'(\xi - \sigma_{Y})\frac{V_{x}^{2}}{V_{xx}} - (\xi - \sigma_{Y})'\sigma_{r}(r)\frac{V_{x}V_{xr}}{V_{xx}} - (\xi - \sigma_{Y})'\sigma_{r}(r)\frac{V_{x}V_{xr}}{V_{xx}} = 0.$$

```
Complete market: \sigma_{Y0} = 0
```

Main conclusions: optimal strategy

 \bullet Effective assets at t are

W(t) =actual pension wealth, W(t)

+risk-adjusted value of future

premiums, RAVFP

Borrow RAVFP in units of mutual fund A

investment in mutual fund B grows over time

Numerical example: $r(t) \sim$ Vasicek Example 1:

- Relative risk aversion: RRA = 6 (moderate)
- Duration of contract: T = 20 years
- Contribution rate: 10% of salary

Example 1: RRA = 6, T = 20

Example 2: Very high RRA, T = 20

Comparison with other strategies

Optimal strategy versus:

- Salary-hedged static strategy (S)
- Merton-static strategy (M)
- Deterministic lifestyle strategies:
 - initially 100% in equities
 - gradual switch over last 10 years into
 100% bonds (B-10) or 100% cash (C-10)

Tables show:

- Expected terminal utility, V(0, 0) (normalised): starting at time 0 with W(0) = 0
- Cost:
 - Benchmark: 10% cont. rate with optimal strategy
 - Other strategies: % contribution rate to match optimal utility

(c)	RRA = 6, T = 20							
Strategy:	Optimal	St	tatic	Deterministic lifestyle				
	stochastic	S	M	B-10	C-10			
V(0,0)	-100	-134.58	-205.42	-141.00	-191.47			
Cost	10.00%	10.61%	11.55%	10.71%	11.39%			

(C)	RRA = 6, T = 20								
Strategy:	Optimal Static			Deterministic lifestyle					
	stochastic	S	М	B-10	B-5	A-10	A-5		
Cost	10.00%	10.61%	11.55%	10.71%	11.42%	11.39%	11.88%		

(d)	RRA = 6, T = 40								
Strategy:	Optimal Static			Deterministic lifestyle					
	stochastic	S	М	B-10	B-5	A-10	A-5		
Cost	10.00%	11.52%	12.58%	12.86%	14.04%	13.67%	14.68%		

	I							
(a)	RRA = 1, T = 20							
Strategy:	Optimal	Static		Deterministic lifestyle				
	stochastic	S	М	B-10	B-5	A-10	A-5	
Cost	10.00%	13.79%	13.78%	20.18%	18.67%	21.39%	19.23%	
(c)	RRA = 6, T = 20							
Strategy:	Optimal	Static		Deterministic lifestyle				
	stochastic	S	М	B-10	B-5	A-10	A-5	
Cost	10.00%	10.61%	11.55%	10.71%	11.42%	11.39%	11.88%	
(e)	RRA = 12, T = 20							
Strategy:	Optimal	Sta	atic	Deterministic lifestyle				
	stochastic	S	М	B-10	B-5	A-10	A-5	
Cost	10.00%	10.61%	12.08%	11.70%	13.77%	12.65%	14.40%	

(b)	RRA = 1, T = 40							
Strategy:	Optimal	Sta	atic	Deterministic lifestyle				
	stochastic	S	М	B-10	B-5	A-10	A-5	
Cost	10.00%	17.37%	17.36%	32.21%	29.67%	34.33%	30.64%	
(d)	RRA = 6, T = 40							
Strategy:	Optimal	Static		Deterministic lifestyle				
	stochastic	S	М	B-10	B-5	A-10	A-5	
Cost	10.00%	11.52%	12.58%	12.86%	14.04%	13.67%	14.68%	
(f)	RRA = 12, T = 40							
Strategy:	Optimal	Sta	atic	Deterministic lifestyle				
	stochastic	S	М	B-10	B-5	A-10	A-5	
Cost	10.00%	12.38%	13.17%	16.57%	19.72%	17.82%	20.77%	

Summary

- Commercial strategies can be costly
- Optimal strategy has some drawbacks:
 - regular rebalancing \Rightarrow difficult to implement??
 - short selling
 - \Rightarrow we need to find a compromise
 - \Rightarrow future work to find a robust dynamic strategy that

takes account of plan member's risk aversion

r(t) = constant, r

• Case 1: $\pi = 0, \sigma_{Y0} = 0.$

• Case 2:
$$\pi = 0, \, \sigma_{Y0} \neq 0.$$

• Case 3:
$$\pi > 0$$
, $\sigma_{Y0} = 0$.

* Case 4:
$$\pi > 0$$
, $\sigma_{Y0} \neq 0$.

Cases 1, 2, 3 have analytical solutions.

Case 4 \Rightarrow numerical solution.

Case 3: $\pi > 0$, $\sigma_{Y0} = 0$

Case 4: $\pi > 0$, $\sigma_{s0} \neq 0$, 1 risky asset.

Solution by HJB equation.

- No analytical solution
 - \Rightarrow numerical solution required
- V(t, x) has a singularity at x = 0

Result: Misery! (for a while).

Static optimisation problem:

$$\Rightarrow p^*(t,x) = p^*(t,x;V) = \frac{1}{\sigma_1} \left(\sigma_{Y1} - \frac{V_x}{xV_{xx}} (\xi_1 - \sigma_{Y1}) \right)$$

 $\Rightarrow p^*(t,x)$ only depends upon σ_{Y0} through V(t,x).

Solve the non-linear PDE: $V_t + \mu_X^{p^*} V_x + \frac{1}{2} \sigma_X^{p^*2} V_{xx} = 0$ subject to $V(T,x) = \frac{1}{\gamma}x^{\gamma}$ $\mu_{X}^{p^{*}} = \pi + x \left(-\mu_{s} + \sigma_{Y0}^{2} + \sigma_{Y1}^{2}\right)$ + $xp^*(t, x; V)\sigma_1(\xi_1 - \sigma_{Y1})$ $\sigma_X^{p^{*2}} = x^2 \left(\sigma_{Y0}^2 + \left\{ p^*(t, x; V) \sigma_1 - \sigma_{Y1} \right\}^2 \right).$

Numerical solution: Finite Difference Method

Problem (e.g. $\gamma < 0$) as $x \to 0$:

$$\begin{split} V(t,x) &\to \begin{cases} -\infty, & \text{if } t = T \\ l(t), & -\infty < l(t) < 0, \ t < T \\ \frac{\partial V}{\partial t}(t,0) &\to -\infty \quad \text{as } t \to T \end{split}$$

 \Rightarrow numerical solution: unstable near x = 0??

Numerical results \Rightarrow for t < T

$$p^*(t,x)\sqrt{x} \to \phi \text{ as } x \to 0$$

Value of ϕ is critical!

•
$$\phi = \infty \implies X(t)$$
 might hit 0

**
$$\phi = 0 \implies X(t)$$
 never hits 0

 $\bullet \ 0 < \phi < \infty \ \ \Rightarrow \ \ X(t)$ might or might not hit zero

Numerical solutions suggest (**).

(... but see Duffie et al., 1997)

Case 4: upper bound

Introduce an extra asset, $R_2(t)$, to complete the market.

$$dR_2(t) = R_2(t) \left[(r + \xi_0 \sigma_{Y0}) dt + \sigma_{Y0} dZ_0(t) \right].$$

$$\begin{split} \xi_0 &= \underline{\operatorname{arbitrary}} \text{ market price of risk: to be specified} \\ \text{More choice} &\Rightarrow \text{increased } E[u(W(T),Y(T))] \\ &\Rightarrow \text{analytical upper bounds (like Case 3), } V^u(t,x;\xi_0). \\ &\text{Then } V(t,x) \leq V^u(t,x) = \inf_{\xi_0 \in R} V^u(t,x;\xi_0) \end{split}$$

Construction of the upper bound for V(t,x)

