Optimal Dynamic Asset Allocation for Defined Contribution Pension Plans

Andrew Cairns Heriot-Watt University

Edinburgh

Joint work with David Blake \& Kevin Dowd

Outline for talk

- Problem: Accumulation phase of a DC plan
- Model formulation
- Optimal investment strategy
- Qualitative characteristics
- Quantitative characteristics
- Comparison of optimal strategy with commercial strategies

Using a toy model: how much room for improvement?

The problem

- Identify sources of risk to investor:
- investment risk
- interest-rate risk
- salary risk
- risk assessment
- guidance for plan members, advisers, regulators

How well does a DC plan match a DB benchmark:

Replacement Ratio $=\frac{\text { DC pension }}{\text { final salary }}$

"Model" Occupational DC plan

- Contributions = fixed \% of salary
- choice of "commercial" investment strategies
- various asset classes
- static versus dynamic

Typical default strategies

Static strategies

- Pension Fund Average
typical mixed fund ($\sim 70 \%$ in UK/int'l equities)
- Mixed Bonds (50/50)
50% long bonds; 50% cash
\Rightarrow minimum variance of Replacement Ratio

Deterministic Lifestyle strategy

Initially MIXED fund. Then switch gradually into BONDS.

Default "commercial" strategies:

- Static
- Deterministic lifestyle

Are these strategies the best that we can do?
By how much can they be improved?

- theoretical best
- practical best (not this seminar!)

The model

State variables:
$Y(t)=$ Salary
$W(t)=$ Accumulated pension wealth
$r(t)=$ Risk-free interest rate (one-factor model)

The model: Assets

$n+1$ sources of risk: $Z_{0}(t), Z_{1}(t), \ldots, Z_{N}(t)$
Cash account, $R_{0}(t)$:

$$
\begin{aligned}
d R_{0}(t) & =r(t) R_{0}(t) d t \\
d r(t) & =\mu_{r}(r(t)) d t+\sum_{j=1}^{N} \sigma_{r j}(r(t)) d Z_{j}(t)
\end{aligned}
$$

The model: Assets

Risky assets, $R_{1}(t), \ldots, R_{N}(t)$:

$$
\begin{gathered}
d R_{i}(t)=R_{i}(t)\left[\left(r(t)+\sum_{j=1}^{N} \sigma_{i j} \xi_{j}\right) d t+\sum_{j=1}^{N} \sigma_{i j} d Z_{j}(t)\right] \\
C=\left(\sigma_{i j}\right)=\text { volatility matrix }(N \times N) \\
\text { (non-singular) }
\end{gathered}
$$

$\xi=\left(\xi_{j}\right)=$ market prices of risk $(N \times 1)$

The model: Salary and contributions

$$
\begin{aligned}
& d Y(t)=Y(t)\left[\left(r(t)+\mu_{Y}(t)\right) d t\right. \\
& \\
& \qquad \begin{array}{ll}
& \\
& +\sum_{j=1}^{N} \sigma_{Y j} d Z_{j}(t) \\
& \\
& \left.+\sigma_{Y 0} d Z_{0}(t)\right]
\end{array}
\end{aligned}
$$

$\mu_{Y}(t)$ deterministic
Plan member contributes continuously into DC pension plan at the rate $\pi Y(t)$ for constant π.

The model: Pension wealth, $W(t)$:

$$
p(t)=\left(p_{1}(t), \ldots, p_{N}(t)\right)
$$

$=$ proportion of wealth in risky assets
$d W(t)=W(t)\left[\left(r(t)+p(t)^{\prime} C \xi\right) d t+p(t)^{\prime} C d Z(t)\right]$

$$
+\pi Y(t) d t
$$

The model: The pension:

Retirement at a fixed date T.
At T the cost of $\$ 1$ for life is

$$
a(r(T))=\sum_{u=0}^{\infty} p(65, u) P(T, T+u, r(T))
$$

$p(65, u)=$ survival probability from 65 to $65+u$ $P(T, \tau, r)=$ price at T for $\$ 1$ at τ given $r(T)=r$

Replacement ratio:

$$
\text { Repl. Ratio }=\frac{\operatorname{Pension}(T)}{Y(T)}=\frac{W(T) / a(r(T))}{Y(T)}
$$

Teminal utility: = function of replacement ratio

$$
u(w, y, r)=\frac{1}{\gamma}\left(\frac{w}{y \cdot a(r)}\right)^{\gamma}
$$

(\Rightarrow type of habit formation)

Reduction of state space:

Sufficient to model $r(t)$ and $X(t)=W(t) / Y(t)$

$$
\begin{aligned}
d X(t) & =\pi d t \\
+X(t)\left[\left(-\mu_{Y}(t)\right.\right. & \left.+p(t)^{\prime} C\left(\xi-\sigma_{Y}\right)+\sigma_{Y 0}^{2}+\sigma_{Y}^{\prime} \sigma_{Y}\right) d t \\
& \left.-\sigma_{Y 0} d Z_{0}(t)+\left(p(t)^{\prime} C-\sigma_{Y}^{\prime}\right) d Z(t)\right]
\end{aligned}
$$

Optimisation: Given strategy $p(t)$
Expected terminal utility is $J(t, x, r ; p)=$

$$
E\left[\left.\gamma^{-1}\left(\frac{X_{p}(T)}{a(r(T))}\right)^{\gamma} \right\rvert\, X(t)=x, r(t)=r\right]
$$

$X_{p}(t)=$ path of $X(t)$ given strategy p.
Objective:
Maximise expected terminal utility
over $p=\{p(t): 0 \leq t \leq T\}$

$$
V(t, x, r)=\sup _{p} J(t, x, r ; p)
$$

HJB equation \Rightarrow nonlinear PDE

$$
\begin{aligned}
& V_{t} \\
& +\mu_{r}(r) V_{r} \\
& +\left(\pi-\tilde{\mu}_{Y}(t) x+\sigma_{Y}^{\prime}\left(\xi-\sigma_{Y}\right) x\right) V_{x} \\
& +\frac{1}{2} \sigma_{r}(r)^{\prime} \sigma_{r}(r) V_{r r} \\
& \quad+\frac{1}{2} \sigma_{Y 0}^{2} x^{2} V_{x x} \\
& -\frac{1}{2}\left(\xi-\sigma_{Y}\right)^{\prime}\left(\xi-\sigma_{Y}\right) \frac{V_{x}^{2}}{V_{x x}} \\
& -\left(\xi-\sigma_{Y}\right)^{\prime} \sigma_{r}(r) \frac{V_{x} V_{x r}}{V_{x x}} \\
& \quad-\frac{1}{2} \sigma_{r}(r)^{\prime} \sigma_{r}(r) \frac{V_{x r}^{2}}{V_{x x}}=0 .
\end{aligned}
$$

Model \Rightarrow many assets
Optimisation \Rightarrow we require only 3 mutual funds
A Minumum risk fund to match salary risk
B Minimum risk fund to match salary \times annuity risk
C Efficient, risky fund

A: Minumum risk fund to match salary risk
Mainly cash
adjusted for correlation between salaries and
other assets
Used to minimise short-term risk

B: Minimum risk fund to match salary \times annuity risk
Mainly bonds
to minimise immediate annuity purchase risk
adjusted for correl. between salaries and other assets

C: Efficient, risky fund
Traditional efficient, risky portfolio with respect to a
salary numeraire

Qualitative remarks

- Investment in Fund $C=1 /$ local RRA
- Investment in Fund $\mathrm{A} \longrightarrow 0$ as $t \rightarrow T$
- Conjecture:

As $T-t \nearrow$, investment in Fund $\mathrm{B} \longrightarrow 0$

Problem components:

$$
\begin{gathered}
V_{t} \\
+\mu_{r}(r) V_{r} \\
+\left(\pi-\tilde{\mu}_{Y}(t) x+\sigma_{Y}^{\prime}\left(\xi-\sigma_{Y}\right) x\right) V_{x} \\
+\frac{1}{2} \sigma_{r}(r)^{\prime} \sigma_{r}(r) V_{r r} \\
-\frac{1}{2} \sigma_{Y 0}^{2} x^{2} V_{x x} \\
-\frac{1}{2}\left(\xi-\sigma_{Y}\right)^{\prime}\left(\xi-\sigma_{Y}\right) \frac{V_{x}^{2}}{V_{x x}} \\
-\left(\xi-\sigma_{Y}\right)^{\prime} \sigma_{r}(r) \frac{V_{x} V_{x r}}{V_{x x}} \\
-\frac{1}{2} \sigma_{r}(r)^{\prime} \sigma_{r}(r) \frac{V_{x r}^{2}}{V_{x x}}=0 .
\end{gathered}
$$

Complete market: $\sigma_{Y 0}=0$

Main conclusions: optimal strategy

- Effective assets at t are
$\bar{W}(t)=$ actual pension wealth, $W(t)$

$\quad+$ risk-adjusted value of future premiums, $R A V F P$

Borrow $R A V F P$ in units of mutual fund A

Main conclusions: optimal strategy

- Investment in risky fund C

$$
=\text { constant } \% \text { of } \bar{W}(t)
$$

constant \% depends upon plan member's relative risk aversion, $R R A$

- As a percentage of $\bar{W}(t)$ investment in mutual fund B grows over time

Investment in Mutual Funds A, B, C:
small t_{0}, some wealth, $W\left(t_{0}\right)$, accumulated

Long:
fund B
fund C

Short in A: future premiums

Small t_{0} (as before)

Short in A: future premiums

Large t_{1}

Short in A: future premiums

Numerical example: $r(t) \sim$ Vasicek

Example 1:

- Relative risk aversion: $R R A=6$ (moderate)
- Duration of contract: $T=20$ years
- Contribution rate: 10% of salary

Example 1: $R R A=6, T=20$

$$
X(t)=\text { Wealth }(t) / \text { Salary }(t)
$$

Prospective Replacement Ratio

Example 1: $R R A=6, T=20$

Example 2: Very high $R R A, T=20$
Prospective Replacement Ratio

Comparison with other strategies

Optimal strategy versus:

- Salary-hedged static strategy (S)
- Merton-static strategy (M)
- Deterministic lifestyle strategies:
- initially 100% in equities
- gradual switch over last 10 years into 100% bonds (B-10) or 100% cash (C-10)

Tables show:

- Expected terminal utility, $V(0,0)$ (normalised): starting at time 0 with $W(0)=0$
- Cost:
- Benchmark: 10\% cont. rate with optimal strategy
- Other strategies: \% contribution rate to match optimal utility

(c)	$R R A=6, \quad T=20$				
Strategy:	Optimal	Static		Deterministic lifestyle	
	stochastic	S	M	$\mathrm{B}-10$	$\mathrm{C}-10$
$V(0,0)$	-100	-134.58	-205.42	-141.00	-191.47
Cost	10.00%	10.61%	11.55%	10.71%	11.39%

(c)	$R R A=6, \quad T=20$						
Strategy:	Optimal	Static		Deterministic lifestyle			
	stochastic	S	M	B-10	$\mathrm{B}-5$	$\mathrm{~A}-10$	$\mathrm{~A}-5$
Cost	10.00%	10.61%	11.55%	10.71%	11.42%	11.39%	11.88%

(d)	$R R A=6, \quad T=40$						
Strategy:	Optimal	Static		Deterministic lifestyle			
	stochastic	S	M	B-10	B-5	A-10	A-5
Cost	10.00%	11.52%	12.58%	12.86%	14.04%	13.67%	14.68%

(a)	$R R A=1, \quad T=20$						
Strategy:	Optimal	Static		Deterministic lifestyle			
	stochastic	S	M	$\mathrm{B}-10$	$\mathrm{~B}-5$	$\mathrm{~A}-10$	$\mathrm{~A}-5$
Cost	10.00%	13.79%	13.78%	20.18%	18.67%	21.39%	19.23%

(c)	$R R A=6, \quad T=20$						
Strategy:	Optimal	Static		Deterministic lifestyle			
	stochastic	S	M	$\mathrm{B}-10$	$\mathrm{~B}-5$	$\mathrm{~A}-10$	$\mathrm{~A}-5$
Cost	10.00%	10.61%	11.55%	10.71%	11.42%	11.39%	11.88%

(e)	$R R A=12, \quad T=20$						
Strategy:	Optimal	Static		Deterministic lifestyle			
	stochastic	S	M	$\mathrm{B}-10$	$\mathrm{~B}-5$	$\mathrm{~A}-10$	$\mathrm{~A}-5$
Cost	10.00%	10.61%	12.08%	11.70%	13.77%	12.65%	14.40%

(b)	$R R A=1, \quad T=40$						
Strategy:	Optimal	Static		Deterministic lifestyle			
	stochastic	S	M	$\mathrm{B}-10$	$\mathrm{~B}-5$	$\mathrm{~A}-10$	$\mathrm{~A}-5$
Cost	10.00%	17.37%	17.36%	32.21%	29.67%	34.33%	30.64%

(d)	$R R A=6, \quad T=40$						
Strategy:	Optimal	Static		Deterministic lifestyle			
	stochastic	S	M	$\mathrm{B}-10$	$\mathrm{~B}-5$	$\mathrm{~A}-10$	$\mathrm{~A}-5$
Cost	10.00%	11.52%	12.58%	12.86%	14.04%	13.67%	14.68%

(f)	$R R A=12, \quad T=40$						
Strategy:	Optimal	Static		Deterministic lifestyle			
	stochastic	S	M	$\mathrm{B}-10$	$\mathrm{~B}-5$	$\mathrm{~A}-10$	$\mathrm{~A}-5$
Cost	10.00%	12.38%	13.17%	16.57%	19.72%	17.82%	20.77%

Summary

- Commercial strategies can be costly
- Optimal strategy has some drawbacks:
- regular rebalancing \Rightarrow difficult to implement??
- short selling
\Rightarrow we need to find a compromise
\Rightarrow future work to find a robust dynamic strategy that
takes account of plan member's risk aversion
$r(t)=$ constant, r
- Case 1: $\pi=0, \sigma_{Y 0}=0$.
- Case 2: $\pi=0, \sigma_{Y 0} \neq 0$.
- Case 3: $\pi>0, \sigma_{Y 0}=0$.
* Case 4: $\pi>0, \sigma_{Y 0} \neq 0$.

Cases 1, 2, 3 have analytical solutions.
Case $4 \Rightarrow$ numerical solution.

Case 3: $\pi>0, \sigma_{Y 0}=0$

Case 4: $\pi>0, \sigma_{s 0} \neq 0,1$ risky asset.
Solution by HJB equation.

- No analytical solution
\Rightarrow numerical solution required
- $V(t, x)$ has a singularity at $x=0$

Result: Misery! (for a while).

Static optimisation problem:
$\Rightarrow p^{*}(t, x)=p^{*}(t, x ; V)=\frac{1}{\sigma_{1}}\left(\sigma_{Y 1}-\frac{V_{x}}{x V_{x x}}\left(\xi_{1}-\sigma_{Y 1}\right)\right)$
$\Rightarrow p^{*}(t, x)$ only depends upon $\sigma_{Y 0}$ through $V(t, x)$.

Solve the non-linear PDE:

$$
V_{t}+\mu_{X}^{p^{*}} V_{x}+\frac{1}{2} \sigma_{X}^{p^{* 2}} V_{x x}=0
$$

subject to $V(T, x)=\frac{1}{\gamma} x^{\gamma}$
$\mu_{X}^{p^{*}}=\pi+x\left(-\mu_{s}+\sigma_{Y 0}^{2}+\sigma_{Y 1}^{2}\right)$ $+x p^{*}(t, x ; V) \sigma_{1}\left(\xi_{1}-\sigma_{Y 1}\right)$
$\sigma_{X}^{p^{* 2}}=x^{2}\left(\sigma_{Y 0}^{2}+\left\{p^{*}(t, x ; V) \sigma_{1}-\sigma_{Y 1}\right\}^{2}\right)$.

Numerical solution: Finite Difference Method
Problem (e.g. $\gamma<0$) as $x \rightarrow 0$:
$V(t, x) \rightarrow \begin{cases}-\infty, & \text { if } t=T \\ l(t), & -\infty<l(t)<0, t<T\end{cases}$
$\frac{\partial V}{\partial t}(t, 0) \rightarrow-\infty \quad$ as $t \rightarrow T$
\Rightarrow numerical solution: unstable near $x=0$??

Numerical results \Rightarrow for $t<T$

$$
p^{*}(t, x) \sqrt{x} \rightarrow \phi \text { as } x \rightarrow 0
$$

Value of ϕ is critical!

- $\phi=\infty \Rightarrow X(t)$ might hit 0
** $\phi=0 \Rightarrow X(t)$ never hits 0
- $0<\phi<\infty \Rightarrow X(t)$ might or might not hit zero

Numerical solutions suggest (**).
(... but see Duffie et al., 1997)

Case 4: upper bound

Introduce an extra asset, $R_{2}(t)$, to complete the market.

$$
d R_{2}(t)=R_{2}(t)\left[\left(r+\xi_{0} \sigma_{Y 0}\right) d t+\sigma_{Y 0} d Z_{0}(t)\right]
$$

$\xi_{0}=\underline{\text { arbitrary }}$ market price of risk: to be specified
More choice \Rightarrow increased $E[u(W(T), Y(T))]$
\Rightarrow analytical upper bounds (like Case 3), $V^{u}\left(t, x ; \xi_{0}\right)$.
Then $V(t, x) \leq V^{u}(t, x)=\inf _{\xi_{0} \in R} V^{u}\left(t, x ; \xi_{0}\right)$

Construction of the upper bound for $V(t, x)$

The true optimal value function $V(10, x)$ when $\gamma=-5$ and $T-t=10$ versus its upper and lower bounds.

