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Outline for talk

• Problem: Accumulation phase of a DC plan

• Model formulation

• Optimal investment strategy

• Qualitative characteristics

• Quantitative characteristics

– Comparison of optimal strategy with commercial

strategies

Using a toy model: how much room for improvement?
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The problem

• Identify sources of risk to investor:

– investment risk

– interest-rate risk

– salary risk

• risk assessment

• guidance for plan members, advisers, regulators
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How well does a DC plan match a DB benchmark:

Replacement Ratio =
DC pension

final salary

“Model” Occupational DC plan

• Contributions = fixed % of salary

• choice of “commercial” investment strategies

• various asset classes

• static versus dynamic
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Typical default strategies

Static strategies

• Pension Fund Average

typical mixed fund (∼ 70% in UK/int’l equities)

• Mixed Bonds (50/50)

50% long bonds; 50% cash

⇒ minimum variance of Replacement Ratio
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Deterministic Lifestyle strategy

25 45 65

0

100%

AGE

BONDS

Risky MIXED Fund

Initially MIXED fund. Then switch gradually into BONDS.
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Default “commercial” strategies:

• Static

• Deterministic lifestyle

Are these strategies the best that we can do?

By how much can they be improved?

• theoretical best

• practical best (not this seminar!)
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The model

State variables:

Y (t) = Salary

W (t) = Accumulated pension wealth

r(t) = Risk-free interest rate (one-factor model)
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The model: Assets

n + 1 sources of risk: Z0(t), Z1(t), . . . , ZN(t)

Cash account, R0(t):

dR0(t) = r(t)R0(t)dt

dr(t) = µr(r(t))dt +

N∑
j=1

σrj(r(t))dZj(t)
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The model: Assets

Risky assets, R1(t), . . . , RN(t):

dRi(t) = Ri(t)

[(
r(t) +

N∑
j=1

σijξj

)
dt +

N∑
j=1

σijdZj(t)

]

C =
(

σij

)
= volatility matrix (N ×N)

(non-singular)

ξ =
(

ξj

)
= market prices of risk (N × 1)
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The model: Salary and contributions

dY (t) = Y (t)
[

(r(t) + µY (t)) dt

+

N∑
j=1

σY jdZj(t)

+σY 0dZ0(t)
]

µY (t) deterministic

Plan member contributes continuously into DC pension

plan at the rate πY (t) for constant π.



12

The model: Pension wealth, W (t):

p(t) =
(
p1(t), . . . , pN(t)

)

= proportion of wealth in risky assets

dW (t) = W (t) [(r(t) + p(t)′Cξ) dt + p(t)′CdZ(t)]

+ πY (t)dt
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The model: The pension:

Retirement at a fixed date T .

At T the cost of $1 for life is

a(r(T )) =

∞∑
u=0

p(65, u)P (T, T + u, r(T ))

p(65, u) = survival probability from 65 to 65 + u

P (T, τ, r) = price at T for $1 at τ

given r(T ) = r
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Replacement ratio:

Repl. Ratio =
Pension(T )

Y (T )
=

W (T )/a(r(T ))

Y (T )

Teminal utility: = function of replacement ratio

u(w, y, r) =
1

γ

(
w

y.a(r)

)γ

(⇒ type of habit formation)
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Reduction of state space:

Sufficient to model r(t) and X(t) = W (t)/Y (t)

dX(t) = πdt

+X(t)
[(− µY (t) + p(t)′C(ξ − σY ) + σ2

Y 0 + σ′Y σY

)
dt

−σY 0dZ0(t) +
(
p(t)′C − σ′Y

)
dZ(t)

]
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Optimisation: Given strategy p(t)

Expected terminal utility is J(t, x, r; p) =

E

[
γ−1

(
Xp(T )

a
(
r(T )

)
)γ ∣∣∣∣∣ X(t) = x, r(t) = r

]

Xp(t) = path of X(t) given strategy p.

Objective:

Maximise expected terminal utility

over p = {p(t) : 0 ≤ t ≤ T}
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V (t, x, r) = sup
p

J(t, x, r; p)

HJB equation⇒ nonlinear PDE
Vt

+µr(r)Vr

+
(
π − µ̃Y (t)x + σ′Y (ξ − σY )x

)
Vx

+
1

2
σr(r)′σr(r)Vrr

+
1

2
σ2

Y 0x2Vxx

−1

2
(ξ − σY )′(ξ − σY )

V 2
x

Vxx

−(ξ − σY )′σr(r)
VxVxr

Vxx

−1

2
σr(r)′σr(r)

V 2
xr

Vxx
= 0.
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Model⇒ many assets

Optimisation⇒ we require only 3 mutual funds

A Minumum risk fund to match salary risk

B Minimum risk fund to match salary×annuity risk

C Efficient, risky fund
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A: Minumum risk fund to match salary risk

Mainly cash

adjusted for correlation between salaries and

other assets

Used to minimise short-term risk
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B: Minimum risk fund to match salary×annuity risk

Mainly bonds

to minimise immediate annuity purchase risk

adjusted for correl. between salaries and other assets

C: Efficient, risky fund

Traditional efficient, risky portfolio with respect to a

salary numeraire
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Qualitative remarks

• Investment in Fund C = 1
/

local RRA

• Investment in Fund A−→ 0 as t → T

• Conjecture:

As T − t ↗, investment in Fund B−→ 0
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Problem components:

Vt

+µr(r)Vr

+
(
π − µ̃Y (t)x + σ′Y (ξ − σY )x

)
Vx

+
1

2
σr(r)

′σr(r)Vrr

+
1

2
σ2

Y 0x
2Vxx

−1

2
(ξ − σY )′(ξ − σY )

V 2
x

Vxx

−(ξ − σY )′σr(r)
VxVxr

Vxx

−1

2
σr(r)

′σr(r)
V 2

xr

Vxx

= 0.
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Complete market: σY 0 = 0

Main conclusions: optimal strategy

• Effective assets at t are

W (t) = actual pension wealth, W (t)

+risk-adjusted value of future

premiums, RAV FP

Borrow RAV FP in units of mutual fund A
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Main conclusions: optimal strategy

• Investment in risky fund C

= constant % of W (t)

constant % depends upon plan member’s relative risk

aversion, RRA

• As a percentage of W (t)

investment in mutual fund B grows over time
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Investment in Mutual Funds A, B, C:

small t0, some wealth, W (t0), accumulated

¾
0

Short in A: future premiums

- - -
Long: fund A fund B fund C

W (t0)
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Small t0 (as before)

¾
0

Short in A: future premiums

¾
¾

- - -
¾
¾

Long: fund A fund B fund C

W (t0)

Large t1

¾
0

Short in A: future premiums

¾
¾

- - -
¾
¾

Long: fund A fund B fund C

W (t1)
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Numerical example: r(t) ∼ Vasicek

Example 1:

• Relative risk aversion: RRA = 6 (moderate)

• Duration of contract: T = 20 years

• Contribution rate: 10% of salary
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Example 1: RRA = 6, T = 20
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Example 1: RRA = 6, T = 20
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Example 2: Very high RRA, T = 20

0 5 10 15 20

0
5

10
15

Time, t

X
(t

)/
a(

t,r
(t

))
 (

%
)

Prospective Replacement Ratio

0 5 10 15 20

−
10

0
0

10
0

20
0

θA(t)

θB(t)
θC(t)

Time, t

P
ro

po
rt

io
n 

of
 fu

nd

Percentage Invested in Mutual Funds A, B, C



31

Comparison with other strategies

Optimal strategy versus:

• Salary-hedged static strategy (S)

• Merton-static strategy (M)

• Deterministic lifestyle strategies:

– initially 100% in equities

– gradual switch over last 10 years into

100% bonds (B-10) or 100% cash (C-10)
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Tables show:

• Expected terminal utility, V (0, 0) (normalised):

starting at time 0

with W (0) = 0

• Cost:

– Benchmark: 10% cont. rate with optimal strategy

– Other strategies: % contribution rate to match

optimal utility
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(c) RRA = 6, T = 20

Strategy: Optimal Static Deterministic lifestyle

stochastic S M B-10 C-10

V (0, 0) -100 -134.58 -205.42 -141.00 -191.47

Cost 10.00% 10.61% 11.55% 10.71% 11.39%
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(c) RRA = 6, T = 20

Strategy: Optimal Static Deterministic lifestyle

stochastic S M B-10 B-5 A-10 A-5

Cost 10.00% 10.61% 11.55% 10.71% 11.42% 11.39% 11.88%

(d) RRA = 6, T = 40

Strategy: Optimal Static Deterministic lifestyle

stochastic S M B-10 B-5 A-10 A-5

Cost 10.00% 11.52% 12.58% 12.86% 14.04% 13.67% 14.68%
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(a) RRA = 1, T = 20

Strategy: Optimal Static Deterministic lifestyle

stochastic S M B-10 B-5 A-10 A-5

Cost 10.00% 13.79% 13.78% 20.18% 18.67% 21.39% 19.23%

(c) RRA = 6, T = 20

Strategy: Optimal Static Deterministic lifestyle

stochastic S M B-10 B-5 A-10 A-5

Cost 10.00% 10.61% 11.55% 10.71% 11.42% 11.39% 11.88%

(e) RRA = 12, T = 20

Strategy: Optimal Static Deterministic lifestyle

stochastic S M B-10 B-5 A-10 A-5

Cost 10.00% 10.61% 12.08% 11.70% 13.77% 12.65% 14.40%
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(b) RRA = 1, T = 40

Strategy: Optimal Static Deterministic lifestyle

stochastic S M B-10 B-5 A-10 A-5

Cost 10.00% 17.37% 17.36% 32.21% 29.67% 34.33% 30.64%

(d) RRA = 6, T = 40

Strategy: Optimal Static Deterministic lifestyle

stochastic S M B-10 B-5 A-10 A-5

Cost 10.00% 11.52% 12.58% 12.86% 14.04% 13.67% 14.68%

(f) RRA = 12, T = 40

Strategy: Optimal Static Deterministic lifestyle

stochastic S M B-10 B-5 A-10 A-5

Cost 10.00% 12.38% 13.17% 16.57% 19.72% 17.82% 20.77%
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Summary

• Commercial strategies can be costly

• Optimal strategy has some drawbacks:

– regular rebalancing⇒ difficult to implement??

– short selling

⇒ we need to find a compromise

⇒ future work to find a robust dynamic strategy that

takes account of plan member’s risk aversion
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r(t) = constant, r

• Case 1: π = 0, σY 0 = 0.

• Case 2: π = 0, σY 0 6= 0.

• Case 3: π > 0, σY 0 = 0.

* Case 4: π > 0, σY 0 6= 0.

Cases 1, 2, 3 have analytical solutions.

Case 4⇒ numerical solution.
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Case 4: π > 0, σs0 6= 0, 1 risky asset.

Solution by HJB equation.

• No analytical solution

⇒ numerical solution required

• V (t, x) has a singularity at x = 0

Result: Misery! (for a while).
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Static optimisation problem:

⇒ p∗(t, x) = p∗(t, x; V ) =
1

σ1

(
σY 1 − Vx

xVxx
(ξ1 − σY 1)

)

⇒ p∗(t, x) only depends upon σY 0 through V (t, x).



42

Solve the non-linear PDE:

Vt + µp∗
XVx +

1

2
σp∗

X

2
Vxx = 0

subject to V (T, x) =
1

γ
xγ

µp∗
X = π + x

(−µs + σ2
Y 0 + σ2

Y 1

)

+ xp∗(t, x; V )σ1(ξ1 − σY 1)

σp∗
X

2
= x2

(
σ2

Y 0 +
{
p∗(t, x; V )σ1 − σY 1

}2
)

.
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Numerical solution: Finite Difference Method

Problem (e.g. γ < 0) as x → 0:

V (t, x) →



−∞, if t = T

l(t), −∞ < l(t) < 0, t < T

∂V

∂t
(t, 0) → −∞ as t → T

⇒ numerical solution: unstable near x = 0 ??
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Numerical results⇒ for t < T

p∗(t, x)
√

x → φ as x → 0

Value of φ is critical!

• φ = ∞ ⇒ X(t) might hit 0

** φ = 0 ⇒ X(t) never hits 0

• 0 < φ < ∞ ⇒ X(t) might or might not hit zero

Numerical solutions suggest (**).

(... but see Duffie et al., 1997)
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Case 4: upper bound

Introduce an extra asset, R2(t), to complete the market.

dR2(t) = R2(t)
[
(r + ξ0σY 0) dt + σY 0dZ0(t)

]
.

ξ0 = arbitrary market price of risk: to be specified

More choice⇒ increased E[u(W (T ), Y (T ))]

⇒ analytical upper bounds (like Case 3), V u(t, x; ξ0).

Then V (t, x) ≤ V u(t, x) = inf
ξ0∈R

V u(t, x; ξ0)
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