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Agenda

• Portfolio credit risk.

• Vasicek large portfolio model.

• Rating change models in random environments.

• Preliminary analysis: the ‘leaky bucket’ approach.

• A general model: fluid and diffusion limits.

• Application to credit portfolios.

• Some computational results.
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1 Portfolio Credit Risk

The requirements in modelling the credit risk of a portfolio are

• Credible modelling of the interaction effects.

• Efficient computational methods

• Ease of calibration

For large portfolios it makes sense to consider large-sample approximations (law

of large numbers, central limit theorem). The approach taken here is based on

an analogy with queueuing networks.
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2 Related Work

• Vasicek – homogeneous large portfolio model (see below)

• Hull and White – extension to non-homogeneous portfolios.

• CreditRisk+ – saddle point approximations (Wilde, Gordy)

• Giesecke and Weber – gaussian approximations in a voter model.

All these models work in a “static” form, this is, they model a fixed point in

time.

• Frey and Backhaus – similar model to the one presented here using an

arbitrary continuous space state latent process and ‘mean field’ interaction.

Strong convergence results are derived.
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3 Vasicek Large Portfolio Model

Obligor i defaults if Xi < Ki where Xi ∼ N(0, 1) so Ki = N−1(pi) where pi is

the marginal default probability. Represent Xi as

Xi = ρX +
√
1− ρ2εi,

where X, ε1, ε2, . . . are independent N(0, 1). In homogeneous case pi = p1 for

all i and

P [Obligor i defaults|X] = N

(
K1 − ρX√
1− ρ2

)

≡ p(X).

Conditional distribution of proportion π of obligors defaulting is then binomial

with mean p(X) and standard deviation
√
p(X)(1− p(X)/n where n is the

portfolio size.
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For large n the standard deviation is small and we have approximately

(π > α)⇔ p(X) > α

giving the unconditional distribution

P [π > α] ∼ N

(
K1 −

√
1− ρ2N−1(α)
ρ

)

.

Our objective: do something similar in a dynamic context.
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4 Models related to Queueing Networks

• Empirical evidence (Crowder, Giampieri & Davis 2003) suggests that the

pattern of realized defaults is well represented by a latent variable model

where the latent process Xt is a 2-state (good times/bad times) economic

variable.

• Obligors move around rating categories at a faster time scale than the

economic cycle.

• These facts suggest a model in which obligors move around the rating

categories at rates depending on the latent process and occasionally default.

• There is an obvious analogy with queueing networks in which ‘jobs’ move

around ‘service stations’ for processing.

• Recent work by Choudhury, Mandelbaum et al. studies fluid and diffusion

limits for queueing networks under random environments.
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5 Rating transitions, no latent variable

For a portfolio with n obligors and K possible ratings k = 1, ..., K we define a

vector process Qn(t) taking values inNk, with each component Qnk(t) containing

the number of elements in each rating category at time t. Then,
∑
Qnk(t) is the

number of non defaulted obligors at time t. When n = 5, K = 2, the state space

of Qn(t) is as shown above. The figure shows all the possible movements given

the current credit ratings: transitions (move along the diagonal) and defaults

(move to the next diagonal).
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6 Leaky bucket analysis

π 1−π

μ

λ

βα

A B

Default

Here π is the proportion of obligors in rating category A.

Assuming α, β � μ, λ we have the mass balance equation

μ(1− π) + λπ,

giving π = μ/(μ+ λ) and a default rate

d = απ + β(1− π) =
αμ+ βλ

μ+ λ
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Since the obligors are independent in this model, the standard deviation of

cumulative defaults in [0, t] is just
√
d t

n
.

This simple analysis is surprisingly successful in predicting the mean and vari-

ance of the exact default distribution obtained by solving the forward equation

for the finite-state Markov process, if an adjustment for mean defaults is made.

However, the leaky bucket analysis doesn’t depend on the initial distribution

of the obligors’ ratings and therefore doesn’t capture the short-term default

behaviour.
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Parameters Default Statistics Default Normalized Leaky Bucket Leaky Bucket
Time Mean Std Dev Rate Def Rate Prediction Std Dev Pred

0 0.0000 0.0000 0.2356 0.2447 0.2200 0.0000
0.15 0.0369 0.0421 0.2356 0.2447 0.2200 0.0399

mu 4 0.3 0.0707 0.0573 0.2205 0.2373 0.2200 0.0554
lam 1 0.45 0.1030 0.0680 0.2032 0.2265 0.2200 0.0666
alpha 0.3 0.6 0.1316 0.0756 0.1932 0.2225 0.2200 0.0757
beta 0.2 0.75 0.1610 0.0822 0.1887 0.2250 0.2200 0.0832
sut 200 0.9 0.1883 0.0874 0.1789 0.2204 0.2200 0.0896
k 15 1.05 0.2146 0.0918 0.1700 0.2165 0.2200 0.0952
time 1 1.2 0.2393 0.0954 0.1671 0.2196 0.2200 0.1002
elem 20 1.35 0.2648 0.0986 0.1644 0.2236 0.2200 0.1045

1.5 0.2886 0.1013 0.1538 0.2162 0.2200 0.1083
Leaky Bucket prediction 1.65 0.3109 0.1035 0.1513 0.2195 0.2200 0.1118

0.22 1.8 0.3340 0.1055 0.1465 0.2200 0.2200 0.1148
1.95 0.3549 0.1070 0.1416 0.2195 0.2200 0.1176

0.104881 2.1 0.3765 0.1083 0.1394 0.2235 0.2200 0.1200
2.25 0.3967 0.1094 0.1304 0.2162 0.2200 0.1222
2.4 0.4156 0.1102 0.1262 0.2159 0.2200 0.1242

2.55 0.4345 0.1108 0.1263 0.2233 0.2200 0.1259
2.104881 2.7 0.4535 0.1113 0.1222 0.2235 0.2200 0.1274

2.85 0.4712 0.1116 0.1162 0.2197 0.2200 0.1288
3 0.4883 0.1118 0.1143 0.2233 0.2200 0.1299

0.0
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7 Fluid and Diffusion Limits

The finite state environment process defines different ‘layers’ in which the tran-

sition parameters are different.
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Conditional in the realisation of the random environment, the process Qn(t)

may be approximated by two processes

Qn(t) ' nQ(0)(t) +
√
nQ(1)(t) (1)

where Q(0)(t) is a deterministic process called the fluid limit and Q(1)(t) is a

diffusion called the diffusion limit of the sequence Qn(t). This is, conditional

on the random environment, the distribution of the process Q(t) may be ap-

proximated by a normal distribution.
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8 A General Model

The random environment process X(t) is a finite state process in continuous

time, having at most a finite number of jumps in any bounded interval of [0,∞).

To construct the process Q(t) we consider a collection of mutually inde-

pendent Poisson processes {Ai}i∈I={1,...,n} and a collection of vectors {vi} in

RK , K ∈ N, and a collection of non-negative functions of the form αi(∙, ∙, x) :

[0,∞) × RK → [0,∞) for all i ∈ I and x ∈ X . We assume each αi(t, ∙, x) is

Lipschitz bounded with respect to the second argument, this is, exist a locally

integrable function βt : [0,∞)→ [0,∞) such that

‖αi(t, ∙, x)‖ ≤ βt (2)
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where ‖ ∙ ‖ is the Lipschitz norm defined as

‖f‖ = sup

x 6= y

x, y ∈ D1

|f(x)− f(y)|D2
|x− y|D1

∨ |f(0)|D2

We define a mapping Q from Ω into D([0,∞),RK) by (ω1, ω2) 7→ Q, where

Q is the process solution to the equation

Q(t) = Q(0) +
n∑

i=1

Ai

(∫ t

0

αi(s,Q(s), X(s))ds

)

vi (3)

The law of Q(t) is PQ(∙) = P (Q−1(∙)). The probability conditional on the

environment process X(t) denoted by P ω1Q is then defined by the conditional

probability under the inverse mapping.
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We are concerned with the convergence of sequences Qη : (ω1, ω2) → RK of

the form

Qη(t)

η
=
Qη(0)

η
+
1

η

n∑

i=1

Ai

(

η

∫ t

0

αi(s,Q
η(s), X(s))ds

)

vi

for η > 0.

Theorem 1 Assume a collection of functions of the form αi : [0,∞) × RK ×

X → [0,∞) for i ∈ I and such that

|αi(t, y, x)| ≤ C(1 + |y|) (4)

for some constant C <∞, s ≥ 0 and y ∈ RK. Assume the processes X(t) and

Ai(t) defined as above and vi a collection of vectors in R
K.

Then the process Q(t) defined as the solution of the equation

Q(t) = Q(0) +
n∑

i=1

Ai

(∫ t

0

αi(s,Q(s), X(s))ds

)

vi (5)

has unique solution for a.e. ω.
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We want to infer the behaviour of the state of the network when the number

of arrivals and the number of serves per node increases while the rate of service

remains unchanged. We will present some quenched convergence results for

the process (Xt, Qt). The results obtained are two: Firstly, a quenched strong

approximation limit for accelerated sequences of the form (X(t), Q(ηt)/η), η →

∞. Secondly, a quenched weak convergence result states the convergence of

accelerated sequences of the form (X(t), Q(ηt)/
√
η) to a diffusion for a given

realisation of the random process.

9 Strong Approximations

We define a sequence of network processes {(X(t), Qη(t)/η); η > 0} associated

to (X(t), Q(t)) as the set of network processes where Qη(t) is the solution to
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the system

Qη(t) = Qη(0) +
N∑

i=1

Ai

(∫ t

0

αηi (s,Q
η(s), X(s))) ds

)

vi (6)

where {αηi (s, ∙, x)}, with x ∈ X and i ∈ I, is a collection of functions satisfying

‖αηi (t, ∙, x)‖ ≤ ηβt (7)

with βt a locally integrable function.

The interpretation of the pair (X(t), 1
η
Qη(t)) for some η > 0 is a process with

the same characteristics of Q(t) under the same environment X(t) but where

the number of servers and rates of arrivals have increased η times.
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A quenched law of large numbers for the sequence (X(t), 1/ηQη(t)):

Theorem 2 If {αηi |i ∈ I, η > 0} are Lipschitz bounded and

lim
η→∞

N∑

i=0

∫ t

0

∥
∥
∥
∥
αηi (s, ∙, x)
η

− α(0)i (s, ∙, x)

∥
∥
∥
∥ ds = 0 (8)

For ω1 ∈ Ω1 where the process Qη(t) is that

Qη(0)

η
→ Q(0)(0) as η →∞ (9)

then

Qη(t)

η
→ Q(0)(t) as η →∞ (10)

a.s. in P ω1Q , where Q
(0)(t) defined in Ω2 is the solution to the equation

Q(0)(t) = Q(0)(0) +

∫ t

0

α(0)(s,Q(0)(s), X(s))ds (11)

where

α(0)(t, ∙, x) =
N∑

i=1

α
(0)
i (t, ∙, x)vi (12)
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and the integral equation is deterministic conditional on the random environ-

ment process X(t).

The process Q(0)(t) is referred as the fluid limit of the sequence {Qη(t)}η≥0.

10 Weak convergence

It is possible to derive a quenched functional version of the central limit theorem

for (X(t), (1/η)Qη(t)) conditional on Fω1t .

To present this result, we require to define the scalable Lipschitz derivative

of a function f : D1 → D2 at x ∈ D1, D1 and D2 two Banach spaces, as the

function Λfx(y) : D1 → D2 such that

lim
y→0

|f(x+ y)− f(x)− Λfx(y)|D2
|y|D1

= 0

whenever such function exists and it is Lipschitz bounded and homogeneous,
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this is,

‖Λfx(∙)‖ <∞,

and for all λ ≥ 0

λΛfx(y) = Λfx(λy).

We note that in the case of f : Rd1 → Rd2, d1, d2 ∈ N, the operator Λfx(y)

generalises the notion of directional derivative, and whenever the differential

operator exists we have

Λfx(y) = Df(x)y

where Df(x) is the Jacobian matrix valuated at x. When the Jacobian matrix

is not defined Λfx(y) may be not unique.

For a sequence of r.v.’s defined in a measurable space (Ω,F) we will say that a

sequence of r.v.’s {Yn} converges in distribution of Y , denoted by limn→∞ Yn =d
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Y , w.r.t. P some probability measure on (Ω,F) if for all f ∈ C(Ω), the set of

bounded continuous real functions defined in Ω, limn→∞EP{Yn} = EP{Y }.

Some weak convergence results in queuing theory assume a heavy traffic

condition, this is, the arrival and total service rates are nearly the same. Here we

have no arrivals and eventually Qη(t) = 0, so no stationarity may be assumed.

Theorem 3 Assume

∑

i∈I

∫ t

0

lim
η→∞

√
η

∥
∥
∥
∥
αηi (s, ∙, x)
η

− α(0)i (s, ∙, x)

∥
∥
∥
∥ ds <∞ (13)

and

lim
η→∞

∑

i∈I

∫ t

0

∥
∥
∥
∥
√
η

[
αηi (s, ∙, x)
η

− α(0)i (s, ∙, x)

]

− α(1)i (s, ∙, x)

∥
∥
∥
∥ ds = 0 (14)

and for all x ∈ X and i ∈ I. Assume the function α(0)(s, ∙, x) has scalable

Lipschitz derivative for any values X(t) and Q(0)(t).
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For P 1 a.e. ω1 ∈ Ω1, if

lim
η→∞

√
η

[
Qη(0)

η
−Q(0)(0)

]

=d Q(1)(0) (15)

w.r.t P ω1Q , then

lim
η→∞

√
η

[
Qη(t)

η
−Q(0)(t)

]

=d Q(1)(t) (16)

w.r.t P ω1Q , where the process Q
(1)(t) takes values in Ω2 and it is the solution to

the stochastic integral equation

Q(1)(t) = Q(1)(0) +

∫ t

0

Λα
(0)
i (s,Xs, Q

(0);Q(1)(s)) + α(1)(s,Q(0)(s), Xs)ds

+
∑

i∈I

Bi

(∫ t

0

α
(0)
i (s,Q

(0)(s), Xs)ds

)

vi (17)

where {Bi(t)} is a collection of independent standard Brownian motions in

(Ω2,F2, P ω1).
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11 Application to Correlated Defaults

We propose a model for the default/rating process of a set of obligors. There

is a finite-state random environment process {X(t)|t ≥ 0} representing some

macroeconomic (or sector associated) process that influences the default/transition

rates of the obligors. The obligor credit events are independent conditional on

the realisation of the environment process and follow a Markov chain with rates

being function of the environment process.

Assume a portfolio with n obligors and K possible ratings 1, . . . , K. The

initial rating composition of the portfolio is represented by the rating distribu-

tion vector Qn(0) ∈ Rk. Qn(t) will represent the random rating distribution of

the portfolio at a later time t.

We define the index set of transition events I = {(i, j)|i, j = 1, ..., k} and

denote the transition rate from rating i to rate j, i, j = 1, ..., k, by μ(i,j)(x) =

μij(x); default rates are denoted by μ(i,i)(x) ≡ μi(x). Associated to these credit
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events we define the set of vectors {v(i,j) ∈ Rk|(i, j) ∈ I} that define the changes

in the rating distribution vector in case of a credit event. This is

v(i,j) =

{
ej − ei i 6= i

−ei i = j

where ei is the i-th canonical vector in R
k.

Under this assumptions the credit events of each obligors are identically

distributed and occur according to the first jump of a Poisson process with

rates

μ̂i(x) =
k∑

j=1

μij(x)

Once a credit event occurs at time t, the obligor defaults with probability

μi(Xt)/μ̂i(Xt) while a transition to rate j 6= i has probability μij(Xt)/μ̂i(Xt).

As stated above, the occurrence of a credit event for an obligor in the credit

rate i is given by the first jump of a Poisson process. The rate of occurrence
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depends on the environment random process but is independent of time. This is,

for a set of positive real numbers {μxij|x ∈ X , (i, j) ∈ I} we define the transition

default rates as

μ(i,j)(t,Xt) =
∑

x∈X

μxijI{Xt=x}

for (i, j) ∈ I.
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12 The Fluid Limit

According to the notation used above, we have the set of rate functions

αn(i,j)(t,y, x) = yiμ(i,j)(t, x)

and since the rate function does not depend on n is obvious that

α
(0)
(i,j)(t,y, x) = yiμ(i,j)(t, x)

satisfy the conditions of theorem 2. Using vector notation

α(0)(t,y, x) = At(x)y

where A is the infinitesimal generator of the process.

We can verify that by assuming

lim
1

n
Qn(0) = Q(0)(0)
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for all n ≥ 0 all conditions of therorem 2 hold and the fluid limit process Q(0)(t)

is the solution to the deterministic PDE system

d

dt
Q(0)(t) = AtQ

(0)(t) (18)

and whenever A = At is time independent (no environment influence) the so-

lution is given by

Q(0)(t) = etAQ(0)(t)

otherwise, since Xt has at most finite jumps in any bounded interval of time,

we can define a countable set of jump times of Xt t0 = 0, t1 < ... and define

Q(0)(t) recursively

Q(0)(t) = e(t−ti)A(xti)Q(0)(t) (19)

for ti < ti+1.
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13 The diffusion limit

Since αn(i,j) = α
(0)
i,j for all n ≥ 0 and (i, j) ∈ I we can verify that by defining

α
(1)
(i,j) = 0 for all (i, j) ∈ I the conditions in theorem 3 hold. Therefore assuming

lim
n→∞

√
n

[
Qn(0)

n
−Q(0)(0)

]

=d Q(1)(0) (20)

implies

lim
n→∞

√
n

[
Qn(t)

n
−Q(0)(t)

]

=d Q(1)(t) (21)

where Q(1)(t) satisfies a SDE which may be expressed as the following integral

equation

Q(1)(t) = Q(1)(0) +

∫ t

0

AtQ
(1)(t) +

k∑

l=1

∫ t

0

(
Q
(0)
l (t)

)1/2
BldW

(l)
t
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where W l is a k-dimensional vector of independent standard Brownian motions

for l = 1, ..., k. The matrices Bl have components

(Bl(t))ij =






−μ1/2(i,j) if i = j

μ
1/2
(i,j) if l = i 6= j

0 otherwise

It is always possible rewrite (22) as

Q(1)(t) = Q(1)(0) +

∫ t

0

AtQ
(1)(t) +

∫ t

0

B(s)dŴ
(l)
t

where Ŵt is a k-dimensional vector of independent standard Brownian motions.

In the case k = 2 the SDE is

dQ
(1)
1 (t) = −Q

(1)
1 (t)(μ1(t) + μ12(t))dt+Q

(1)
2 (t)μ12(t)dt

−(Q(0)1 (t))
1/2(μ

1/2
1 (t)dW

(1)
1,t + μ

1/2
12 (t)dW

(1)
2,t ) + (Q

(0)
2 (t)μ21(t))

1/2dW
(2)
1,t

dQ
(1)
2 (t) = −Q

(1)
2 (t)(μ2(t) + μ21(t))dt+Q

(1)
1 (t)μ21(t)dt

−(Q(0)2 (t))
1/2(μ

1/2
2 (t)dW

(2)
2,t + μ

1/2
21 (t)dW

(2)
1,t ) + (Q

(0)
1 (t)μ12(t))

1/2dW
(1)
(2,t
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That is equivalent to the the following SDE system

dQ(1)(t) = AtQ
(1)dt+B(t)dŴt

where

B(t) =

(
σ1(t) 0

ρ(t)σ2(t)
√
1− ρ2(t)σ2(t)

)

σ21(t) = Q
(0)
1 (t)(μ1(t) + μ12(t)) +Q

(0)
2 (t)μ21(t)

σ22(t) = Q
(0)
2 (t)(μ2(t) + μ21(t)) +Q

(0)
1 (t)μ12(t)

ρ(t)σ1(t)σ2(t) = −Q
(0)
1 (t)μ12(t)−Q

(0)
2 (t)μ21(t)

and

Ŵt = (Ŵ
(1)
t , Ŵ

(2)
t )

t

is a bi dimensional standard Brownian motion with independent components.
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Assuming At = A time independent, the solution of the SDE is given by

Q(1)(t) = etAQ(1)(0) +

∫ t

0

e(t−s)AB(s)dŴs (22)

with Q(1)(0) = 0. The process is a stable Gaussian system with covariance

matrix given by the integral

Cov[Q(1)(t), Q(1)(t)] =

∫ t

0

e(t−s)AB(s)B(s)tr(e(t−s)A)trds (23)

that can be calculated numerically by solving a matrix ordinary differential

equation (the Lyapunov equation).

In the general case of Xt taking values in X the process is defined similarly

to the case of the fluid limit, this is

Q(1)(t) = e(t−ti)AtiQ(1)(ti) +

∫ t

ti

e(t−s)AtiB(s)dŴt (24)

for ti < t < ti+1 where ti is the time of the i-th jump of Xt.
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14 Some numerical results

We assume a two state (two credit rates) system and 20, 50 and 100 elements.

We assume a two state external random environment where jumps occur ac-

cording to a standard Poisson process (rate 1). By sampling 1000 times the

random environment we construct both the diffusion approximation and the

exact distribution. The latter is obtained by integrating the Kolmogorov for-

ward equation associated to the process using Runge-Kutta. The parameters

are shown in the table.

X(t) = 0 X(t) = 1

μ1 0.1 0.2

μ2 0.2 0.4

μ12 0.3 0.3

μ21 0.2 0.2
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The exact and approximated distributions for the case of 20 elements and

initial distribution 50/50. We can observe that the fitting of the marginal

distributions is outstanding despite the relatively small number of elements.
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We consider the approximation to the number of survivors for different num-

ber of elements and initial distribution in Graphs 2.
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Graphs 2. Approximation to the number of survivors
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15 Concluding Remarks

• Method seems effective in predicting default performance with low compu-

tational cost.

• Investigate pricing applications: calibration to iTraxx tranche quotes.

• Risk management applications using empirical change-of-rating data.
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