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1. Introduction

What is a Spread Option ?

Two Underlying Assets: §,, S,
Spread (basis): §; -5,
Payoftt: (S,(T)-S,T)-K),

Price: V{K)=Ey e’ (S/(T)-SyT)-K), |
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Why are they important?
e Invaluable tools for hedging and speculating...

e ...1n almost all markets!

Energy Crack spread, Spark spread
Commodity Crush spread, Cotton calendar spread

Equity Index spread
Bond NOB spread, TED spread

Credit Derivatives Credit spread

e Indispensable for managing “‘correlation risks”

": ‘
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Hedging Using Spread Options

An o1l refinery firm can short a call on the spread of oil
future prices: F;, — F

* F):long output = Refined product
 F_:short input = Brent crude

K : strike = marginal conversion cost
e (F(T)- F/(T)-K), :payott of the crack spread
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Hedging Using Spread Options

If the spread is greater than the cost the option 1s
exercised by the holder and the firm meets its
obligation by producing

If the spread is less than the cost the option expires
worthless and the firm will not produce

Either way the firm earns the option premium

1.e. a call on the spread replicates the payoff
structure of a firm’s production schedule

Also used to bridge delivery locations
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Speculating Using Spread
Options
A speculator can trade the correlation between two prices,

indices or bond yields (LTCM):

e If we speculate on a correlation drop, we long a call on
spread

e If we speculate on a correlation rise, we short a call on
spread

The reasoning 1s similar to going long on a vanilla call on a
single asset if we think volatility will rise, with the

variance of the spread replacing the volatility of the single
asset

© 2004 Centre for Finance Research, Judge Institute of Management, University of Cambridge
www-cfr.jims.cam.ac.uk




Speculating Using Spread
Options
The spread variance depends on:

e volatility of the long leg

e volatility of the short leg

e correlation between the two

The first two can be traded by options on individual prices
We need a spread option to trade the third (Mbanefo 1997)
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The Problem

Set up good models for the dynamics of the factors which
accommodate stochasticities in interest rates, volatility...

Compute the price of a spread option under such models

Study how the price depends on the model specification
in particular the volatility and correlation structure

Design appropriate calibration procedures
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2. Spread Option Pricing Review

Existing Approaches: |

Model the spread as a geometric Brownian motion:
X:=5,-5,
dX =X (udt+ cdW)
Apply the Black-Scholes formula:
ViK) =Eq [ [ §,(T) - S,(T) K1, ]
=Eq [ e [X(T) -K] , ]

Simple but dangerous!

- spread can go negative
- a multi-factor problem by nature
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Existing Approaches: 11

°* Model §,;,S, as geometric Brownian motions:
dS,= S, (u, dt+ o, dW,)
ds,=S, (u, dt+ o,dW,)

where E, [dW;dW,]= pdt
e p 1s the correlation between the prices

 Apply a conditioning technique to turn the two-dimensional
integral into a single one

(K Ravindran 1993, D Shimko 1994)
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Vp(K)y=e | j:K (S, =S, —K)f,(S,,S,)dS,dS,

@ OO

T U: [S, = (S, +K)1, fl‘z(Sl\Sz)dSl} £,(8,)dSs,

J0 ,+K

=™ C(8,)£,(S,)dS,

where
e fr(l+) :joint p.d.f. of S,(T), S,(T) ... bivariate log-normal
f712 ¢ +) - conditional density of S,(7) given S,(7) ... log-normal

f>(-)  :marginal density of S,(7) .... log-normal

C (-) :anintegral similar to the Black-Scholes call price
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Existing Approaches: 11

Simple, two-factor, but...

Only works when distributions are normal
Prices are the only sources of randomness...
No stochastic interest rate or convenience yield
Constant (deterministic) volatility

Trivial correlation structure
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Existing Approaches: 111

Variants on the previous approach
Approximation by piecewise linear payoft function
(N D Pearson 1995)
Edgeworth series expansion
(D Pilipovic & J Wengler 1998)
Lattice and PDE methods (Brooks 1995)

A GARCH model with co-integration is also proposed and the

spread option 1s valued using a Monte Carlo method (J C Duan, S
R Pliska 1999)

Gaussian mixture (C Alexander 2003)
Survey (R Carmona & V Durrleman 2003)
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3. Fourier Transform Techniques
for Vanilla Options

What is a Fourier Transform ?

B p)=| f(x)-e™dx
P> F() === gv)-e " dv
27T I

e probability density functions — characteristic functions

e differentiation w.r.t. x — multiplication by -iv and inverting

/ _L ~ P o, Tivx
fo=——| (-iv-g@)-e""dv

® option pricing = integration of p.d.f. times payoff
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... and a Fast Fourier Transform?
e An efficient algorithm for computing the sum
N-1 27
Yk=ZXj-e N for k=1,....N
for a complex array X=(X;) of size N

e Reduces the number of multiplications from an order of N * to
Nlog, N Strassen (1967)

e Crucial for approximating the Fourier integral as a function of D

J: f(x)-edx = jf f(x, Ye' " Ax
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Black-Scholes via Fourier Transform

e S Heston (1993), G Bakshi & D B Madan(1999), P Carr
& D B Madan (1999)

To price a European call under Black-Scholes we need:

* s;:=log(S,) :log-price of the underlying at maturity

e q4.) . risk-neutral density of the log-price s,

e k:=log(K) : log of the strike price

e Cuk) . price of a T -maturity call with strike e*

e f() : characteristic function of the risk-neutral density g;
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Characteristic function under
Black-Scholes

dinS = (I’—%O‘z)dt+0'dW

= 5, ~N(SO+(I’—%62)T,62T)
= P (u) = E, [eiu.ST ]
=J°; e q.(s)ds

:exp[[so +(r—%0'2)T}—%O'2T.u2]
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Fourier transform of the (modified) call
(P Carr & D B Madan 1999)

C,(k)=E,[e (S, -K), |

= j: e (es —e" ) g, (s)ds

e The call price 1s not square-integrable since
CAk) > S, , k—> -0

e Define the modified call price for some o >0
c(k) = exp(ak) C;(k)
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e The Fourier transform of the modified call price ¢, 1s given by

v, ()= _e"e, (k)dk

B J.Ooe_rTe(aHU)k (e' —e")qy (s)dsdk

o —O0 k

@ OO

) .
— e—rTqT (S) e(OH—lZ))k (es . ek )dde
o 00 | Ja+1+iv)s

- J—oo e_rTqT (S) (a+iv)(a+1+iv) s

e "¢ (v-(a+Di)

(a+iv)(a+1+iv)

 But @, is also known in closed form!
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e Inverting thus yields the call price:

(k)_—j (v)dv

e Approximate this, using trapezoid or Simpson's rule, with a finite sum and
then apply the Fast Fourier Transform

—-ak,, N-1
Cr(k, )= ° Ze_ivjkm Yr (Uj )77
2w 5
—ak,, N-I o _%jm
2w “ O[ (UJJUJ ‘
for m=0,...,N-1 , where
27

v, =(=N/2m  k,=m=N/DA  An="F

Note: With an N grid for the Fourier sum this gives option prices with N
equally spaced strikes
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Extending the payoff

By modifying the input function of the inverse transform

W (-) we can handle the following instrument with the
same technique:

o [etrtE —ek] : call on bonds ( s, is now the short rate)
* [(A-s;+B)—k], : call on yields

* P(sy) : payoftt contingent on polynomial in s

* H(s;) :caneven do general payoff in C~ via Taylor
series expansion! (G Bakshi & D B Madan 1999)
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Extending the distribution

e Normality can be relaxed...
e Explicit expression of the p.d.f. not needed
e Key: Characteristic functions!
e The underlying can evolve as
- O.U. or C. I. R. processes
- Affine diffusion with jumps

- VG (Variance Gamma) process...

Many of the above have no analytic density but their characteristic
functions are known

* Needed for spreads on prices of pseudo-commodities such as kwH
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Extending numbers of factors

e Stochastic volatility, stochastic interest rate... can be incorporated

ds = Sr dr++v aw,)

dv=rx,(u, —v)dt+~/v dW,
dr=x_(u, —r)dt+oc.dW,

... as long as the factors have analytic characteristic functions

e This includes pretty much all the diffusion models in the literature:

e  Multifactor CIR models (Chen-Scott...)
* General affine diffusion models (Duffie, Kan, Singleton...)
* Gaussian interest rate models (Longstaff-Schwartz...)

» Stochastic volatility models (Heston, Bates, Hull-White...)
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Extending the number of assets

 Now consider options whose payoffs are contingent on two assets
\YRAD

 Example (Bakshi & Madan 1999): a generalisation of European
call with the following payoff: (esl(T) _eh )+ : (esz(T) _ ek )

+

We can price it in a similar fashion
cr(k,k,) =exp(ak, +a,k,) C.(k k)

ea1k1+a2k2 jk J‘k e—i’T (esl(T) . ekl ) (esz(T) — ek2 )QT (Sla Sz)dszdSl
1 YKo
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e (Consider i1ts Fourier transform

W, (Ul , 1)2) = J‘: J‘:o o Uikativak, C; (kl : kz )dkzdkl

_ e ¢ (v, — (o, +Di,v, — (&, +1)i)
(o, +iv)(a, +1+iv)(a, +iv,)(a, +1+iv,)

e Inverting thus yields the option price

Lo Lo o itki=ivsks v, (,,0,)d0,dv,

-k, —ok
e ILSECOLY)

C, (k. ky)=
(2)?

e Compute this with a two-dimensional FFT
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Moral of the story

Fourier Transform

Probability density > Characteristic

function function
Integrating Multiplication by
the payoff a suitable constant

v v

Option price Inverse Transform Transform of

F1 < . .
(modified) Option price
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4. Pricing Spread Options with the FFT

e Letus now try to price a call on the spread §; - S,

V,(k)=E,le (S, - S, - K), |

(® OO

=e " _[ (e —e” —e")q,(s,,s,)ds,ds,

—oo0 Jog(e’2 +¢*)

=e"’ Lz (e —e™ —e*)q,(s,,s,)ds,ds,

* Big problem: the exercise region €2 to be integrated over
has a curved boundary

[ s s
Q:=1(s,s5,)e R’ | " —e” — ¢ ZO}
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The simple 2-D FFT (Bakshi & Madan 1999) trick
will not work here!
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Approximating the Exercise Region

e Approximate it with rectangular strips (Riemann) as

V. (k)= e_’”T_[ L (e —e™ —e")q,(s,,5,)ds,ds,

N-1
~ e_’”TZI L (e —e™ —e*)q,(s,,s,)ds,ds,
u=0 .

e The integral can be computed over each rectangular
region 2, u=0,...,N-1
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Riemann Approximation

Riemann approximation with rectangular strips
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e We DON'T have to do N integrals!!!
e Assingle 2-D transform will produce NXN of
= = S1 S5 k
e'—e?t—e s, S, )ds.ds
J‘kl<m> sz(n)( )47 (81, 8,)dsds,
for mn=20, ..., N-1

e These are sufficient for the N components we require since

for different strikes k of the spread option we only need to pick
different components to sum and no additional transform 1s needed
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Why the FFT?

e Consider the following model :
ds, =8, (r i+ Jv,dw,)
dS, = S,\rdit+ v, aw,)
dv,= K, (4, —V,)dt +|v,d W,

dv,=k,(u, —Vv,)dt+v,dW,
with E, [dW;dW,] = p, dt

e Direct generalisation of 1-D stochastic volatility models
with non-trivial correlation!
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e No existing method can handle this!
- conditioning trick won't work
- lattice obviously fails...
- a PDE 1n 4 space variables
- slow convergence for Monte Carlo

* But easy (relatively) with the Fourier transtorm approach!
- as the number of factors go up the payoff structure based on the
price differences remains the same
- the characteristic function involves more parameters and
complicated expressions (naturally) but 1s still known 1n
closed form
- the transform will still be two dimensional
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5. Computational Results

Athlon 650 MHz with 512 MB RAM running Linux

Code in C++

Invoke Simpson's rule for approximation of the

Fourier integral

Use the award winning FFTW code ("Fastest Fourier Transform in
the West") written by M Frigo and S Johnson from MIT (1999)
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Pricing Spread Options under
Two-factor GBM

e First we compute spread option prices with the model
(Existing Approach II):

where E, [dW;dW,]= pdt

 We compare prices to those obtained by direct 1-D
integration (using conditioning)
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Errors in Spread Prices

Error of Epread Oplion Frices acrozs Moneynass and Malurily wilh Low Volalility

Ervar (b poi i)
CHIRE |LEHaE pRIN )

ar

2.5 s 1.1 1

T Maluri KIS -8 M
¥ 8, -5 Maneynes= 1 Maiurily =813 KA, —3,) Manayness

Errors in Spread Prices across Strikes and Maturities for the FFT Method
with High and Low Volatility N=4096
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Error Variation With Strikes

Strike Analytic FFT| Error (b.p.)
0 6.56469 6.564078| 0.932488
0.1 6.52267 6.522448| 0.341628
0.2 6.480852| 6.480436| 0.641932
0.3 6.439226| 6.439017| 0.324435
0.4 6.397804| 6.397531| 0.426712
0.5 6.356578| 6.356316| 0.410849
0.6 6.315548| 6.315321| 0.359201
0.7 6.27472 6.27449] 0.367451
0.8 6.234087| 6.233878| 0.335393
0.9 6.193652 6.19345] 0.325424
1 6.153411] 6.153223| 0.306302
1.1 6.113369| 6.113193| 0.288202
1.2 6.07352 6.073361] 0.261818
1.3 6.03387[ 6.033721] 0.247201
1.4 5.994414| 5.994279 0.2244
1.5 5.955153 5.95503| 0.205267
1.6 5.916084| 5.915977( 0.181615
1.7 5.877211| 5.877117| 0.161329
1.8 5.838531 5.83845| 0.138798
1.9 5.800047 5.79998| 0.115989
2 5.761753| 5.761697| 0.098485

Maturity = 1.0

Interest Rate = 0.1

Initial price of Asset 1 = 100
Initial price of Asset 2 = 100
Dividend of Asset 1 =0.05
Dividend of Asset 2 = 0.05
Volatility of Asset 1=0.2
Volatility of Asset 1=0.1
Correlation = 0.5

Number of Discretisation N = 4096
Integration step n = 1.0
Scaling factor oo = 2.5

Table 1. Two-factor spread option prices
across strikes
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Accuracy of Alternative Methods

( Athlon 650 MHz with 512 MB RAM )

Fast Fourier Transform Monte Carlo
Number of Number of Time Steps
Discretisation | Lower = Upper Simulations 1000 2000
512 4.44 25.6 10000 129.15 | 0.051839 | 70.81 | 0.050949
1024 1.13 13.9 20000 22.34 1 0.036225 | 40.67 | 0.035899
2048 0.32 12 40000 744 10025737 | 7.63 | 0.025733
4096 0.1 3.65 80000 18.34 1 0.018076 | 494 |0.018184

Table 2. Accuracy of alternative methods for the two-factor geometric Brownian
motion model in which the analytic price is available using direct
integration: Error in basis points
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Impact of Volatility and Correlation

Correlation
0.5 0 0.5
6.675496 8.494941 9.979849
T | o1 6.675800 8.495493 9.981407
Z (0.454684) (0.649928) (1.561482)
= .
£ 7.510577 10.549590 12.870614 Maturity = 1.0
2 || o2 7.511055 10.550798 12.873037 Eﬁfﬁiﬁj‘:";gia 100
S (0.636531) (1.145356) (1.882598) Initial price of Asset 2 = 95
Dividend of Asset 1 =0.05
9.712478 13.261339 16.01200 Dividend of Asset 2 = 0.05
0.3 9.714326 13.264996 16.18352 Volatility of Asset 1= 0.2
(1.901766) (2.757088) (3.965540)

Strike of the spread option = 5.0

The first value is computed using the Fast Fourier Transform method.

The second value is the analytic price computed using the conditioning technique (the one-
dimensional integral is evaluated using the qromb.c routine in Numerical Recipes in C ).
The third value is the error of the FFT method in basis points.

Table 3. 2-factor spread option prices across volatilities and
correlations
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Pricing Spread Options under Three-factor
Stochastic Volatility Models

ds, =S, (r dt+o,\vaw,)
ds, =S, (r dt+o,\vaw,)
dv = k(U —v)di + 6, vdW,

EQ[dWl dW,] = pdt EQ[dWl dW.,] = p,dt EQ[dW,, dW,] = p,dt
e (Characteristic function 1s known in closed-form so that the FFT
method is applicable

e Benchmark with Monte Carlo and finite difference methods
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Characteristic Function of the 3-Factor Model

&, (u,,u,) = Eg [exp(iu,s,(T) +iu,s,(T))]
= exp[iu1 (rT + 5, (O)) +iu, (rT + 5, (O))

. 2ln[1—(9_r)(l_eT)j+(9—F)T

o’ 20

v—

L 2= —(0)
20— (0 -T)1—e)
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Computing Time of Alternative Methods

( Athlon 650 MHz with 512 MB RAM )
Monte Carlo: 1000 Time Steps

Number of 10 Strikes 100 Strikes
Simulations GBM SV GBM SV
10000 382 | 14487 | 4195 | 151.75
Fast Fourier Transform 20000 76.22 288.09 83.81 303.31
Number of 10 Strikes 100 Strikes 40000 152.5 576.25 168.48 606.53
Discretisation| GBM SV GBM SV 80000 | 304.95 | 11529 | 3352 | 1212.76
512 1.04 111 11 12
;8421: 14é.24186 14 5.6544 145%482 14; ?734 Monte Carlo: 2000 Time Steps_
4096 7445 | 81.82 | 7647 | 8127 Number of 10 Strikes 100 Strikes
Simulations | GBM SV GBM SV

10000 75.57 287.41 79.83 295.21
20000 157.28 | 574.18 159.08 590.23
40000 303.37 | 1149.25 | 317.49 | 1184.32
80000 606.4 | 2298.37 | 636.33 | 2359.05

Table 4. Computational time (seconds) of alternative methods for the two-factor
Geometric Brownian motion model and the three-factor Stochastic

Volatility model
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Spread Option Prices by Alternative Methods

Fast Fourier Transform
N Lower Upper

512 5.059379 15.068639
1024 15.062695 | 5.067405

2048 15.063545 | 5.065897
4096 |[5.063755 |5.064492

Explicit Finite Difference

No. of Discretisation Monte Carlo Simulation

Space Time Price Number of
100 * 100 * 100 400 5.0845 Simulation| Steps Price error)
100 * 100 * 100 1600 5.0769 1280000 1000 | 5.052372 0.004301
100 * 100 * 100 | 2500 5.076 1280000 | 2000 | 5.053281 | 0.004297
100 * 100 * 100 10000 5.0748 1280000 4000 5.037061 0.004286
200 * 200 * 100 1600 5.0703 2560000 1000 5.04989 0.003039
200 * 200 * 200 1600 5.0703 2560000 2000 5.051035 0.003039
200 * 200 * 100 2500 5.0694 2560000 4000 5.042114 0.003037
200 * 200 * 100 10000 5.0682 5120000 1000 5.047495 0.002148
300 * 300 * 100 4000 50668 5120000 2000 5.046263 0.002148

Table 2. Accuracy of alternative methods for the three-factor
Stochastic Volatility model
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Price Variation With the Volatility of the

Stochastic Volatility

Spread Option price

6.65

N
(@)

N
wn
wn

=
=~
h

(=)
~

6.35

6.3

0.01 0.02 0.03 0.04
Volatility of Volatility

0.1

0.2

Stochastic Volatility
parameters

T=1.0
r=0.1
K=20
S,(0)=100
S,(0)=98
0,=0,=0.05
o,=10
o,=05
p=0.5
v(0) =0.04
k=1.0

1 =0.04
p,=-0.25
p, =—0.5

Figure 2. Spread option prices under Three-factor Stochastic Volatility Model

with varying volatility o, of the stochastic volatility V
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Price Variation With the Mean Reversion
Rate Of VOlatility Stochastic Volatility

parameters
T=10
6.62 r=0.1
K=20
6.6
S,(0)=100
S 658 5,(0)=98
Q-‘ — —_—
£ 6.56 0,=0,=0.05
g / o,=1.0
3 O &, =0.5
£ 652 =05
6.5 v(0) =0.04
' o, =0.05
6.48 ‘ ‘ ‘ ‘ ‘ ‘ u=0.04
0.125 0.25 0.5 1 2 4 8 p,=-0.25
Mean Reversion Rate of Volatility p, =-0.5

Figure 3. Spread option prices under Three-factor Stochastic Volatility Model
with varying mean reversion rate K, of the stochastic volatility V
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Comparison of Two-factor and Three-

[ ]
factor Prices Stochastic Volatility
parameters
T=10
0 3 r=0.1
K=20
0.2 $,(0)=100
0.1 S.(0)=98
Price 0,=0,=0.05
0
Differentials o,=1.0
-0.1 c,=05
-0.2 p=0.5
e »(0) =0.04
00 o,=0.05
Correlation of © g ‘ k=1.0
Asset 1 and ;r A Correlation of Asset 1= 0.04
Volatility TN 2 and Volatility

Figure 5. Price difference between Three-factor Stochastic Volatility Model and
the Two-factor Geometric Brownian motion model (with implied
constant volatilities and correlation)
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Comparison of Two-factor and Three-
factor State Price Densities
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State-Price Densities
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State-Price Densities of Constant and Stochastic Volatility models,
with volatility of (a) 5% (b) 50%
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A Stochastic Volatility Model with
Jumps
ds, = (r— 8, — -6y — A )dt + 0 vdW, +log(1+ J )dN,
ds,=(r—5, — Eofv — A p,)dt + 0,\vdW, +log(1+J,)dN,
dv = k(i —v)dt +~JvdW,

where N, N, are orthogonal Poisson processes independent of
W, W, W with constant arrival rates A, 4,

* Specifically Q(dN i(t) =1)= /ll,dt with probability generating
functions EQ [SN"(t)] = exp(ﬂi (s — D]
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Market Calibration

Difficult to obtain OTC spread option data

A challenging econometric task because...

* Absence of closed-form expressions for risk-neutral and objective probability
density functions

e Presence of a latent variable the stochastic volatility process

e Difficult to combine the spot price and panel option price data (a highly non-
linear function in the log-spot price) optimally

e Neither the Maximum Likelihood (ML) method nor Kalman filters can be
applied (the common obstacle faced by SV model estimation)

Furthermore, there are two underlying assets now requiring

e Simultaneous estimation of two combined stochastic volatility models
e (alibration of a correlation surface

e Possibility of “correlation smiles” and “correlation skews”
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Recent Advances in the Estimation of the
Stochastic Volatility Models

Extensive interest in estimating single-asset SV models and some of the most

promising econometric techniques include:

 Generalized Method of Moments (GMM):

Hansen (1985), Pan (2000), Bollerslev & Zho (2000)
e Simulated Method of Moments (SMM):

Duffie & Singleton (1993), Bakshi,Cao, Chen (1997, 2000)
o Efficient Method of Moments (EMM):

Gallant & Tauchen (1996), Chernov & Ghysels (2000)

However, due to the complexity and computational burden, very few have
considered the problem of estimating a multi-asset SV model!
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Extension to Multiple Assets

Data assumed available:

e  spotprices 3,,9,

. a panel of vanilla option prices on individual assets across strikes and
maturities e.g.

- calls on asset 1: (:11’11 n =1.,N,

- calls on asset 2: (AZ';Z n,=1,.,N,
Model:
«  Three-factor Stochastic Volatility: (S,,S,,V)

Parameters to be estimated:
0, :={51,0'1,p1,7c,,u,av} 0, = 52,0'2,,02,K,,Lt,0'v} 0, 3={,0}

e the first two sets ®,,0, contain structure parameters when the model is each
viewed as single asset SV models

. ®, contains the parameters which are crucial in determining the state-
dependent correlation structure between the underlying assets
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Outline of the Calibration
Procedure

l. For i=1,2 , conduct parallel estimation of structural parameters
n @i based on panel data of call prices C;" n, =1,....,N using
either SMM, Ordinary Least Squares or any previously
mentioned single-asset SV model estimation procedure

2. Based on the structural parameters obtained filter the unobserved
volatility process ¥V, with gn OLS procedure on the combined

option data C (1), C 2 (1)

3. Estimate the correlation-dependent parameters in ®, by...
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Estimation of correlation
sensitive parameters I

If reliable market data on spread option prices are unavailable,
* Use the spot price time-series {§1 (1), §2 (t)}

* Compute the correlation function between the terminal spot prices S (T'), S, (T)
conditional on § (7), S, (1), v(t) by differentiating the characteristic
functions and evalluating the second moments

* Fix the parameters in ®,,®, which appear in this correlation function to the
estimates obtained so far so that the spot price correlation is a univariate function

in ,OE ®0

e Manipulate p to take a forward view on the spot price correlation using this
function or evaluate its inverse at the historical value of the spot price correlation
for an optimal estimate £ of p
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Correlation structure between
asset prices under SV

e This refers to the terminal correlation between S,(7), S,(T)
conditional on the time-t state x,=(s,(?), s,(¢), v(¢)) over the horizon

[taT] VIZ(T)
\/Vn(T)sz (T)
V(T =By [ ((T) = Bl s(T)1) (s(T) ~ Bgls (D]

e _(90.) o (36, ) 3,

du’ |\ du, du,du, |\ du, )\ du,
70 (3¢ \(90.) 90 (3¢,
oudu, |\ du, )\ du, du, |\ du,

e (Can be calculated by differentiating the characteristic function
using Maple

pT) =

u=0
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Correlation between Asset Prices as a Function of
Correlation Parameters between Asset Prices and Volatility

Correlation between Aszset Prices

T=10
r=0.1
S,(0)=100
S,(0)=96
0,=0,=0.05
o,=1.0
o0,=05
p=09
v(0)=0.04
o,=0.05
k=1.0

1 =0.04
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Excess Correlation at Maturity
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Correlation at Maturity
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Estimation of correlation
sensitive parameters 11

If spread option price data V" (r) are observed for a range of strikes
and maturities

e Take the parameter estimates and filtered volatility obtained above
as fixed and compute the dependence of the theoretical spread
option price V" (t; p) on pP€ O, using the FFT pricing method

e Minimize the sum-of-square pricing errors to obtain an estimate

0= argminii‘\/"(t;p)—vn(t) 2

PE®y =0 n=l
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Conclusions and Future Work

Existing approaches are unable to price spread options beyond
two-factor GBM models

The Fast Fourier Transform provides a robust method for pricing
spread options with more factors under stochastic volatility and
correlation, general affine models, etc

Computation times do not increase with the number of random
factors 1n the diffusion model

Method 1s applicable to other exotic options

Also have a 4-factor model which allows full freedom to the future
correlation surface...

Fast wavelet transform O(N) versus O(N log N) for FFT

© 2004 Centre for Finance Research, Judge Institute of Management, University of Cambridge
www-cfr.jims.cam.ac.uk




