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Pricing in a complete market

• All assets are replicable

• Arbitrage pricing theory gives a unique price with either:

– The replicating portfolio
– The unique state price density
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Pricing in an incomplete market

• Not all assets are replicable

• Arbitrage pricing theory can only give bounds on the prices of non-
replicable assets using either:

– Super and sub replication
– The infinite number of state price densities

• Soner, Shreve, and Cvitanic(1995) show that this bound can be
impractically wide

4



3 methods for pricing in an incomplete market

• Pick one state price density out of the infinite number of possible state
price densities

– Minimize the distance to a prior density (Rubenstein(1994))
– Minimize the squared hedge error (Follmer and Schweitzer(1991))

• Utility maximization approach. Find the price of the asset which makes
an investor indifferent to holding it in their portfolio. (Davis(1997) and
Monoyios(2001))

• Tighten the arbitrage pricing bounds by ruling out good-deals as well as
arbitrage (restrict the set of possible state price densities)

– Good-deals as investments with a sufficiently high Sharpe Ratio
(Cochrane and Saa-Requejo(1999))
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– Good-deals as investments with a sufficiently high utility (Cerny and
Hodges(2001))
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Real World and Subjective Probability Measures

• The real world probability measure describes the actual distribution of
future payoffs and prices

• Each of the three methods mentioned above assume that this measure
is known to some extent

• In practice this measure is subjective as it depends on a number of
unobservable and/or stochastic factors such as consumer confidence,
fiscal policy and nature

• Represent uncertainty in the real world measure with multiple subjective
measures
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One period case - set up

• Two times - t = 0 and t = 1

• Uncertainty is represented by K states of the world at t = 1 - ω1, . . . , ωK

• There are M subjective probability measures, P 1, . . . , PM , each of which
assigns positive probability to a subset of the K states

• The state probabilites across the probability measures are given by P

P =




P 1(ω1) . . . PM(ω1)
... ...

P 1(ωK) . . . PM(ωK)
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• There are N assets whose payoffs across the states are given by δ

δ =




δ1(ω1) . . . δ1(ωK)
... ...

δN(ω1) . . . δN(ωK)




• The expected payoffs of the assets across the probability measures are
given by C

C = δP =




E1[δ1] . . . EM [δ1]
... ...

E1[δN ] . . . EM [δN ]




• Prices of the assets are given by S ∈ <N

• Portfolios are given by θ ∈ <N
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Agents

• Agents are defined by a strictly increasing and continuous utility function
U : <M

+ → < and a finite expected endowment e ∈ <M
+

• The agent’s budget feasible set is given by the set of portfolios with
zero initial price which lead to non-negative wealth under each subjective
measure

X(C, S, e) = {e + C ′θ ∈ <M
+ : θ ∈ <N , θ′S = 0}

• The agent’s optimization problem is to mazimize utility subject to the
budget constraint

maxU(c)

s.t. c ∈ X(C, S, e)
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Equilibrium and the economy

• There are Z agents defined by utility functions, U1, . . . , UZ, and
endowments, e1, . . . , eZ

• The economy is given by the set of agents and the expected payoff
matrix, [(Ui, ei)Z

i=1, C]

• An equilibrium for the economy is given by a portfolio for each investor
and a price vector, (θ1, . . . , θZ, S), such that θi solves agent i′s
optimization problem for i = 1, . . . , Z and

∑Z
i=1 θi = 0
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Strictly acceptable opportunities and optimality

• An equilibrium can not exist if a solution to an agent’s optimization
problem does not exist

• Definition: Given the economy and a price vector, a strictly acceptable
opportunity (SAO) is a θ ∈ <N such that either:

– θ′S ≤ 0 and C ′θ > 0
– θ′S < 0 and C ′θ ≥ 0

• Theorem: A solution to an agent’s optimization problem exists if and
only if there are no SAOs

• Result: The absence of SAOs is a necessary condition for the existence
of an equilibrium
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Measure price vectors and strictly acceptable
opportunities

• Definition: Given the economy and a price vector, a measure price
vector (MPV) is a w À 0 in <M such that S = Cw

• If a MPV exists the prices of assets and portfolios are equal to the inner
product of their expected payoffs with the MPV

• The ith component of a measure price vector is the price of an asset that
gives an expected payoff of 1 under the mth probability measure and 0
under all others. Thus, w can be interpreted as Arrow-Debreu securities
defined over the probabilty measures rather than the states

• Theorem: There is a MPV if and only if there are no SAOs
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The no-arbitrage framework as a special case

• Proposition: If P is the (K ×K) identity matrix IK, i.e. there is one
probability measure for each state placing unit mass on that state and 0
on all others, then this framework reduces to the no-arbitrage framework

• Proposition: If there are no SAOs, then there are no arbitrage
opportunities

• Thus if there is a measure price vector then there is a state price vector

• Proposition: There is a MPV if and only if there is a representative
state price vector (RSPV) - a state price vector q such that q = Pw with
w À 0
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Acceptable completeness and uniqueness of the MPV

• Definition: The market is acceptably complete if for every x ∈ <M

there is a θ ∈ <N such that C ′θ = x, i.e. all assets are replicable in
terms of expected payoffs in measures

• Theorem: The MPV is unique if and only if the market is acceptably
complete

– If the market is not acceptably complete will be an infinite number of
MPVs

• Proposition: If the market is complete than the market is acceptably
complete
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Derivative pricing

• Since the absence of SAOs is a necessary condition for the existence of
an equilibrium, only economies and price vectors which preclude SAOs
are allowed

• Let Q = {C ′θ : θ ∈ <N} denote the expected payoffs market subspace
or the expected payoffs obtainable by trading in the N assets

• Let r ∈ <M denote the expected payoffs of a derivative under the M
probability measures

• If r ∈ Q then we say that the derivative is replicable (in terms of expected
payoffs)

• Proposition: If r ∈ Q, C ′θ = r and w is a MPV, then the unique price
of the derivative is given by θ′S or r′w
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• If there is a unique price in the no-arbitrage framework then there is also
one in this framework. However, there may be a unique price in this
framework even if there is not one in the no-arbitrage framework

• If r /∈ Q then upper and lower bounds for the derivative price may be
obtained by super- and sub-replication

– An upper bound for the price of the derivative is given by the following
super-replication LP:

min
θ

θ′S

s.t. C ′θ ≥ r

– A lower bound for the price of the derivative is given by the following
sub-replication LP:
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max
θ

θ′S

s.t. C ′θ ≤ r

– Corollary: The pricing bound obtained in this framework is at least as
narrow as the pricing bound obtained in the no-arbitrage framework
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Good-deal pricing

• Hansen and Jagannathan(1991) showed that placing an upper bound
on allowable Sharpe ratios implied an upper bound on the volatility of
discount factors consistent with observed prices

• Cochrane and Saa-Requejo(1999) termed investments with Sharpe ratios
above this upper bound good-deals, and argued that such opportunities
should not exist because investors would want to trade good-deals as
well as arbitrages

• The assumed absence of such good-deals placed a good-deal upper bound
on the volatility of discount factors. The valuation bounds resulting from
the good-deal restricted set of discount factors is then shown to be
narrower than those given by standard arbitrage pricing theory which
considers the entire set of discount factors
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• Cerny and Hodges(2001) extended the idea of good-deals to arbitrarily
defined sets of investments and to sets of investments determined by
utility functions

• Carr, Geman, and Madan(2001) derive this asset pricing framework by
assuming that strictly acceptable opportunities should not exist because
investors would want to trade such opportunities

• Thus, the method that Carr, Geman and Madan(2001) use to derive
this asset pricing framework can also be can be considered a good-deal
approach where a good-deal is a SAO
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Multiperiod case - set up

• T + 1 times - t = 0, . . . , T

• Uncertainty is represented by K states of the world an a filtration F

• M subjective probability measures, P 1, . . . , PM

• The price process of the N assets is given by S = {St : t = 0, . . . , T}

• The dividend process of the N assets is given by δ = {δt : t = 0, . . . , T}

• A trading strategy is given by θ = {θt : t = 0, . . . , T}

• The payoff process generated by a trading strategy θ is given by Y θ =
{Y θ

t : t = 0, . . . , T} where:
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Y θ
t (ωk) = θt−1(ωk)′(St(ωk) + δt(ωk))− θt(ωk)′St(ωk)

• The expected payoff process generated by a trading strategy θ is given
by Rθ = {Rθ

t : t = 0, . . . , T} where:

Rθ
t (ωk) =




E1
t−1[Y

θ
t ](ωk)
...

EM
t−1[Y

θ
t ](ωk)


 (1)

• Let L denote the space of M dimensional processes from t = 0, . . . , T
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Agents

• An agent is defined by a strictly increasing and continuous utility function
U : L+ → < and a bounded expected endowment e ∈ L+

• The agent’s budget feasible set is given the trading strategies that lead
to non-negative expected payoff processes

X(δ, S, e, F ) = {e + Rθ ∈ L+ : θ ∈ Θ}

• The agents optimzation problem is to maximize utility subject to the
budget constraint

maxU(c)

s.t. c ∈ X(δ, S, e, F )
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Equilibrium and the economy

• There are Z agents defined by utility functions, U1, . . . , UZ, and
endowments, e1, . . . , eZ

• The economy is given by the set of agents, the dividend process and the
filtration, [(Ui, ei)Z

i=1, δ, F ]

• An equilibrium for the economy is given by a trading strategy for each
agent and a price process, (θ1, . . . , θZ, S), such that θi solves the ith

agent’s optimization problem for i = 1, . . . , Z and
∑Z

i=1 θi = 0

24



Strictly acceptable opportunities and optimality

• An equilibrium can not exist if a solution to an agent’s optimization
problem does not exist

• Definition: Given the economy and a price process, a SAO is a trading
strategy θ ∈ Θ such that Rθ > 0

• Theorem: There is a solution to an agent’s optimization problem if and
only if there are no SAOs

• Result: The absence of SAOs is a necessary condition for the existence
of an equilibrium
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Measure price deflators and strictly acceptable
opportunities

• Definition: Given the economy and a price process, a measure price
deflator (MPD) is a process w ∈ L++ such that for each θ ∈ Θ,

θ′0S0 =
∑K

k=1

∑T
t=1 wt(ωk)′Rθ

t (ωk)

• Theorem: There are no SAOs if and only if for there is a MPD

26



Acceptable completeness and uniqueness of the MPD

• Definition: The market is acceptably complete if for every x ∈ L there
is a θ ∈ Θ such that Rθ = x

• Theorem: The MPD is unique if and only if the market is acceptably
complete
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Derivative pricing

• The absence of SAOs is a necessary condition for the existence of an
equilibrium, only economies and price processes which preclude SAOs are
allowed

• Let Q = {Rθ : θ ∈ Θ} denote the expected payoff process market
subspace or the expected payoff processes obtainable by trading in the
N assets

• Let r ∈ L denote the expected payoff process of a derivative

• If r ∈ Q then we say that the derivative is replicable (in terms of expected
payoffs)

• Proposition: If r ∈ Q, Rθ = r and w is a MPD, then the unique price
of the derivative is given by θ′0S0 or

∑K
k=1

∑T
t=1 w′t(ωk)rt(ωk)
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• If r /∈ Q then upper and lower bounds for the derivative price may be
obtained by super- and sub-replication

– An upper bound for the price of the derivative is given by the follwing
super-replication LP:

min
θ

θ′0S0

s.t. Rθ ≥ r

– A lower bound for the price of the derivative is given by the following
sub-replication LP:

max
θ

θ′0S0

s.t. Rθ ≤ r
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Example Multiperiod Implementation

• European call option on a non-dividend paying stock

• Only assets are the stock and a risk-free security

• Price of the stock is assumed to follow the discrtized geometric Brownian
motion:

St = St−1 + µSt−1∆t + σSt∆tεt (2)

• Each choice of (µ, σ) results in a different subjective measure

30



Generating the states

• The states are best represented in the form of a state tree

t=0 t=2t=1

.25 0

0 .25

.25 0

0 .25

Figure 1: Multi-period State Tree

• Branches generated by Monte Carlo
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• For a node with B branches B
M branches are generated by each subjective

measure
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No SAOs

• The state tree must be generated without SAOs

• Definition: A one period SAO is a SAO over one period in the state tree

• Theorem: If there are no one period SAOs then there are no SAOs

• Theorem: There are no one period SAOs if µ is positive in at least one
measure and negative in at least one other

• Result: A state tree with no SAOs can be generated by having µ positive
in at least one measure and negative in at least another measure
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2 times, 2 measures, 100 branches
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Figure 2: M=2
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2 times, 3 measures, 99 branches
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Figure 3: M=3
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Conclusions

• Presented an asset pricing framework for incomplete markets which
incorporates uncertainty in the real world measure using multiple
subjective measures which:

– Can be thought of as a no good-deals approach
– Can deliver a unique price when no-arbitrage pricing can’t
– Delivers tighter bounds than arbitrage pricing theory
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