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Outline

• What is the forward implied vol smile?

• How do we get them (fast)?

• Some new methods of computing exotics

• How different models impact pricing

• ... Oh, and someone will probably mentioned the H word...
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Motivations

• Skew and Smiel observed in reality and actively traded;

• But Forward skew and smile are still open to debate;

• Model risk introduced by forward skew assumptions;

• Exotic option pricing highly model dependent (eg. Cliquets,
Barriers, Variance products);

• Hedging will be off if skew evolves differently;
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Introduction

• Forward-Starting options (leg of a ”cliquet”) starting in t

PayoffFwdCall
T := Max

[
ST

St
−K, 0

]

• Given a risk-neutral measure, time-0 price is

Ct,T (K) := EQ
[
e−rT

(
ST

St
−K

)
+

∣∣∣F0

]
,

• Easy in a Black-Scholes world

CBS
t,T (K;σBS) = e−rt C(K, 1., T − t, σBS).

where C(K, S, τ, σ) denotes the BS formula
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Forward-starting options (ctd.)

• If vol is time-dependent but deterministic, define forward vol in
the obivous way

σ̄t,T :=

√∫ T

t
σ2

sds

T − t
≡

√
σ̄2

0,T · T − σ̄2
0,t · t

T − t

substitute into BS like before to get forward start option price

• i.e. ”Forward Implied Vol” = ”Forward Vol”

• Everyone know this is wrong
- Skew/Smile
- Vol is stochastic
- Price jumps
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Forward Implied Vol

• (borrowing Rebonato’s definition of (spot) implied vol)
Forward Implied Vol is the wrong number to plug into the
wrong (B-S forward-start) formula to get the right price:

CMarket
t,T (K) = CBS

t,T (K; σFwdImp)

• Like spot implied vol, this is also a function of strike and
(constant forward) maturity....

σFwdImp = σFwdImp(t, T − t,K)

...and forward-starting time!
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Past attempts at the ”Vanilla Smile problem”

• Vol-by-strike, Vol-by-money (BS loyalists)

• Jump-Diffusion (Merton...)

• CEV

• Local Volatility (Dupire, Derman & Kani...)

• Stochastic Volatility (Hull & White, Heston...)

• Levy Process (Geman & Madan...)

• Universal Volatility model (Lipton...)

• Stochastic Time-change (Carr & Wu...)

• ...
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”Forward Smile problem”

• Many of the smile models can calibrate to the observed implied
vol surface today with small/tolerable magnitude of error (not
surprising considering the number of parameters in some)

• Yet they imply very different forward implied vol surface

• As we push the forward-starting time, t, forward from 0, for
example, the dynamics of constant forward maturity smile is
different across models:
Levy/Jump models: Exactly the same smile
Local vol models: They smile less tomorrow
Stochastic vol models: They smile more tomorrow
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Levy process models

• Intuition

Return increments are independent and identically distributed;
Vol smile retains the same shape as time moves forward;
Hence the popular ”Skew Projection” approach;

• Example: Merton’s Jump Diffusion model

dS/S = (r − δ − λµJ)dt + σ dW + J dq

Log-normal jumps with Poison arrival:

log[1 + Jt] ∼ N
(
log[1 + µJ]− 1

2σ2
J , σ2

J

)

Q(dqt = 1) = λdt, Q(dqt = 0) = 1− λdt.
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Local Vol

• local volatility function

dS/S = (r − δ)dt + σ(t, St) dW

Well known that forward smile flattens out;
Dangerous when pricing forward-starts and cliquets too cheap
(Gatheral 03);

• Intuition
Skew/Smile generated by non-constant local vol functions;
As time progresses, the function flattens because long-dated
implied vol curve flattens (CLT or simple fact);
Forward-start option in the model depends on {σ(u, S), u ∈ [t, T ]}
For t large, it is almost constant in S.
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Stochastic Vol

dS/S = (r − δ)dt + σt dW

σt is another stochastic process, driven by something other than W .

• Intuition
OTM and ITM option prices are convex in vol;
Net effect of a up vol move and a down vol move is on the upside
(Jensen’s inequality);
As the forward-start time goes to infinity, the distribution of the
stochastic vol process reaches an equalibrium, forward smile
converges to a optimal smile;
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Think of the ”Coin-tossing” stochastic vol model

3M BS Call
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ATMF (At-the-money-foward) Call is nearly linear in vol (slightly
convex); OTM options are concave;
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Let’s toss some coin

Integrated Variance simulation
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Zero Correlation

Implied Vol by Strike
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σv = 0.8, v0 = µ = 0.09, κ = 1, ρ = 0
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Skew (Correlation = -0.8)

Implied Vol by Strike
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Jumps

Implied Vol by Strike
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OTM call
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OTM call spread
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OTM strangle
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A Canonical example: the SVJ model

dS/S = (r − δ − λ µJ)dt +
√

ν dWS + J dq

dν = κ(µ− ν)dt + σν

√
ν dWν

The price of trying to fit both the short end and long end skew = 8
parameters;

ρ - correlation between WS and Wν .
σν - vol of vol
κ - mean-reversion speed
ν0 - initial vol2

µ - long-run vol2

λ - jump intensity
µJ - mean of jump
σJ - vol of jump
(there are worse...)
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Sub-models

Though simple, these models serve as good examples to think
about price dynamics;

SV (Heston)

dS/S = (r − δ)dt +
√

ν dWS

dν = κ(µ− ν)dt + σν

√
ν dWν

BSJ (Merton)

dS/S = (r − δ − λµJ)dt + σS dWS + J dq

(Actually another reason is we can do them in closed-form...)
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The FFT method (Carr & Madan ’89)

Characteristic function:

φ(u) := EQ
[
exp(iu · sT )

∣∣(s0, ν0)
]

Scaled call (α > 0):

cT (k) := exp(αk)EQ
[
e−rT (esT − ek)+

]
,

Transform of the call:

ψT (v) :=
∫ ∞

−∞
eivkcT (k)dk

=
e−rT φ(v − (α + 1)i)

(α2 + α− v2) + i(2α + 1)v

Inverse fast Fourier transform (FFT) gives option prices across
strikes

C(T,K) =
exp(−αk)

2π

∫ ∞

−∞
e−ivkψT (v)dv.

21



Characteristic Functions

φBS(u) := exp
[

iu · (s0 + (r − δ)T
)− 1

2 (u2 + iu)T · ν
]
,

φBSJ(u) := φBS(u) · ϕ J(u),

φSV(u) := exp

[
iu · (s0 + (r − δ)T

)
+

(
2ζ(1− e−θT )

2θ − (θ − γ)(1− e−θT )

)
· ν0

−κµ

σ2
ν

[
2 log

(
2θ − (θ − γ)(1− e−θT )

2θ

)
+

(
θ − γ

)
T

]]
,

φSVJ(u) := φSV(u) · ϕ J(u),

where

ζ ≡ − 1
2

(
u2 + iu

)
, γ ≡ κ− i ρσν u, θ ≡

√
γ2 − 2σ2

νζ,

ϕJ(u) ≡ exp
[
λT

[
(1 + µJ)iu exp

(
ζ · σ2

J

)− 1− iu · µJ

]]
,
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Pricing Forward-starts (now the fun starts)

Key Idea: Forward characteristic function

Following Carr & Madan, consider the forward log return,
st,T := sT − st ≡ log(ST

St
), we want

Ct,T (k) := EQ
[
e−rT

(
est,T − ek

)
+

∣∣s0, ν0

]
.

Consider the Q-density, qt,T (·), of st,T conditional on the time-0
state,

qt,T (s)ds := Q
(
st,T ∈ [s, s + ds),

∣∣∣s0, ν0

)
,

and the modified option price with an exponential scaling term

ct,T (k) := exp(αk)·Ct,T (k) ≡ eαk

∫ ∞

−∞
e−rT

(
es−ek

)
+
qt,T (s)ds, some α > 0.
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Fourier-transforming it gives:

ψt,T (v) :=
∫ ∞

−∞
eivkct,T (k)dk

=
∫ ∞

−∞
e(α+iv)k

∫ ∞

k

e−rT
(
es − ek

)
qt,T (s)dsdk

=
∫ ∞

−∞
e−rT qt,T (s)

∫ s

−∞
e(α+iv)k

(
es − ek

)
dkds

=
∫ ∞

−∞

e−rT qt,T (s) e(α+1+iv)s

(α + iv)(α + 1 + iv)
ds

= e−rT φt,T

(
v − (α + 1)i

)

(α + iv)(α + 1 + iv)
.

So we are done if we can find the forward characteristic function:

φt,T (u) := EQ
[
exp(iu · st,T )|s0, ν0

] ≡
∫ ∞

−∞
eiusqt,T (s)ds.
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Forward Characteristic function in Heston

φt,T (u) ≡ EQ
[
exp(iu(sT − st))|s0, ν0

]

≡ EQ
[
EQ

[
exp(iu(sT − st))|st, νt

]∣∣∣s0, ν0

]

= EQ

[
exp

{
iu · (r − δ)τ − κµ

σ2
ν

[
2 log

(
2θ − (θ − γ)(1− e−θτ )

2θ

)
+

(
θ − γ

)
τ
]

+
(

2ζ(1− e−θτ )
2θ − (θ − γ)(1− e−θτ )

)
· νt

}∣∣∣∣∣s0, ν0

]

=: EQ
[
exp

[
A(u, τ) + B(u, τ) νt

]∣∣∣s0, ν0

]
= eA(u,τ)EQ

[
eB(u,τ) νt

∣∣∣ν0

]

= exp

[
A(u, τ) +

(
B(u, τ) e−κt

1−B(u, τ)/ct

)
· ν0

]
(
1−B(u, τ)/ct

)− 2κµ
σ2

ν

where the C-valued functions A(·, ·), B(·, ·) are defined in the
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obvious way with parameters

ζ ≡ − 1
2

(
u2 + iu

)
, γ ≡ κ− i ρσν u,

θ ≡
√

γ2 − 2σ2
νζ, ct =

2κ

σ2
ν(1− e−κt)

.

The last line in the identity is the Laplace transform of the squared
root diffusion process of ν.

Alternatively, one can give a less mathematical proof...
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A Trader-style proof

Convergence of Monte Carlo Simulation
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Adding Jumps

Since the jump component is independent of the diffusion bit, and
has itself got stationary and independent increment, we can simply
multiply the forward charateristic functions in the diffusion setting
by an extra jump part.

φJD
t,T (u) = φBS

t,T (u) · ϕJ
T−t(u),

φSVJ
t,T (u) = φSV

t,T (u) · ϕJ
T−t(u),

where

φBS
t,T (u) = φBS

T (u)/φBS
t (u)

= exp
[

iu(r − δ)(T − t)− 1
2 (u2 + iu)(T − t) · ν

]
,

ϕJ
τ (u) := exp

[
λτ

[
(1 + µJ)iu exp

(
ζ · σ2

J

)− 1− iu · µJ

]]
.
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Performance

• same efficiency as the vanillas; < 0.05 seconds for all strikes with
one forward-start date and maturity (N = 4096);
• The very same transform also draws you the vol smile, gives the
skew, kurtosis;
• switching models = switching forward characteristic functions, as
long as you can derive them!
• these forward characteristic functions have other applications....
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Variance Swap

A Variance Swap is a contract paying, at maturity T , an amount of

PayoffT = U × (VT −Kvar),

where U is the swap notional, Kvar the variance strike, T the
maturity in years, and the realised variance defined as

VT :=
1
T

n∑

i=1

[
log

( Sti

Sti−1

)]2

≡ A

n

n∑

i=1

r2
i

by the n returns, ri, of the underlying price St discretly sampled on
fixings 0 = t0 < t1 < · · · < tn = T . The frequency of the sampling
is determined by ∆t := T

n or the annualisation factor A := n
T ≡ 1

∆t ,
defined as the number of sampling/observation points per year. For
example, A = 252 for a daily variance swap.
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The variance swap theory

There is currently one market standard theory (Carr, Derman ...)
to the price and hedge a variance swap, assuming:

A1 no jumps
- Asset price St evolves as a continuous diffuion,

dS/S = µtdt + σtdW

where σt denotes the (possibly stochastic) volatility process;

A2 perfect static hedge
- A continum of calls and puts across all strikes can be used as
hedging vehicles;

A3 continuous sampling
- A fixing scheme which is frequent enough to permit the
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approximation of variance

VT ≈ V :=
1
T

∫ T

0

σ2
t dt

A4 perfect dynamic hedge
- Possibility of continuous rebalancing an account of the
underlying S

We don’t assume any of these!
(but there is a caveat...)
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Discrete Variance Swap

Key Idea: view the variance swap as a portfolio of n forward
starting contracts with squared log-payoff:

EQ[Vn] ≡ EQ
[

1
T

n∑

i=1

[
log

( Sti

Sti−1

)]2
]

≡ 1
T

n∑

i=1

EQ
[
(sti − sti−1)

2
]

≡ 1
T

n∑

i=1

EQ
[
r2
i

]

One can relate the n bits to the second moments of the forward
characteristic functions φi(u):

EQ
[
r2
i

] ≡ −∂2φi(u)
∂u2

∣∣∣
u=0
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φi(u) := EQ
[
exp(iu · ri)|F0

] ≡
∫ ∞

−∞
eiusqti−1,ti

(s)ds

where qti−1,ti(·) is the unconditional risk-neutral density of the
[ti−1, ti]-period return, ri ≡ sti − sti−1 . Thus if φi(·), ∀i = 1, . . . , n,
are known in closed form, interchanging the summation and the
differential operators gives

EQ[Vn] = − 1
T

∂2

∂u2

n∑

i=1

φi(u)
∣∣∣
u=0

Summing n such functions and evaluate the second derivative at
zero by finite differencing gives the risk-neutral expectation of Vn.
Alternativly symbolic differentiation using software like MATLAB
or manual to obtain a closed-form expression.

This can be done again for all models with forward characteristic
functions. (the ones mentioned and more...)
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Weekly versus Daily Variance Swaps

Before jumping to the results, consider two variance swaps with
different frequency of fixings:

Daily Variance Swap: 262 fixings for one year;

Weekly Variance Swap: 52 fixings for one year;

Same price.

Which one do you want to buy (or sell)?
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Toy example: bi-daily vs daily

Daily: lots of (r2
1 + r2

2) pairs

Bi-daily: lots of (r1 + r2)2

Difference = 2× r1 × r2

Positive on average if you believe price is trending and negative if
you believe it oscilates within a range;

Same logic applies for other frequencies;
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Will jump add/reduce value to discrete sampling?

Levy processess: iid increments implies EQ[rirj ] = 0 for i 6= j

i.e. on average all jumps cancel out, either finite or infinite
variations

Stochastic volatility with non-zero correlation (to spot) has neither
independent nor identically distributed returns;

For negative correlation(skew), down(up) moves are more likely to
be followed by down(up) moves;
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It is not a jump trade

Long weekly and short weekly if you believe in stochastic vol and
negative skew;

It’s an autocorrelation trade;

Makes about 50bps on average for a 1 year swap in a Heston world
(ρ = −0.8, σv = 0.8);

Ok, that’s not a lot... ( ∼ 0.07% in vol points; 0.6% for a monthly
vs daily);

But the difference will be more significant in models later.
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Expected discrete variance under Heston

Discrete vs Continuous Expected Variance
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Looks the same in a pure Poison jump model?

Discrete vs Continuous Expected Variance
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But check out the Y-axis! (with zero drift it will exactly zero)
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Generalise...

We can go further than the stochastic vol + jump model;

If fact, we can generalise the methods above to virtually all models
falling under the framework of time-changed Levy processes;

We just need the forward characteristic functions!

The elegant approach of unifying stochastic volatility models and
Jump type models via a ”stochastic clock”; (Carr & Wu)
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Intuitively

Price process runs under ”trading” time, not real time; Things
seem to move faster when there is more activity in the market;

The distribution of price assuming a flat activity rate is modelled
by a Levy procee;

The distribution of the activity rate is modelled by a correlated
mean-reverting process;

The former is completely specified by the characteristic exponent of
the Levy process while the latter by a Laplace transform;

Combine the two gives the distribution of the underlying run under
the random clock.
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Some CIR clock runs

Sample speed paths of a Stochastic clock
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Some copy-and-pasting...

Levy process X and its generalised characteristic function:

φX(u) := EQ
[
eiuXT

]
= e−TΨx(u), u ∈ D ⊂ C

Random time, a non-decreasing semi-martingale,

Tt :=
∫ t

0

v(s)ds,

with the instantaneous activity rate v(t). Laplace transform of Tt as

LTt(λ) := EQ
[
e−λTt

]
= EQ

[
exp

(− λ

∫ t

0

v(s)ds
)]

.

Note that this looks like a bond...
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Let’s skip the math...

The time-changed process Yt := XTt has the characteristic function

φYt(u) = EQ
[
eiuXTt

]
= EQ(u)

[
e−TtΨx(u)

]
= Lu

Tt

(
Ψx(u)

)
,

where the expectation and the Laplace transform are computed
under a complex-valued measure Q(u):

dQ(u)
dQ

∣∣∣∣
t

= exp
(

iuYt + TtΨx(u)
)

(Theorem 1 in Carr & Wu) So that if both the Laplace transform
and the Levy exponent are known in closed-form, the characteristic
function of the time-changed process is also available in closed-form.
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Pick & Mix

Since we have a large class of analytic short rate models and a large
class of analytic Levy process models, combining them yield a
multitude of models which possess analytically tractable
characteristic functions.

E.g. Heston = Brownian motion run under a CIR clock.

One can have two Levy processes and two random clocks, one for
each processes, and model the underlying as the sum of the two
time-changed processes. E.g. a normal stochastic volatility
component and a jump component with random arrival rate, or two
jump components, one with infinite variation and the other finite
variation, run on two structurally distinct clocks.

E.g. Stochastic Skew model (Carr & Wu) is the latest such model;
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Forward Characteristic Function: Second Time

Recall all we need is the forward characteristic function:

φt,T (u) ≡ EQ
[
eiu(sT−st)|F0

]

= eiu(r−δ)(T−t)EQ
[
eiu(YT−Yt)|F0

]

where t < T . For ease of notation I shall assume a single
time-changed process but it is clear that the result extend to the
vector version. Denote the Radon-Nikodym derivative of the
leverage neutral measure with respect to the risk neutral measure
up to the time horizon T by

MT (u) := dQ(u)
dQ

∣∣∣∣
T

= exp
(

iuYT + TT Ψx(u)
)

Optimal stopping theorem ensures

Mt(u) = EQ
[
MT (u)

∣∣Ft

]
= exp

(
iuYt + TtΨx(u)

)
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is a Q-martingale and that

EQ(u)

[
ΞT

∣∣Ft

]
= EQ

[MT (u)
Mt(u) ΞT

∣∣Ft

]

for all FT random variable ΞT . Hence we have

EQ
[
eiu(YT−Yt)

]
= EQ

[
EQ

[
eiu(YT−Yt)

∣∣Ft

]]

= EQ
[
EQ

[
eiu(YT−Yt)+(TT−Tt)Ψx(u)−(TT−Tt)Ψx(u)

∣∣Ft

]]

= EQ
[
EQ

[MT (u)
Mt(u) e−(TT−Tt)Ψx(u)

∣∣Ft

]]

= EQ
[
EQ(u)

[
e−(TT−Tt)Ψx(u)

∣∣Ft

]]

For Makovian arrival rates v, the inner expectation will be a
function of v(t) only. If we further restrict our attention to
time-homogeneous processes, such as a CIR process with
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time-independent parameters, we have

EQ(u)

[
e−(TT−Tt)λ

∣∣Ft

]
= EQ(u)

[
e−(

∫ T
t

v(s)ds)λ
∣∣vt

]
= Lu(λ, T − t, vt)

for some function Lu. Therefore, for all the arrival rate which is
affine, we will have an exponential affine function in vt:

Lu(λ, τ, v) = exp
[
α(λ, τ) + β(λ, τ)v

]

Hence we have

EQ
[
eiu(YT−Yt)

]
= EQ

[
Lu(Ψx(u), T − t, vt)

]

= EQ
[
eα(Ψx(u),τ)+β(Ψx(u),T−t)vt

]

= eα(Ψx(u),τ)EQ
[
eβ(Ψx(u),T−t)vt

]

= eα(Ψx(u),τ)φvt

(− iβ(Ψx(u), T − t)
)

where φvt(·) represents the (generalised) characteristic function of
vt under Q.
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Conclusion

• A new method for calculating forward-starts and forward
implied vols;

• Even simple forward-starting vanillas can be valued very
differently while calibrating to the same implied vol surface;

• Discrete sampling effect in variance swaps;

• Techniques generalise to a wide class of models;
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