# Ruin, Operational Risk and How Fast Stochastic Processes Mix

Paul Embrechts
ETH Zürich

Based on joint work with:

- Roger Kaufmann (ETH Zürich)
- Gennady Samorodnitsky (Cornell University)

### **Basel Committee for Banking Supervision** ([3], [7])

- Basel Accord (= Basel I) (1988)
  - credit risk
- Amendment to Basel I (1996)
  - market risk
  - netting
  - derivatives, Value-at-Risk based
- Basel II (1998–2005/6)
  - (internal) rating models for credit risk
  - increased granularity
  - new risk category: operational risk
- Increased collaboration between insurance- and banking supervision: integrated risk management

### Definition(s) of operational risk:

- (non)definition (early): the complement of market risk
- coming from DFA: the company specific risk, uncorrelated with capital markets, non-systematic part (frictional costs)
- current definition in use through Basel II:
   Operational risk is the risk of losses resulting from inadequate or failed internal processes, people and systems or from external events.

#### Some examples:

- Barings, £700,— Mio
- Allied Irish (Allfirst subsidiary), US\$700,— Mio
- Bank of New York, US\$140,- Mio

#### Disclosed figures:

- 2001 Annual Reports, disclosure for economic capital for operational risk:
  - Deutsche Bank: € 2.5 Bio
  - JP Morgan-Chase: US\$ 6.8 Bio
- Estimated total losses 2001 in USA: US\$ 50 Bio

### September 2001 BIS Quantitative Impact Study:

- credit (51%), market (23%), operational (16%), other (10%)

Three Pillar concept of Basel II:

- Pillar I: Minimal Capital Requirement

- Pillar II: Supervisory Review Process

- Pillar III: Market Discipline Requirement

These apply to both credit- as well as operational risk

### Pillar I (Minimal Capital Requirement) for Operational Risk

- The Basic Indicator Approach:

• 
$$RC(OR) = \alpha GI$$

- The Standardized Approach:

• 
$$RC(OR) = \sum_{i=1}^{8} \beta_i GI_i$$

- The Advanced Measurement Approach:

• 
$$RC(OR) = \sum_{i=1}^{8} \sum_{k=1}^{7} \gamma_{i,k} e_{i,k}$$

• 
$$RC(OR) = \sum_{i=1}^{8} \rho_{i,k}$$

#### Eight standardized business lines:

- Corporate Finance; Trading and Sales; Retail Banking; Payment and Settlement; Agency Services; Commercial Banking; Asset Management; Retail Brokerage

#### Seven loss types:

- Internal Fraud; External Fraud; Employment Practices and Workplace Safety; Clients, Products and Business Practices; Damage to Physical Assets; Business Disruption and System Failure; Execution, Delivery and Process Management

In total: 56 categories to model!

#### Some critical remarks:

- business risk (though very important) is explicitly excluded
- distinguish between
  - repetitive versus non-repetitive losses
  - low frequency/high impact versus high frequency/low impact
- lack of data, data pooling (?), near misses (??)
- Pillar II very important
- for the moment: qualitative >> quantitative
- overall complexity (Comptroller of the Currency)

## Some data ([5])









operational risk

fire loss

A mathematical (actuarial) model:

- Operational Risk loss database (for each business line)

$$\{X_k^{t,i}: t=1,\ldots,T; i=1,\ldots,7; k=1,\ldots,N^{t,i}\}$$

t (years), i (loss type), k (number of losses)

- Truncation

$$X_k^{t,i} = X_k^{t,i} I_{\{X_k^{t,i} > d^{t,i}\}}$$

and (random) censoring

- a further index indicating business line can be introduced (deleted for this talk)

#### Loss amounts:

- 
$$L_t = \sum_{i=1}^{7} \sum_{k=1}^{N^{t,i}} X_k^{t,i}, \ t = 1, \dots, T$$

- 
$$L_t = \sum_{i=1}^{7} L_{t,i}$$

#### Pillar I modelling:

- 
$$F_{L_t}$$
 and  $F_{L_{t_i}}$ ,  $i=1,\ldots,7$ 

- risk measurement (e.g. for  $L_t$ )

OR-VaR
$$_{T+1}^{1-\alpha}=F_{L_{T+1}}^{\leftarrow}(1-\alpha)$$
,  $\alpha$  (very) small

$$\mathsf{OR}\text{-}\mathsf{CVaR}_{T+1}^{1-\alpha} = E(L_{T+1} \mid L_{T+1} > \mathsf{OR}\text{-}\mathsf{VaR}_{T+1}^{1-\alpha})$$

Question: Suppose we have calculated risk measures  $ho^i_{T+1,1-lpha},$   $i=1,\dots,7,$  for each risk category. When can we consider

$$\sum_{i=1}^{7} \rho_{T+1,1-\alpha}^{i}$$

as a "good" risk measure for the total loss  $L_{T+1}$ ?

#### **Answer**: Ingredients

- (non-) coherence of risk measures (Artzner, Delbaen, Eber, Heath framework)
- optimization problem: given  $(\rho_{T+1,1-\alpha}^i)_{i=1,\dots,7}$ , what is the worst case for the overall risk for  $L_{T+1}$ ? Solution: using copulas in [4] and references therein
- aggregation of banking risks ([1])

(Methodological) link to risk theory:

- operational risk process

$$V_{i,t} = u_i + p_i(t) - L_{t,i}, \ t \ge 0$$

for some initial capital  $u_i$  and a premium function  $p_i(t)$  satisfying

$$P(L_{t,i} - p_i(t) \to -\infty) = 1$$

- given  $\epsilon > 0$ , calculate  $u_i(\epsilon)$  so that

$$P(\inf_{T \le t \le T+1} (u_i(\epsilon) + p_i(t) - L_{t,i}) < 0) \le \epsilon \tag{1}$$

 $u_i(\epsilon)$  is a risk capital charge (internal)

### Solving for (1) is difficult:

- complicated loss process  $(L_{t,i})_{t>0}$
- heavy-tailed case
- finite horizon [T, T+1]

#### Hence:

- only approach possible: Monte Carlo
- rare event simulation
- non-standard situation, see [2]!

### From a mathematical point of view:

- heavy-tailed ruin estimation for general risk processes

### Classical Cramér-Lundberg model (new notation):

- 
$$Y(t) = \sum_{k=1}^{N(t)} Y_k$$
,  $t \ge 0$  where

- $(Y_k)$  iid  $\sim F_Y$ , independent of  $(N(t)) \sim HPOIS(\lambda)$
- NPC:  $\lambda E(Y_1) < c$
- risk process  $\{u + ct Y(t) : t \ge 0\}$
- infinite-horizon ruin probability:

$$\Psi_1(u) = P(\inf_{t \ge 0} (u + ct - Y(t)) < 0)$$
  
=  $P(\sup_{t > 0} (Y(t) - ct) > u)$ 

hence tail-probability of ultimate supremum

- NPC: 
$$P(\lim_{t\to\infty}(Y(t)-ct)=-\infty)=1$$

In the heavy-tailed Cramér-Lundberg case:

$$1 - F_Y(y) \sim y^{-\beta - 1} L(y) \Rightarrow \Psi_1(u) \sim cte \, u^{-\beta} L(u)$$

$$(\beta \ge 0, L \text{ s.v.}, y \to \infty) \qquad (u \to \infty)$$

$$(2)$$

Question: how general does (2) hold?

Solution: given a general stochastic process  $\{Y(t): t \geq 0\}$  for which we have that for some c>0

- $P(\lim_{t\to\infty}(Y(t)-ct)=-\infty)=1$ , and
- $\Psi_1(u) = P(\sup_{t \ge 0} (Y(t) ct) > u) \sim u^{-\beta} L(u), \ \beta \ge 0$   $(u \to \infty)$

Starting from (Y(t)) define a more general process  $(Y(\Delta(t)))$  using the notion of time change:

-  $(\Delta(t))$  is a right-continuous process, non-decreasing,  $\Delta$  and Y are both defined on the same probability space  $(\Omega, \mathcal{F}, P)$  and  $\Delta(0) = 0$ 

Define a new ruin function:

$$\Psi_{\Delta}(u) = P(\sup_{t \ge 0} (Y(\Delta(t)) - ct) > u)$$

How sensitive is ruin as a function of  $\Delta$ ?

More precisely:

### Questions:

- under which (extra) conditions on Y and  $\Delta$  does ruin behave similarly in both models, i.e.

$$\lim_{u \to \infty} \frac{\Psi_{\Delta}(u)}{\Psi_{1}(u)} = 1$$

- examples

- "link" to operational risk

References: [5] and [6]

#### Remark: why using time change?

- actuarial tool (Lundberg, Cramér (1930's)):
   inhomogeneous Poisson → homogeneous Poisson
- W. Doeblin (1940):Itô's formula via time change
- Olsen's ⊖-time in finance (1990's): market data follows (geometric) BM in ⊖-time
- Monroe's Theorem (1978):
   every semi-martingale can be written as a time changed BM

Conclusion: very powerful tool!

### Solution to our problem:

- basic assumption:  $\lim_{t \to \infty} \frac{\Delta(t)}{t} = 1$ , P a.s.
- crucial: how fast does this convergence hold (mixing)  $\forall \epsilon > 0 : g_{\epsilon}(u) = P(|\frac{\Delta(t)}{t} 1| > \epsilon \text{ for some } t > u)$
- and define for  $\epsilon > 0$  the perturbed ruin function  $\Psi_{1,\epsilon}(u) = P(\sup_{t > 0} (Y(t) c \, \epsilon \, t) > u)$

The solution very much depends on the behaviour of  $g_{\epsilon}(u)$  and  $\Psi_{1,\epsilon}(u)$  for  $\epsilon > 0$ .

The following basic assumptions hold in most cases:

(A1) (no early ruin in the original process)

$$\lim_{\delta \searrow 0} \limsup_{u \to \infty} \frac{P(\sup_{0 \le t \le \delta u} (Y(t) - ct) > u)}{\Psi_1(u)} = 0$$

(A2) (a continuity assumption for ruin in the original process)

$$\lim_{\epsilon \searrow 1} \limsup_{u \to \infty} \frac{\Psi_1(u)}{\Psi_{1,\epsilon}(u)} = \lim_{\epsilon \nearrow 1} \liminf_{u \to \infty} \frac{\Psi_1(u)}{\Psi_{1,\epsilon}(u)} = 1$$

### Theorem ([6])

Assume (A1) and (A2) hold, and that

$$\Psi_1(u) \sim u^{-\beta} L(u), \ u \to \infty, \beta \ge 0.$$

If (mixing condition)

$$\forall \epsilon > 0, \delta > 0 : \lim_{u \to \infty} \frac{g_{\epsilon}(\delta u)}{\Psi_{1}(u)} = 0$$

and either

i)  $\Delta$  is continuous with probability 1,

or

ii)  $\exists a \geq 0 : Y(t) + a(t)$  is eventually non-decreasing with probability 1, then

$$\lim_{u \to \infty} \frac{\Psi_{\Delta}(u)}{\Psi_{1}(u)} = 1.$$

#### Reformulation:

"If the mixing rate of  $\Delta$  is fast enough, i.e.  $\frac{\Delta(t)}{t} \to 1$  fast enough measured with respect to the original ruin probability  $\Psi_1$ , then the ruin probability of the time-changed process  $\Psi_{\Delta}$  is not affected by the time change."

#### Further results:

- slow mixing ⇒ ruin is affected
- several examples (motivated by operational risk)

### Example (Ingredients, details in [6])

- $\{Z_n: n \geq 0\}$  irreducible Markov chain on  $\{1, \ldots, K\}$ , stationary distribution function  $(\pi_i)$
- $\{F_j: j=1,\ldots,K\}$  holding time dfs with means  $(\mu_i)$ , finite
- take  $(r_i)$  so that  $\sum_{j=1}^K r_j \mu_j \pi_j = \sum_{j=1}^K \mu_j \pi_j$
- time change  $\Delta(0)=0, \frac{d\Delta(t)}{dt}=r_j$  if  $(Z_n)$  at t is in j
- key assumption (heavy-tailed holding times):

$$\exists \overline{F}(x) \in RV(-\gamma), \gamma > 1 \text{ and } \lim_{x \to \infty} \frac{\overline{F}_j(x)}{\overline{F}(x)} = \Theta_j \in [0, \infty)$$

Theorem: 
$$\lim_{u \to \infty} \frac{g_{\epsilon}(u)}{u\overline{F}(u)} = \frac{1}{\epsilon^{\gamma}\overline{\mu}} \Big[ \sum_{j \in J_{+}(\epsilon)} \Theta_{j}\pi_{j}(r_{j} - 1 - \epsilon)(r_{j} - 1)^{\gamma - 1} + \sum_{j \in J_{-}(\epsilon)} \Theta_{j}\pi_{j}(1 - r_{j} - \epsilon)(1 - r_{j})^{\gamma - 1} \Big],$$

where 
$$\epsilon > 0$$
 s.t.  $\{j = 1, ..., K : |r_j - 1| = \epsilon\} = \emptyset$  and  $J_+(\epsilon) = \{j = 1, ..., K : r_j > 1 + \epsilon\}, J_-(\epsilon) = \{j = 1, ..., K : r_j > 1 - \epsilon\}$ 

#### Conclusion

- at the moment, qualitative (Pillar II) handling of operational risk is more useful than quantitative (Pillar I) modelling
- actuarial methods are useful
- more data are needed
- interesting source of mathematical problems
- challenges: choice of risk measures, aggregation of risk measures

#### References:

- 1. C. Alexander and P. Pézier (2003). *Assessment and aggregation of banking risks*. 9th IFCI Annual Risk Management Round Table, International Financial Risk Institute (IFCI).
- 2. S. Asmussen, K. Binswanger, B. Hojgaard (2000). *Rare event simulation for heavy-tailed distributions*. Bernoulli 6(2), 303-322.
- 3. C. Crouhy, D. Galai, R. Mark (2000). *Risk Management*. McGraw-Hill, New York.
- 4. P. Embrechts, A. Hoeing, A. Juri (2003). *Using copulae to bound the Value-at-Risk for functions of dependent risks*. Finance and Stochastics 7(2), 145–167.

- 5. P. Embrechts, R. Kaufmann, G. Samorodnitsky (2002). *Ruin theory revisited: stochastic models for operational risk*. Preprint, ETH Zürich (http://www.math.ethz.ch/~embrechts).
- 6. P. Embrechts and G. Samorodnitsky (2003). Ruin problem and how fast stochastic processes mix. Annals of Applied Probability, 13, 1–36.
- 7. www.bis.org.