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Abstract

The new Basel Capital Accord has opened up a discussion con-
cerning the measurement of operational risk for banks. In our paper
we do not take a stand on the issue of whether or not a quantita-
tively measured risk capital charge for operational risk is desirable,
however, given that such measurement would come about, we review
some of the tools which may be useful towards the statistical analysis
of operational loss data.
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1 Introduction

In [9], the following definition of operational risk is to be found: “The risk

of losses resulting from inadequate or failed internal processes, people and
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systems or from external events.” In its consultative document on the New

Basel Capital Accord (also referred to as Basel II or the Accord), the Basel

Committee for Banking Supervision continues its drive to increase market

stability in the realms of market-, credit- and, most recently, operational

risk. The approach is based on a three pillar concept where Pillar 1 corre-

sponds to a Minimal Capital Requirement, Pillar 2 stands for a Supervisory

Review Process and finally Pillar 3 concerns Market Discipline. Applied to

credit and operational risk, within Pillar 1, quantitative modelling techniques

play a fundamental role, especially for those banks opting for an advanced,

internal measurement approach. It may well be discussed to what extent

a capital charge for operational risk (estimated at about 12% of the current

economic capital) is of importance; see Dańıelson et al. [21], Pezier [47, 48]

for detailed, critical discussions on this and further issues underlying the

Accord. In our paper we start from the preamble that a capital charge

for operational risk will come about (eventually starting in 2006) and dis-

cuss some quantitative techniques which may eventually become useful in

discussing the appropriateness of such a charge, especially for more detailed

internal modelling. Independent of the final regulatory decision, the methods

discussed in our paper have a wider range of applications within quantitative

risk management for the financial (including insurance) industry.

In Table 1, taken from Crouhy et al. [17], we have listed some typical

types of operational risks. It is clear from this table that some risks are

difficult to quantify (like incompetence under people risk) whereas others

lend themselves much easier to quantification (as for instance execution error

under transaction risk). As already alluded to above, most of the techniques

discussed in this paper will have a bearing on the latter types of risk. In the
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1. People risk: • Incompetency
• Fraud

2. Process risk:
A. Model risk • Model/methodology error

• Mark–to–model error

B. Transaction risk • Execution error
• Product complexity
• Booking error
• Settlement error
• Documentation/contract risk

C. Operational control risk • Exceeding limits
• Security risks
• Volume risk

3. Technology risk: • System failure
• Programming error
• Information risk
• Telecommunications failure

Table 1: Types of operational risks (Crouhy et al. [17]).

terminology of Pezier [48], this corresponds to the ordinary operational risks.

Clearly, the modelling of the latter type of risks is insufficient to base a full

capital charge concept on.

The paper is organised as follows. In Section 2 we first look at some

stylised facts of operational risk losses before formulating, in a mathematical

form, the capital charge problem for operational risk (Pillar 1) in Section 3.

In Section 4 we present a possible theory together with its limitations for

analysing such losses, given that a sufficiently detailed loss data base is avail-

able. We also discuss some of the mathematical research stemming from

questions related to operational risk.
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2 Data and preliminary stylised facts

Typically, operational risk losses are grouped in a number of categories (like

in Table 1). In Pezier [48], these categories are further aggregated to the

three levels nominal, ordinary and exceptional operational risks. Within each

category, losses are (or better said, have to be) well defined. Below we give

an example of historical loss information for three different loss types. These

losses correspond to transformed real data. As banks are gathering data,

besides reporting current losses, an effort is made to build up data bases going

back about 10 years. The latter no doubt involves possible selection bias,

a problem one will have to live with till more substantial data warehouses on

operational risk are becoming available. One possibility for the latter could

be cross–banking pooling of loss data in order to find the main characteristics

of the underlying loss distributions against which a participating bank’s own

loss experience can be calibrated. Such data pooling is well–known from

non–life insurance or credit risk management. For Basel II, one needs to

look very carefully into the economic desirability of such a pooling from a

regulatory, risk management point of view. Whereas such a pooling would

be most useful for the very rare, large losses (exceptional losses), at the same

time, such losses are often very specific to the institution and hence from

that point of view make pooling more than questionable.

For obvious reasons, operational risk data are hard to come by. One

reason is no doubt the confidentiality, another the relatively short historical

period over which historical data have been consistently gathered. From the

quantifiable real data we have seen in practice, we summarise below some

of the stylised facts; these seem to be accepted throughout the industry

for several operational risk categories. By way of example, in Figures 1, 2

and 3 we present loss information on three types of operational losses, for the
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purpose of this paper referred to as Types 1, 2 and 3. As stated above, these

data correspond to modified real data. In Figure 4 we have pooled these

losses across types. For these pooled losses, Figure 5 contains quarterly loss

numbers. The stylised facts observed are:

– loss amounts very clearly show extremes, whereas

– loss occurrence times are definitely irregularly spaced in time, also

showing (especially for Type 3, see also Figure 5) a tendency to increase

over time. This non–stationarity can partly be due to the already men-

tioned selection bias.
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Figure 1: Operational risk losses,

Type 1, n = 162.
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Figure 2: Operational risk losses,

Type 2, n = 80.

Any serious attempt of analytic modelling will at least have to take the

above stylised facts into account. The analytic modelling referred to is not

primarily aimed at calculating a risk–capital charge, but more at finding a

sensible quantitative summary going beyond the pure descriptive. Similar

approaches are well–known from the realm of reliability (see for instance

Bedford and Cooke [10]), (non–life) insurance, reinsurance and total quality

control (like in Does et al. [22]).
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Figure 3: Operational risk losses,

Type 3, n = 175.
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Figure 4: Pooled operational risk

losses, n = 417.
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Figure 5: Quarterly loss num-

bers for the pooled operational risk

losses.
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Figure 6: Fire insurance loss data,

n = 417.
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In order to show some similarities with property insurance loss data, in

Figure 6 we present n = 417 losses from a fire insurance loss database. For

the full set of data, see Embrechts et al. [29], Figure 6.2.12.

Clearly, the large losses are of main concern, and hence, extreme value

theory (EVT) can play a major role in analysing such data. Similar re-

marks have been made before concerning operational risk; see for instance

Cruz [18] and Medova [42]. At this point, we would like to clarify a miscon-

ception which seems to persist in the literature; see for instance Pezier [48].

In no way will EVT be able to “predict” exceptional operational risk losses

like those present in the Barings case for instance. Already in the intro-

duction to Embrechts et al. [29], it was stated very clearly that EVT is not

a magical tool producing estimates out of thin air but it tries to make the

best use of whatever data one may have about extreme phenomena. More-

over, and indeed equally important, EVT formulates very clearly under what

conditions estimates on extreme events can be worked out. Especially con-

cerning exceptional losses (Pezier [48]), there is very little statistical theory,

including EVT, can contribute. Therefore, throughout the paper, we will

only apply EVT to operational risk data which have some sort of underlying

repetitiveness.

3 The problem

In order to investigate the kind of methodological problems one faces when

trying to calculate a capital charge for (quantifiable) operational risks, we

introduce some mathematical notation.

A typical operational risk data base will consist of realisations of random
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variables {
Y t,i
k : t = 1, . . . , T , i = 1, . . . , s and k = 1, . . . , N t,i

}
where

– T stands for the number of years (T = 10, say);

– s corresponds to the number of loss–types (for instance s = 6), and

– N t,i is the (random) number of losses in year t of type i.

Note that, in reality, Y t,i
k is actually thinned from below, i.e.

Y t,i
k = Y t,i

k I{Y t,ik ≥dt,i}

where dt,i is some lower threshold below which losses are disregarded. Here

IA(ω) = 1 whenever ω ∈ A, and 0 otherwise. Hence, the total loss–amount

for year t becomes

Lt =
s∑
i=1

Nt,i∑
k=1

Y t,i
k , t = 1, . . . , T . (1)

One of the capital charge measures discussed by the industry (Basel II) is

the Value–at–Risk (VaR) at significance α (typically 0.001 ≤ α ≤ 0.0025 for

operational risk losses) for next year’s operational loss variable LT+1. Hence

OR–VaRT+1
1−α = F←LT+1

(1− α) ,

where F←LT+1
denotes the (generalised) inverse of the distribution function

FLT+1
, also referred to as its quantile function. For a discussion of generalised

inverses, see Embrechts et al. [29], p. 130. For a graphical definition, see

Figure 7.

It is clear that, with any realistically available number T years worth

of data, an in–sample estimation of VaR at this low significance level α is
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f (x)LT+1

x
OR−VaRT+1

1−

100   %

α

α

Figure 7: Calculation of operational risk VaR.

impossible. Moreover, at this aggregated loss level, across a wide range of

operational risk types, no theory (including EVT) will be able to come up

with any scientifically sensible estimate. As such, hoping that EVT will

be helpful here is illusory. However, within quantitatively well defined sub–

categories, like the examples in Figures 1–4, one could use EVT and come up

with a model for the far tail of the loss distribution and base on it a possible

out–of–sample tail fit. Based on these tail models, one could estimate VaR

and risk measures that go beyond VaR, such as Conditional VaR (C–VaR)

OR–C–VaRT+1
1−α = E

(
LT+1 | LT+1 > OR–VaRT+1

1−α
)

or more sophisticated coherent risk measures; see Artzner et al. [2]. Also,

based on extreme value methodology, one could estimate a conditional loss

distribution function for the operational risk category(ies) under investiga-

tion,

FT+1,u(u+ x) = P (LT+1 − u ≤ x | LT+1 > u) , x ≥ 0 ,

where u is typically a predetermined high loss level. For instance one could

take u = OR–VaRT+1
1−α . See Section 4.1 for more details on this.

We reiterate the need for extensive data modelling and pooling before

risk measures of the above type can be calculated with a reasonable degree

of accuracy. In the next section we offer some methodological building blocks

which will be useful when more quantitative modelling of certain operational
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risk categories will be demanded. The main benefit we see lies in a bank

internal modelling, rather than a solution towards a capital charge calcula-

tion. As such, the methods we introduce have already been tested and made

operational within a banking environment; see Ebnöther [24] and Ebnöther

et al. [25], for instance.

4 Towards a theory

Since certain operational risk data are in many ways akin to insurance losses,

it is clear that methods from the field of (non–life) insurance can play a fun-

damental role in their quantitative analysis. In this section we discuss some

of these tools, also referred to as Insurance Analytics. For a discussion of the

latter terminology, see Embrechts [27]. A further comparison with actuarial

methodology can, for instance, be found in Duffy [23].

4.1 Extreme Value Theory (EVT)

Going back to the fire insurance data (denoted X1, . . . , Xn) in Figure 6,

a standard EVT analysis goes as follows:

(EVT-1) Plot the empirical mean excess function

ên(u) =

∑n
k=1 (Xk − u)+∑n
k=1 I{Xk>u}

as a function of u and look for (almost) linear behaviour beyond some

threshold value. For the fire insurance data, ên(u) is plotted in Figure 8.

A possible threshold choice is u = 1, i.e. for this case, a value low in

the data.

(EVT-2) Use the so–called Peaks–Over–Threshold (POT) method to fit an

EVT–model to the data above u = 1; plot the data (dots) and the
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fitted model (solid line) on log–log scale. Linearity indicates Pareto–

type power behaviour of the loss distribution P (X1 > x) = x−αh(x);

see Figure 9.

(EVT-3) Estimate risk measures like a 99% VaR – and 99% C–VaR – and

calculate 95% confidence intervals around these risk measures; see Fig-

ure 9.
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Figure 8: Empirical mean excess function for the fire loss data.
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Figure 9: Empirical and fitted distribution tails on log-log scale, including

estimates for VaR and C–VaR for the fire loss data.

The estimates obtained are α̂ = 1.04 with corresponding 99% VaR value

of 120 and estimated 99% C–VaR of 2890. Figure 9 contains the so–called
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profile likelihood curves with maximal values in the estimated VaR and C–

VaR. A 95% confidence interval around the 99% VaR 120 is given by (69, 255).

The right vertical axis gives the confidence interval levels. The interval itself

is obtained by cutting the profile likelihood curves at the 95% point. A

similar construction (confidence interval) can be obtained for the C–VaR;

due to a value of α̂ (=1.04) close to 1, a very large 95% confidence interval

is obtained. An α value less than one would correspond to an infinite mean

model. A value between one and two yields an infinite variance, finite mean

model. By providing these (very wide) confidence intervals in this case, EVT

already warns the user that we are walking very close (or even too close) to

the edge of the available data. The software used, EVIS (Extreme Values

In S–Plus) was developed by Alexander McNeil and can be downloaded via

http://www.math.ethz.ch/∼mcneil.

The basic result underlying the POT method is that the marked point

process of excesses over a high threshold u, under fairly general (though

very precise!) conditions, can be well approximated by a compound Poisson

process (see Figure 10):
N(u)∑
k=1

YkδTk

where (Yk) iid have a generalised Pareto distribution, the exceedances of u

form a homogeneous Poisson process and both are independent. See Lead-

better [40] for details. A consequence of the Poisson property is that inter–

exceedance times of u are iid, exponential. Hence such a model forms a good

first guess. More advanced techniques can be introduced taking, for instance,

non–stationarity and covariate modelling into account; see Embrechts [26],

Chavez–Demoulin and Embrechts [14] and Coles [15] for a discussion of these

techniques. The asymptotic independence between exceedance times and ex-

cesses makes likelihood fitting straightforward.
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We once more instruct the reader to look very carefully at the conditions

needed before a POT analysis can be performed and be well aware of the

“garbage in garbage out” problem; see Embrechts et al. [29], pp. 194, 270,

343. EVIS allows for several diagnostic checks on these conditions.

t

Xt

u
N(u)

X1
Xn

Y1

YN(u)

1 nT1 TN(u)

Figure 10: Stylised presentation of the POT method.

When we turn to the mean excess plots for the operational risk data

from Figures 1–3 (for the type specific data) and Figure 4 (for the pooled

data) we clearly see the typical increasing (nearly linear) trends indicating

heavy–tailed, Pareto type losses; see Figures 11–14 and compare them with

Figure 8. As a first step, we can carry out the above extreme value analysis

for the pooled data, though a refined analysis, taking non–stationarity into

account is no doubt necessary. As an example, we use the POT method to

fit a generalised Pareto distribution to the pooled losses above u = 0.4. We

estimate the 99% VaR and the 99% C–VaR, including their 95% confidence

intervals; see Figure 15. For the VaR we get a point estimate of 9.1, and a 95%

confidence interval of (6.0, 18.5). The 99% C–VaR beyond 9.1 is estimated

as 25.9, and the lower limit for its 95% confidence interval is 11.7. Since, as

in the fire insurance case, the tails are very heavy (α̂ = 1.63), we get a very

large estimate for the upper confidence limit for C–VaR.
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Figure 11: Mean excess plot for op-

erational risk losses, Type 1.
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Figure 12: Mean excess plot for op-

erational risk losses, Type 2.
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Figure 13: Mean excess plot for op-

erational risk losses, Type 3.
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Figure 14: Mean excess plot for

pooled operational risk losses.
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Figure 15: Empirical and fitted distribution tails for pooled operational losses

on log-log scale, including estimates for VaR and C–VaR.

As already discussed before, the data in Figure 4 may contain a transition

from more sparse data over the first half of the period under investigation to

more frequent losses over the second half. It also seems that the early losses

(in Figure 4 for instance) are not only more sparse, but also heavier. Again,

this may be due to the way in which operational loss data bases are built up

for years some distance in the past; one only “remembers” the larger losses.

Our EVT analysis can (and should) be adjusted for such a switch in size

and/or intensity; once more, Chavez–Demoulin and Embrechts [14] contains

the relevant methodology. We will come back to this point in the next section,

where we allow ourselves to make a more mathematical (actuarial) excursion

in the realm of insurance risk theory.

4.2 Ruin theory revisited

Given that (1) yields the total operational risk loss of s different sub–catego-

ries during a given year, it can be seen as resulting from a superposition of

several (namely s) compound processes. So far, we are not aware of studies

which establish detailed features of individual processes nor their interdepen-

dencies. Note that in Ebnöther [24] and Ebnöther et al. [25] conditions on
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the aggregated process are imposed; independence, or dependence through

a common Poisson shock model. For the moment, we summarise (1) in a

stylised way as follows:

Lt =

N(t)∑
k=1

Yk ,

where N(t) is the total number of losses over a time period [0, t] across all s

categories and the Yk’s are the individual losses, we drop the various indices.

From an actuarial point of view, it would now be natural to consider an

initial (risk) capital u and a premium rate c > 0 and define the cumulative

risk process

Ct = u+ ct− Lt , t ≥ 0 . (2)

In Figure 16 we have plotted such a risk process for the pooled operational

risk losses shown in Figure 4. Also here, the “regime switch” is clearly seen,

splitting the time axis in roughly pre– and past–1998.
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Figure 16: Risk process Ct with u = 50, c = 28 and the loss process from

Figure 4.

Given a small ε > 0, for the process in (2), a risk capital uε can then be

calculated putting the so–called ruin probability over a given time horizon

[T , T ] equal to ε:

Ψ
(
uε;T , T

)
= P

(
inf

T≤t≤T
(uε + ct− Lt) < 0

)
= ε . (3)
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The level of insolvency 0 is just chosen for mathematical convenience. One

could, for instance, see c as a premium rate paid to an external insurer taking

(part of) the operational risk losses or as a rate paid to (or accounted for by)

a bank internal office. The rate c paid, and the capital uε calculated would

then be incorporated in the unit’s overall risk capital.

Classical actuarial ruin theory concerns estimation of Ψ(u;T , T ) in gen-

eral and Ψ(u, T ) = Ψ(u; 0, T ), 0 < T ≤ ∞ in particular, and this for a wide

class of processes. The standard assumption in the famous Cramér–Lundberg

model is that (N(t)) is a homogeneous Poisson(λ) process, independent of

the losses (Yk) iid with distribution function G and mean µ <∞. Under the

so–called net–profit condition (NPC), c/λ > µ, one can show that, for “small

claims” Yk, there exist a constant R ∈ (0,∞) (the so–called adjustment or

Lundberg constant) and a constant C ∈ (0, 1) so that:

Ψ(u) = Ψ(u,∞) < e−Ru , u ≥ 0 , (4)

and

lim
u→∞

eRuΨ(u) = C . (5)

The small claims condition leading to the existence of R > 0 can be expressed

in terms of E(eRYk) and typically holds for distribution functions with expo-

nentially bounded tails. The constant C can be calculated explicitly. See for

instance Grandell [36], Asmussen [3] and Rolski et al. [50] for details. For

operational risk losses, the small claims condition underlying the so–called

Cramér–Lundberg estimates (4) and (5) are typically not satisfied. Opera-

tional risk losses are heavy–tailed (power tail behaviour) as can be seen from

Figures 11–14. Within the Cramér–Lundberg model, the infinite–horizon

(T = ∞) ruin estimate for Ψ(u) = Ψ(u,∞) becomes (see Embrechts and
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Veraverbeke [32], Embrechts et al. [29]):

Ψ(u) ∼ (
c

λ
− µ)−1

∫ ∞
u

(1−G(x)) dx , u→∞ . (6)

Hence the ruin probability Ψ(u) is determined by the tail of the loss distri-

bution 1−G(x) for x large, meaning that ruin (or a given limit excess) is

caused by typically one (or few) large claim(s). For a more detailed discussion

on this “path leading to ruin” see Embrechts et al. [29], Section 8.3 and the

references given there. The asymptotic estimate (6) holds under very general

conditions of heavy tailedness, the simplest one being 1 − G(x) = x−αh(x)

for h slowly varying and α > 1. In this case (6) becomes

Ψ(u) ∼ C u1−αh(u) , u→∞ , (7)

where C = [(α − 1)( c
λ
− µ)]−1. Hence ruin decays polynomially (slow) as

a function of the initial (risk) capital u. Also for lognormal claims, the esti-

mate (6) holds. In the actuarial literature, the former result was first proved

by von Bahr [7], the latter by Thorin and Wikstad [52]. The final version for

so–called subexponential claims is due to Embrechts and Veraverbeke [32].

In contrast to the small claims regime estimates (4) and (5), the heavy–tailed

claims case (6) seems to be robust with respect to the underlying assump-

tions of the claims process. Besides the classical Cramér–Lundberg model,

an estimate similar to (6) also holds for the following processes:

– Replace the homogeneous Poisson process (N(t)) by a general renewal

process; see Embrechts and Veraverbeke [32]. Here the claim interar-

rival times are still independent, but have a general distribution func-

tion, not necessarily exponential.

– Generalisations to risk processes with dependent interclaim times, al-

lowing for possible dependence between the arrival process and the
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claim sizes are discussed in Asmussen [3], Section IX.4. The general-

isations contain the so–called Markov–modulated models as a special

case; see also Asmussen et al. [6]. In these models, the underlying in-

tensity model follows a finite state Markov chain, enabling for instance

the modelling of underlying changes in the economy in general or the

market in particular.

– Ruin estimates for risk processes perturbed by a diffusion, or by more

general stochastic processes are for instance to be found in Furrer [33],

Schmidli [51] and Veraverbeke [53].

– A very general result of the type (7) for the distribution of the ultimate

supremum of a random walk with a negative drift is derived in Mikosch

and Samorodnitsky [43]. Mathematically, these results are equivalent

with ruin estimation for a related risk model.

For all of these models an estimate of the type (7) holds. Invariably, the

derivation is based on the so–called “one large claim heuristics”; see As-

mussen [3], p. 264. These heuristics may eventually play an important role

in the analysis of operational risk data.

As already discussed above, as yet, there is no clear stochastic model

available for the general operational risk process (1). Consequently, it would

be useful to find a way to obtain a broad class of risk processes for which (7)

holds. A solution to this problem is presented in Embrechts and Samorod-

nitsky [31] through a combination of the “one large claim heuristics” and the

notion of operational time (time change). Below we restrict attention to the

infinite horizon case Ψ(u). First of all, the estimate (7) is not fine enough

for accurate numerical approximations, it rather gives a benchmark estimate

of ruin (insolvency) deliminating the heavy–tailed (“one claim causes ruin”)
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situation from the light–tailed estimates in (4) and (5) where most (small)

claims contribute equally and ruin is remote, i.e. has an exponentially small

probability. For a discussion on numerical ruin estimates of the type (7), see

Asmussen and Binswanger [4], and Asmussen et al. [5].

Suppose that we are able to estimate ruin over an infinite horizon for

a general stochastic (loss) process (Lt), a special case of which is the classi-

cal Cramér–Lundberg total claim process in (2) or the risk processes listed

above. Suppose now that, for this general loss process (Lt), we have a ruin

estimate of the form (7). From (Lt), more general risk processes can be

constructed using the concept of time change (∆(t)). The latter is a posi-

tive, increasing stochastic process typically (but not exclusively) modelling

economic or market activity. The more general process (L∆(t)) is the one

we are really interested in, since its added flexibility could allow to model

the stylised facts of operational risk data as discussed in Section 2. We can

then look at this general time–changed process and define its corresponding

infinite horizon ruin function:

Ψ∆(u) = P

(
sup
t≥0

(L∆(t) − ct) > u

)
and ask for conditions on the process parameters involved, as well as for

conditions on (∆(t)), under which

lim
t→∞

Ψ(t)

Ψ∆(t)
= 1 , (8)

meaning that, asymptotically, ruin is of the same order of magnitude in the

time changed (more realistic) process as it is for the original (more stylised)

process. These results can be interpreted as a kind of robustness charac-

terisation for general risk processes so that the polynomial ruin probability

estimate (7) holds. In Embrechts and Samorodnitsky [31], besides general
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results for (8) to hold, specific examples are discussed. Motivated by the ex-

ample of transaction risk (see Table 1), Section 3 in the latter paper discusses

the case of mixing through Markov chain switching models, also referred to

as Markov modulated or Markov renewal processes. In the context of oper-

ational risk, it is natural to consider a class of time change processes (∆(t))

in which time runs at a different rate in different time intervals, depending

on the state of a certain underlying Markov chain. The Markov chain stays

in each state a random amount of time, with a distribution that depends

on that state. Going back to the transaction risk case, one can think of the

Markov chain states as resulting from an underlying market volume (inten-

sity) index. These changes in volumes traded may for instance have an effect

on back office errors. The results obtained in Embrechts and Samorodnit-

sky [31] may be useful to characterise interesting classes of loss processes

where ruin behaves like in (7). Recall from Figure 5 the fact that certain

operational risk losses show periods of high (and low) intensity. Future dy-

namic models for sub–categories of operational risk losses will have to take

these characteristics into account. The discussion above is mainly aimed at

showing that tools for such problems are at hand and await the availability

of more detailed loss data bases.

Some remarks are in order here. Within classical insurance risk theory,

a full solution linking heavy–tailedness of the claim distribution to the long–

tailedness of the corresponding ruin probability is discussed in Asmussen [3].

Alternative models leading to similar distributional conclusions are to be

found in the analysis of teletraffic data; see for instance Resnick and Samorod-

nitsky [49]. Whereas the basic operational risk model in (1) may be of a more

general nature than the ones discussed above, support seems to exist that

under fairly general conditions, the tail behaviour of P (LT+1 > x) will be
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power like. Further, the notion of time change may seem somewhat artifi-

cial. This technique has however been around in insurance mathematics for

a long time in order to transform a complicated loss process to a more stan-

dard one; see for instance Cramér [16] or Bühlmann [13]. Within finance,

these techniques were introduced through the fundamental work of Olsen and

Associates on Θ–time; see Dacorogna et al. [19]. Further references are Ané

and Geman [1], Geman et al. [34, 35] and more recently Barndorff–Nielsen

and Shephard [8]; they use time change techniques to transform a financial

time series with randomness in the volatility to a standard Black–Scholes–

Merton model. The situation is somewhat akin to the relationship between

a Brownian motion based model (like the Black–Scholes–Merton model) and

the more recent models based on general semi–martingales. It is a well–

known result, see Monroe [44], that any semi–martingale can be written as

a time changed Brownian motion.

4.3 Further tools

In the previous section, we briefly discussed some (heavy–tailed) ruin type

estimates which, in view of the data already available on operational risk,

may become useful. From the realm of insurance, several further techniques

may be used. Below we mention some of them without entering into details.

Recall from (1) that typically a yearly operational risk variable will be of the

form:

L =

N∑
k=1

Yk (9)

where N is some discrete random variable counting the total number of

claims within a given period across all s loss classes, say, and Yk denotes

the kth claim. Insurance mathematics has numerous models of the type (9)

starting with the case where N is a random variable independent of the iid
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claims (Yk) with distribution function G, say. In this case, one immediately

has that

P (L > x) =

∞∑
k=1

P (N = k)
(
1−G∗k(x)

)
(10)

where G∗k denotes the kth convolution of G. Again, in the case that 1 −

G(x) = x−αh(x), and the moment generating function of N is analytic in 1,

it is shown in Embrechts et al. [29] that

P (L > x) ∼ E(N)x−αh(x) , x→∞ .

Several procedures exist for numerically calculating (10) under a wide range

of conditions. These include recursive methods like the Panjer–Euler method

for claim number distributions satisfying P (N = k) = (a+ b
k
)P (N = k − 1)

for k = 1, 2, . . . (see Panjer [45]), and Fast Fourier Transform methods (see

Bertram [11]). Grübel and Hermesmeier [37, 38] are excellent review papers

containing further references. The actuarial literature contains numerous

publications on the subject; good places to start are Panjer and Willmot [46]

and Hogg and Klugman [39].

Finally, looking at (1), several aggregation operations are going on, in-

cluding the superposition of the different loss frequency processes (N t,i)i=1,...,s

and the aggregation of the different loss size variables
(
Y t,i
k

)
k=1,...,Nt,i,i=1,...,s

.

For the former, techniques from the theory of point processes are available;

see for instance Daley and Vere–Jones [20]. The issue of dependence mod-

elling within and across operational risk loss types will no doubt play a cru-

cial role; copula techniques, as introduced in risk management in Embrechts

et al. [30], can no doubt be used here.
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5 Final comment

As already stated in the introduction, conditional on the further development

and implementation of quantitative operational risk measurement within the

financial industry, tools from the realm of insurance as discussed in this

paper may well become relevant. Our paper serves the goal of a better ex-

change of ideas between actuaries and risk managers. Even if one assumes

full replicability of operational risk losses within the several operational risk

sub–categories, their interdependence will make detailed modelling difficult.

The theory presented in this paper is based on specific conditions and can

be applied in cases where testing has shown that these underlying assump-

tions are indeed fulfilled. The ongoing discussions around Basel II will show

at which level the tools presented will become useful. We strongly doubt

however that a full operational risk capital charge can be based solely on

statistical modelling.
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[13] Bühlmann, H. (1970). Mathematical Methods in Risk Theory. Springer.

[14] Chavez–Demoulin, V. and Embrechts, P. (2003). Smooth extremal mod-
els in finance and insurance. Journal of Risk and Insurance, to appear.

[15] Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Val-
ues. Springer.

[16] Cramér, H. (1930). On the Mathematical Theory of Risk. Skandia Jubilee
Volume, Stockholm.

[17] Crouhy, C., Galai, D., and Mark, R. (2000). Risk Management.
McGraw–Hill, New York.

[18] Cruz, M.G. (2002). Modelling, Measuring and Hedging Operational Risk.
Wiley.
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