Modern Portfolio Theory:

Should Active Portfolio Managers Be Using It?

David J Buckle

Director of Research, Lee Overlay Partners

The views expressed here are the author's, and are not necessarily shared by Lee Overlay Partners

Conceptual Framework for active portfolio management

CAPM

$$\mathbf{r}_t = \boldsymbol{\mu}_t + \boldsymbol{\theta}_t$$
 $\boldsymbol{\mu}, \boldsymbol{\theta}$ indep $\nabla[\boldsymbol{\theta}] = \boldsymbol{\Sigma}$

ASSUMPTION 1: $E[\theta] = 0$

Treynor & Black (but multiperiod and no independence assumptions)

$$\theta_t = \alpha_t + \phi_t$$

ASSUMPTION 2: $E[\alpha] = 0$

Forecasting equation

$$\alpha_t = \mathbf{m}_t + \mathbf{e}_t$$

 $V[m] = \Omega$

ASSUMPTION 3: E[e] = 0

Active Management equation	
$\theta_t = \mathbf{m}_t + \mathbf{\varepsilon}_t$	$V[\epsilon] = V$
ASSUMPTION 4: $\Sigma = \Omega + V$	ASSUMPTION 5: θ,m ~ MVN

Definition of information coefficient

 $IC = E[m\theta]$ $\sqrt{V[m]V[\theta]}$

Using IC to identify input parameters

ω = IC σ

$$v = \sqrt{1 - IC^2} \sigma$$

$$\rho_{\Sigma} = \rho_{\Omega} |\mathbf{C}_{1}|\mathbf{C}_{2} + \rho_{V} \sqrt{(1 - |\mathbf{C}_{1}^{2})(1 - |\mathbf{C}_{2}^{2})}$$

Portfolio weights

Total portfolio weights: \mathbf{w}_t such that $\mathbf{w}_t^T \mathbf{1} = \mathbf{1}$

Market portfolio weights: \mathbf{x}_t such that $\mathbf{x}_t^T \mathbf{1} = 1$, $\mathbf{x}_t^T \theta_t = 0$

Active portfolio weights: \mathbf{y}_t

$$\mathbf{w}_{t} = \mathbf{x}_{t} + \mathbf{y}_{t}$$

Portfolio returns

$$\mathbf{w}_t^{\mathsf{T}}\mathbf{r}_t = \mathbf{w}_t^{\mathsf{T}}\boldsymbol{\mu}_t + \mathbf{y}_t^{\mathsf{T}}\boldsymbol{\Theta}_t$$

ASSUMPTION 6: y is indep of μ and x

CAUTION:
$$\mathbf{w}_t^{\mathsf{T}} \boldsymbol{\mu}_t = \mathbf{x}_t^{\mathsf{T}} \boldsymbol{\mu}_t + \mathbf{y}_t^{\mathsf{T}} \boldsymbol{\mu}_t$$

ASSUMPTION 7: active manager can take an active position of any size in the market portfolio

Definition of information ratio

 $IR = E[\mathbf{y}^{\mathsf{T}}\boldsymbol{\theta}]$ $\sqrt{V[\mathbf{y}^{\mathsf{T}}\boldsymbol{\theta}]}$

A useful related expression

$$IR = \frac{1}{\sqrt{h-1}}$$

$$h = \frac{\mathrm{E}[\mathbf{y}^{\mathsf{T}}(\mathbf{m}\mathbf{m}^{\mathsf{T}} + \mathbf{V})\mathbf{y}]}{\mathrm{E}[\mathbf{y}^{\mathsf{T}}\mathbf{m}]^2}$$

 $\underline{MPT Approach}: \quad \mathbf{y}_{t} = c \ \mathbf{W}^{-1}\mathbf{m}_{t}$ Aside: If W is diagonal then $\mathbf{y}_{t} \propto \mathbf{m}_{t}$ $\mathbf{Generalised Fundamental Law of Active Management}$ $IR = \underbrace{tr(\Omega W^{-1})}_{\sqrt{tr}(\Omega W^{-1}\Sigma W^{-1}) + tr((\Omega W^{-1})^{2})}$

If Σ , Ω , W are diagonal and $\sigma_1 = ... = \sigma_{BR}$, $IC_1 = ... = IC_{BR}$ then $IR \approx \sqrt{BR IC}$

Univariate MPT: IR =
$$\frac{IC}{\sqrt{(1 + IC^2)}}$$

Application: Two specialists or one generalist?

Positions in the univariate case

IR versus IC in the univariate case

-9-

<u>Naïve Approach</u>: $y_t = k \operatorname{sign}(m_t)$

Univariate Naïve: IR = IC
$$\sqrt{(\pi/2 - IC^2)}$$

Positions in the univariate case

IR versus IC in the univariate case

-12-

THEOREM OF ACTIVE PORTFOLIO MANAGEMENT

The single period investment position that maximises the multiperiod information ratio is the result of a mean/second-moment optimisation

 $\mathbf{y}_t = \mathbf{c} (\mathbf{m}_t \mathbf{m}_t^T + \mathbf{V})^{-1} \mathbf{m}_t$

PROOF:

```
Schwarz ineq: For any random vectors U & S,

E[U^{T}U] / E[U^{T}S]^{2} \ge E[S^{T}S]^{-1}

with equality holding if and only if U = cS

Recall h = E[(y^{T}\theta)^{2}] / E[y^{T}\theta]^{2}

Set U = L<sup>T</sup>y and S = L<sup>-1</sup>m (LL<sup>T</sup> = mm<sup>T</sup> + V)

Then h \ge E[m^{T}(mm^{T} + V)^{-1}m]^{-1}

with equality holding if and only if y = c(LL<sup>T</sup>)^{-1}m
```

Univariate TAPM approach

$$y_{\rm t} = \frac{{\rm c} m_{\rm t}}{m_{\rm t}^2 + v^2}$$

$$\mathsf{IR} = \frac{\phi(\xi)}{\xi \Phi(-\xi)} -1$$

where
$$\xi = \sqrt{1 - IC^2}$$

Positions in the univariate case

IR versus IC in the univariate case

-16-