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Conceptual Framework for active portfolio management
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CAPM

r,=p + 6, u, 0 indep Vo] =X
ASSUMPTION 1: E[6] =0

Treynor & Black (but multiperiod and no independence assumptions)

0, = oy + ¢

ASSUMPTION 2: E[o] = 0

Forecasting equation

o, =m,+ e, Vim] = Q
ASSUMPTION 3: E[e] =0

Active Management equation
0,=m, + g Vie] =V
ASSUMPTION4:>=Q +V ASSUMPTION 5: O,m ~ MVN




Definition of information coefficient

IC = E[m6]
\VV[m] V6]

Using IC to identify input parameters

ow=I1Coc

v=V1-1C2¢

Ps = pq IC41C, + py, \/(1'|C12)(1'|C22)



Portfolio weights
Total portfolio weights: w,  such that w,"1 = 1

Market portfolio weights: x, such that x,”1 =1, x,/6,=0
Active portfolio weights: y,

_ Wi =X T Y,
Portfolio returns

Ty — T T
w,'r, = w 'y, +y,'0

ASSUMPTION 6: y is indep of p and x

CAUTION:  w'p = x"p +y 'y

ASSUMPTION 7: active manager can take an active position of any
size in the market portfolio




Definition of information ratio

IR = E[y"6]
VV[yT6]

A useful related expression
IR= 1
A — 1

h =E[y'(mm' + V)y]

E[y'm]?



MPT Approach: y,=cW'm,

Aside: If W is diagonal then y, ccm,

Generalised Fundamental Law of Active Management
IR = tr(QW-1)
VEr(QW-TZW-1) + tr((QW-1)?)

If X, Q, W are diagonal and ¢, = ... = ogg, IC, = ... =1Cg,
then IR~ +BRIC
Univariate MPT: IR = IC




Application: Two specialists or one generalist?

2.5 -
IR=0.8
2 _
o IR=0.6
©
¥ 15 -
5
= IR = 0.4
E 1.
o e T T e,
= :
: IR=0.2
0.5 - __—
0 | | | v | |
0 0.2 0.4 0.6 0.8 1

Residual Return Correlation

-



Positions in the univariate case

MPT Approach

Position (y,)

Fgorecast (my)



IR versus IC in the univariate case
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Naive Approach: vy, =k sign(m,)

Univariate Naive: IR = IC

(/2 - IC?)
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Positions in the univariate case
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IR versus IC in the univariate case
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THEOREM OF ACTIVE PORTFOLIO MANAGEMENT

The single period investment position that maximises
the multiperiod information ratio is the result of a
mean/second-moment optimisation

y;=c (mm +V)'m,

PROOF:

Schwarz ineq: For any random vectors U & S,
E[UTU]/ E[UTS]? > E[STS]"

with equality holding if and only if U = cS

Recall 7 = E[(y"0)?] / E[yT0]?

SetU=L'yand S=L"'m (LLT = mm' + V)

Then /2 > E[m"(mmT + V)'m]"

with equality holding if and only if y = ¢(LLT)"'m
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Univariate TAPM approach

Vi = C my

IR=/ oE) -1
ED(-E)

where & = V1 - IC2
IC
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Positions in the univariate case
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IR versus IC in the univariate case
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