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Some aspects of active portfolio management 

 

Abstract 

We propose a framework for considering active portfolio management, consistent 

with existing literature in the single period environment, but extended to the multi-period 

environment that most practicing active managers operate in. We derive several active 

portfolio management results including the Generalised Law of Active Portfolio 

Management (a generalisation that accounts for correlations and varying information 

coefficients and volatilities), and the Theory of Active Portfolio Management that 

suggests that mean/second-moment optimisation is the best active portfolio management 

approach in a multi-period setting, not mean/variance. In developing these results we 

uncover some inappropriate practices, and several simplistic practices that are 

theoretically supported by our framework. 
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Some aspects of active portfolio management 

 

1. Introduction 

 Active portfolio management has not had the same level of mathematic rigour 

applied to it as have more mainstream areas of finance. The notable contributions being 

the security selection model of Treynor and Black (1973) and the work of Grinold and 

Kahn (1999). In this article we propose a structure for active portfolio management 

equivalent in the single time period to the above, but extended into the multi-period 

setting. Within this structure we uncover some interesting and controversial conclusions 

regarding active portfolio management. We list these conclusions in order of increasing 

importance: 

1. Variances of our forecasts and their errors are related to the asset variance by the 

information coefficient 

2. Distinguishing between residual returns that are uncorrelated with the market and 

returns in excess of a benchmark can be important. 

3. The practice of using total asset return covariance matrices in active portfolio 

position optimisations is theoretically unsound, and can distort the positions. 

4. The practice of using a linear allocation rule where an active position in an asset 

is proportional to its forecast is theoretically reasonable. 

5. We derive the Generalised Fundamental Law of Active Management as an 

extension of Grinold and Kahn’s Fundamental Law of Active Management. Using 
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this law we find that the use of independent active manager specialists is better 

than one general active manager who can account for asset correlations. 

6. The naïve practice of taking active positions of constant size regardless of the size 

of forecast can produce higher information ratios than using modern portfolio 

theory. 

7. The practice of active portfolio managers of using by mean/variance optimisation 

to generate active positions do not maximise information ratio, it is the positions 

generated by mean/second-moment optimisation that do. We derive this in a 

theorem that we have termed the Theorem of Active Portfolio Management. 

 

We consider active portfolio management in the context of an active manager 

being given an investment wealth to manage on behalf of the trustee of that wealth. This 

context is vastly more prevalent than active managers using their own wealth. It is then 

helpful to be clear from the outset why a trustee of an investment wealth would consider 

active portfolio management, and what then is the role of the active portfolio manager. 

Therefore in Section 2 we provide the theoretical underpinnings of the objectives of both 

the trustee and the active manager. That being done we develop in Section 3 our 

mathematical structure for considering active portfolio management. This structure is 

equivalent to the existing work of Treynor and Black and Grinold and Kahn, but is 

extended to the multi-period setting where the active portfolio manager typically 

operates. Conclusions 1 – 3 are drawn in this Section.  In Section 4 we explores three 

alternative approaches to active portfolio management and identify two important results, 

namely the Generalised Fundamental Law of Active Management and the Theorem of 
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Active Portfolio Management. Conclusions 4 – 7 are drawn in this section and stem from 

these two results. In Section 5 we make a critical review of the assumption we have 

adopted. In Section 6 we relate our results to existing literature. Section 7 contains our 

conclusions. An Appendix contains additional mathematical detail. 

 

2. Objectives of the trustee and active managers 

 Consider the two participants of active portfolio management. The first is the 

trustee of an investment wealth who potentially allocates the wealth to an active manager. 

The second is the active manager who manages the investment wealth on behalf of the 

trustee. Given that we are attempting to provide rigour to active portfolio management, 

prior to commencing our study it behoves us to formally identify their objectives. 

2.1. The trustee 

 Let us begin by considering the decision facing the trustee. It is how to allocate an 

investment wealth amongst a universe of assets. This decision is considered a single 

holding period decision, normally over a long-term horizon. As such it has been 

addressed by a series of extraordinarily important academic articles. 

Modern portfolio theory (Markowitz 1952) says that in order to make the single 

period allocation decision the trustee should select an efficient portfolio. The market 

separation property (Tobin 1958) goes further to say that the trustee should hold some 

combination of the risk free asset and the single efficient portfolio of maximum Sharpe 

ratio (the so-called consumption decision). 

If the efficient market hypothesis holds, then the CAPM (Sharpe 1964) says that 

this portfolio is the market portfolio. Alternatively, if asset prices are inefficient, an active 
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manager may be able to beat the market portfolio. The ability to do this is measured by 

information ratio (Treynor and Black 1973). So, additional to the consumption decision, 

the trustee should choose the active managers with highest information ratios in order to 

maximise the Sharpe ratio (see for example Bodie, Kane, and Marcus 1996 or Grinold 

and Kahn 1999). 

 There is nothing particularly controversial about the above framework. It is 

considered a foundation of finance, and the objective of selecting the active manager with 

maximum information ratio is industry standard (Grinold and Kahn 1999). 

What is controversial is our proposal that the typical active manager does not 

attempt to maximise the information ratio. 

 

2.2 The active manager 

 Let us now take the perspective of the active manager, who has been given an 

investment wealth by the trustee. The active manager’s objective is clear from the 

previous section: maximise the information ratio. 

The typical active manager also uses modern portfolio theory in order to construct 

the managed portfolio (see for example Dybvig and Ross 1985, and Grinold and Kahn 

1999). However in order to outperform the market, the active manager must take 

advantage of perceived mispricings by making regular changes to the holdings in the 

trustee’s portfolio. So the active manager has a multi-period problem. 

But modern portfolio theory is for the single period decision problem, and 

applying it to each period of the multi-period problem does not maximise information 

 5



ratio. As we shall see there is an alternative investment approach that maximises the 

information ratio. 

 

3. Mathematical framework for active management 

 In order to make any inference on active portfolio management we need a 

rigorous mathematical framework to work within. Ours consists of several parts. First we 

provide a framework for modelling asset returns where we essentially follow the well-

known models proposed by Treynor and Black (1973) and Grinold and Kahn (1999). 

After developing this structure we use the information coefficient to calibrate our input 

parameters. Next we provide a framework for active portfolio positions, and illustrate 

how the asset return structure can be applied to portfolio return thereby hinting at the 

validity of using information ratios. Finally we provide an expression for information 

ratio, the measure of active portfolio management performance. In particular we identify 

an expression for information ratio as a function of the active portfolio positions and asset 

return forecasts. 

 

3.1. A framework for modelling asset returns 

Let the column vector rt denote the returns from our universe of assets over the 

single time period (t, t + 1). We decompose these returns into a market component and an 

uncorrelated residual component, so that 

rt  = �t + �t 

where �t is the market component, and �t is the vector of single period residual returns 

that are uncorrelated with the market return. We shall denote V[�] by �. 
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ASSUMPTION 1: We shall assume that in the long run the efficient market hypothesis 

holds and therefore we apply the assumption from the equilibrium asset pricing models 

such as the CAPM (Sharpe 1963) or APT (Ross 1976) that E[�] = 0. 

The CAPM and other equilibrium models are myopic in that they only consider 

one holding period. For our application that holding period is long. It may be the case that 

the market is inefficient over much shorter time horizons in which case �t will contain 

some single period abnormal return in addition to idiosyncratic noise. Adopting the 

notation of Treynor and Black we have that 

�t = �t + �t 

where vector �t  denotes idiosyncratic noise and vector �t denotes abnormal returns over 

the period (t to t+1). Observe that the abnormal returns are indexed by time. In this regard 

we have extended Treynor and Black’s model to a multi-period setting. 

ASSUMPTION 2: We assume that abnormal returns are only available in the short term 

and not indefinitely. Hence E[�] = 0. 

 

3.2. Active manager forecasts 

It is important, conceptually, to note that our model thus far incorporates no active 

management forecasts. For active management to exploit the opportunity to beat the 

market we must forecast �t. So let us consider such a forecast, which we shall denote by 

the vector mt. We relate �t and mt by the equation 

�t = mt + et 

where et is the error in our forecast. 
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ASSUMPTION 3: We assume that we are unbiased forecasters in the long run which 

implies that E[e] = 0. 

 We can combine equations (2) and (3) to give us that 

�t = mt + �t 

where �t denotes the error in our forecast plus the idiosyncratic noise in the market place. 

We shall denote V[m] by � and V[�] by V. 

ASSUMPTION 4: We assume that m and � are independent so that 

� = � + V. 

We can see from this assumption that our ability to beat the market will be 

reflected in the magnitude of � relative to V. It should be strongly noted that we have 

made no assumption regarding market efficiency. If the market is efficient then � = 0 and 

all of the residual return is attributed to idiosyncratic noise and therefore our active 

management framework collapses down to standard equilibrium pricing equations. 

ASSUMPTION 5: For mathematical convenience and to be consistent with existing 

mainstream literature we shall assume that r, �, and m all follow a multivariate Normal 

distribution. 

 
 
3.3. Relating returns to forecasts: the information coefficient 

The information coefficient, denoted IC, is an indicator of the quality of the active 

portfolio management (see for example Grinold and Kahn 1999). We can use it to relate 

residual returns to forecasts. It is defined as the correlation between the residual return of 

an asset and the abnormal return forecast. By definition it is applicable only in a 

univariate sense. Adopting our notation we define IC as 
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IC = E[m�] / (V[m]V[�])½ 

where m and � are an element of m and � respectively. 

 Applying equation (6) to our framework it is easy to show that 

IC = �/� 

where �2 and �2 are the appropriate elements of � and � respectively. As the variance of 

residual return is attributed more to the abnormal return forecasts and less to the error 

term so IC will increase from a lower limit of zero when the active manager has no 

insight at all, to an upper limit of 1 when the active manager has perfect insight and all 

the residual return is abnormal return. 

 

3.4. Identifying values for �, ��and V 

 The matrix V is the covariance matrix of the asset residual returns conditional on 

our forecast of abnormal return. Together with mt it defines our forecast distribution of 

the residual returns at any point in time. We therefore need to identify V to fully specify 

the forecast distribution. This can be done using IC, � and �. We first identify the 

variances in V, then the correlations. 

Variances 

A variance embedded in �, denoted by �2, represents the variance of residual 

return. It is observable and can therefore be estimated by empirical analysis of historical 

asset return data. Provided we know the information coefficient, then we can use 

equations (5) and (7), to identify a variance embedded in �, denoted by ��
� thus 

� = IC�� 
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Being a volatility of our forecast, � may not satisfy equation (8). In this event 

theoretical consistency can be achieved by scaling the forecasts such that equation (8) is 

satisfied (see Section 5.3.). 

Having identified � along with �, we can again use IC and equation (5) to 

identify the variance of the forecast errors. Such a variance is embedded in V, denoted by 

v2, and is trivially shown to be given by 

v = (1-IC2)½ 
�� 

Correlations 

Having identified the variances we now consider correlations. The correlations in 

� are the correlations of the asset residual returns. It should be noted that they are not the 

asset return correlations. There is often significant difference between the two. In fact 

many financial models including Treynor and Black (1973) and Grinold and Kahn (1999) 

plus the single index model (Sharpe 1963), the multi-factor model (Cohen and Pogue 

1967) assume the residual returns to be uncorrelated. If an assumed structure is not 

desired the correlation in � can be estimated from observed data. 

 The correlations in � are the correlations between the forecasts. These too can be 

estimated from a time series of forecasts. 

Now, from equations (5), (8) and (9) we have that the correlations between any 

two assets can be represented as 

�� = �� IC1 IC2 + �V (1-IC1
2)½(1-IC2

2)½ 

where ��, ��, and �V denote the correlations between two residual returns, two forecasts, 

and two forecast errors respectively, and IC1 and IC2 denote the information coefficients 
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of the two assets. Therefore an observed asset residual return correlation can be 

attributed to both the correlation of the forecast and the correlation of the error. 

In viewing asset returns in this fashion we can clarify a deeply misunderstood 

issue regarding the role of correlations in practical investment management. In practice, 

the temptation is to substitute total asset return covariance, V[r], for V. Such an action 

can erroneously embed high correlations into V, since the correlations in � are likely to 

be much closer to zero (or even assumed to be zero). Moreover, provided the ICs are 

moderately high, any non-zero correlation may be attributed to the forecasts. The 

correlation of V should then be set to zero even though the observed correlation of � is 

non-zero. 

 

3.5. A framework for modelling portfolio weights and resultant returns 

 In order to beat the market the active manager must construct a portfolio that 

differs from the market portfolio. Conceptually the active manager increases exposure to 

those assets that are forecast to produce abnormal return and decreases exposure to those 

that are not. Given our assumption that abnormal returns do not exist over the long run, 

the active manager must regularly adjust the exposures to account for periodic 

opportunities as they come and go. 

 The total portfolio positions, denoted by wt and satisfying wt
T1 = 1, can be 

decomposed into market portfolio positions, denoted by xt and satisfying both xt
T
�t = 0 

and xt
T1 = 1, and active portfolio positions denoted by yt respectively, thus 

wt = xt + yt. 

Then the total portfolio return can be decomposed as follows 
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wt
Trt = wt

T
�t + yt

T
�t . 

ASSUMPTION 6: The active positions depend on our forecasts of residual return 

distribution but are independent of the market portfolio. So the deviations, yt, are a 

function of the forecasts, mt, but are independent of �t and xt. 

Given that y is independent of x and � we observe that E[(wT
�)(yT

�)] = 0 and 

therefore the decomposition of the total portfolio return has a market component (wt
T
�t) 

and an independent  residual return (yt
T
�t). This essentially is the theory that Treynor and 

Black (well outlined in Bodie, Kane, and Marcus 1996) used in their original security 

selection model, and well aligned with the work of Grinold and Kahn. From here the 

proof that maximising the information ratio will maximise total portfolio Sharpe ratio is 

trivial. 

In practice the market component is replaced with a specified benchmark 

portfolio, denoted in our notation by the position vector xt rather than wt. The remainder 

term from the total portfolio return, yt
T
�t, is then attributed to the active manager. This 

action is sound provided the yt
T
�t = 0, i.e. active positions are “beta neutral” but not 

otherwise. For example the active manager with no insight could create an active 

portfolio which is simply the market portfolio but with higher beta. This active portfolio 

would exhibit positive information ratio but the total Sharpe ratio will remain unchanged 

(bar an active management fee). We believe this to be an issue not appropriately 

measured in practice. 

Almost directly from Assumption 6 and equation (12) we can see that the task 

facing active managers is identifying the functional form of yt as a function of mt that 
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maximises information ratio. This will be the meandering objective of the remainder of 

our article. 

 As a simplifying aside: by definition the active positions must sum to zero, i.e. 

yt
T1 = 0. We can drop this restriction with one assumption. 

ASSUMPTION 7: The active manager can take an active position of any size in the 

market portfolio. 

We can decompose the active positions into the position in the market portfolio 

and the positions in the other assets. Our vector yt denotes the latter. From Assumption 7 

we can set our active position in the market portfolio equal to -yt
T1, so that the active 

positions always sum to zero, yet yt is unrestricted. 

 

3.6. Deriving the information ratio 

The variable of interest to the trustee in measuring the performance of the active 

manager over any single time period is the active portfolio residual return, defined as 

yt
T
�t. Measuring active portfolio returns over a large multiple of time intervals eliminates 

the element of luck, where the residual return may happen to come from the tail of its 

probability distribution. Treynor and Black showed that the appropriate measure is 

information ratio, denoted by IR, which is defined as the expected residual return divided 

by the risk of residual return, written as 

IR = E[yT
�] / V[yT

�]½. 

 In our analysis we require that the information ratio be expressed as a function of 

the abnormal return forecasts. We do this by noting that IR is related to a function h 

defined as 
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IR = 1/(h – 1)½, 

and in Appendix A.1 we show that we can express h as 

h = E[yT (mmT + V) y] / E[yTm]2. 

This will be a useful expression for us because different active management approaches 

are defined by the function relating y to m. We can then substitute that function into 

equation (15) and measure the information ratio of that active management approach. 

 

4. Considering various approaches to active portfolio position taking 

Having derived an expression for information ratio as a function of the active 

positions, let us now apply it to a variety of approaches to active portfolio management. 

We shall consider three approaches. The first is what might be considered the “standard” 

approach, the second is a naïve alternative, and the third is what we identify to be the 

optimal approach. 

4.1. A modern portfolio theoretic (MPT) approach to active portfolio management 

4.1.1. Deriving the active positions 

 Modern portfolio theory says that the optimal active position vector over a single 

time period is the result of a mean/variance optimisation. We show in Appendix A.2 that 

the functional form of yt that does this is 

yt = c W-1 mt. 

where c-1 denotes the investor’s coefficient of (active) risk aversion and W denotes the 

investors covariance matrix for the forecast errors. 

 It is critical to note that we have not used the matrix V as our covariance matrix of 

forecast errors in equation (16). This is because although V is the theoretically correct 

 14



variable there are two reasons why it might not be used in practice. First, the covariance 

matrix of forecast errors is the choice of the active manager and there is nothing to inhibit 

the active manager from using any values for W. Second, different classes of assets are 

typically awarded to different active managers. Therefore the active manager must 

assume a zero correlation with any asset that he/she does not manage so that the active 

positions are not a function of another active manager’s forecast of some other assets. 

The cost to performance of this separation is discussed in the next section. 

4.1.2. Identifying the information ratio 

 With the functional form of yt identified we can substitute equation (16) into our 

equation for information ratio, equation (15), and therefore identify the information ratio 

of the mean/variance optimal approach to active management. 

 We show in the Appendix A.3 that if yt = c W-1mt then 

IR = tr(�W-1) / (tr(�W-1
�W-1) + tr((�W-1)2))½ 

where tr( ) denotes the trace of a matrix. 

This is a very useful result. As we shall show in the next section it can be 

considered a generalisation of Grinold and Kahn’s fundamental theorem of active 

management. For this reason we term equation (17) the Generalised Fundamental Law of 

Active Management. 

Our expression is general in that it allows for different ICs across the assets and 

also allows for non-zero correlations between asset returns, forecasts, and forecast errors. 

This is particularly useful in identifying whether or not it is optimal to allow two 

correlated assets to be managed by one manager who accounts for this correlation, or to 

separate out the two assets to two specialist active managers. The trade off is that whilst 
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the two specialists cannot account for the correlation and therefore the overall IR will be 

reduced, the introduction of two specialists will increase the individual IRs relative to the 

single generalist by enough to offset this correlation. 

For example, suppose our residual returns are correlated but our forecasts are 

uncorrelated so that all of the residual return correlation appears in the correlation of the 

forecast errors. Then equation (17) can provide us with the total information ratio in this 

correlated situation (for simplicity we have assumed that IC, �, �, and v are equal for 

both assets). Chart 1 illustrates how the total IR will increase as either the individual asset 

IR increases or the residual return correlation increases. Now suppose we ignore the 

forecast error correlation. It is easy to show that the total IR is independent of the residual 

return correlation, and is therefore a function solely of individual asset IR. These cases 

are represented in Chart 1 by the points mapping to correlation equal to zero. We can 

then observe from Chart 1 that a 0.2 increase in information ratio (annualised assuming 

monthly time steps) will be sufficient to offset a residual return correlation of as much as 

0.65. 

Buckle(2000a) also shows the increase in information ratio through using 

specialist managers is sufficient to offset even quite large correlations. This example is 

just one application of the generalised fundamental law of active management. Buckle 

(2000a) goes on to discuss many others. 

 
4.1.3. Assuming zero correlations 

 As we have discussed, assuming zero correlations in �, �, and V may be 

reasonable. In fact Grinold and Kahn (1999) make this assumption in their seminal 
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textbook on active portfolio management. Doing so provides two interesting results, 

which we shall now review. 

Reconciling with Grinold and Kahn 

 In addition to the zero correlation assumption, let us assume that the residual 

return variances and the ICs are equal. Substituting these assumptions into equations (8), 

(9), and (17) gives us that 

IR = [BR×IC] / [BR(1 + IC2)]½ 

where BR denotes the dimension of �. Noting that the IC in practice is rarely higher than 

0.3 we adopt Grinold and Kahn’s assumption that IC2 is negligible. This the gives us that 

IR ≈ BR½ IC 

and we have Grinold and Kahn’s  fundamental law of active management. 

Validating the linear rule 

Given the zero correlation assumption, W is a diagonal matrix in which case the 

active position in the ith asset is given by 

yit � mit. 

This is an interesting result as it validates the use in practice of the simple but robust rule 

of taking an active position in an asset in proportional to the forecast of that asset return. 

See Buckle (1999) and Buckle (2002) for further details. 

4.1.4. The univariate case 

 Some of the conceptual simplicity of our argument is lost in the multi-

dimensional setting. For this reason we consider the special case of one dimension. In this 

case we can write that yt = c mt / w2, and 

IR = IC / (1+IC2)½. 
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 As we might expect IR is an increasing function of IC with a lower limit of IR = 0 

when the forecaster has no ability as measured by IC = 0. It is perhaps a little more 

surprising that there is an upper bound to IR when the forecaster has perfect foresight. It 

is easy to see that IR will increase to an upper bound of 1/√2 = 0.707 when IC=1. 

 

4.2. A naïve approach to active portfolio management 

4.2.1. The active position 

As an alternative to the MPT approach to position taking, let us consider a more 

naïve strategy. Let us assume that we completely disregard any information in our 

forecast distribution with the exception of the direction of the forecast. We represent this 

by taking positions proportional to the sign of the forecast, thus 

yt = K sign(mt) 

where K denotes some arbitrary constant of aggressiveness. 

4.2.2. Deriving the information ratio 

Again considering the univariate scenario, we show in Appendix A.4 that the 

information ratio for this naive strategy is given as 

IR = IC / (�/2 – IC2)½. 

As in the MPT approach IR is an increasing function of IC also with a lower limit 

of IR = 0 when IC = 0. Like the MPT approach, but perhaps less surprising, the 

information ratio of the naïve approach also has an upper bound when the forecaster has 

perfect foresight. What is surprising is that in this case the upper bound is 1/(�/2-1)½ = 

1.324. 
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4.2.3. The paradox? 

The upper limit of the information ratio is greater using the naive approach 

(1.324) than the MPT approach (0.707). Given that the latter strategy is considered the 

optimal approach, there appears to be a paradox here. The superior performance of the 

naïve approach does not occur just at the limit. It is trivial to show that the point at which 

the naive approach yields a higher information ratio is when the IC is greater than (�/4 – 

½)½ = 0.53. Even below this level the naïve approach does not under-perform the MPT 

approach by very much. 

This result has an appeal in that it is consistent with, and adds credence to, the 

adage that it is more important to forecast direction correctly than it is to forecast the 

magnitude of the returns. 

 We are however left with the question as to what is the approach to active 

portfolio management that maximises the information ratio? 

 

4.3. The maximum information ratio approach to active portfolio management 

 We have seen that the MPT approach to active portfolio management does not 

maximise the information ratio because the naïve approach produces a greater one. We 

now derive the approach that maximises the information ratio and analyse its 

characteristics. 

4.3.1. Deriving the active positions 

 The key result of this article is that we have found the function relating active 

positions to forecasts that maximises the information ratio. We shall express this result in 
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the form of a theorem that we have termed the Theorem of Active Portfolio Management. 

We have deferred the proof of this theorem to Appendix A.5. 

Although we have made an assumption on the distribution of returns (Assumption 

5) we would like to point out that this theorem requires no distributional assumptions. 

 

THEOREM (Theorem of Active Portfolio Management) 

 The single period investment position that maximises the multi-period information 

ratio is the result of a mean/second-moment optimisation. 

 

Mathematical Representation of the Theorem 

 Given a vector of abnormal return forecasts, denoted by mt, and a vector of asset 

residual returns, denoted by �t, then the vector of active positions, denoted by yt, that 

maximises the information ratio, defined as  IR = E[yT
�] / V[yT

�]½, is given as 

yt = c (mtmt
T
�+ V)-1mt 

where V is the covariance matrix of residual returns conditional on the forecast, and c-1 

is the scalar coefficient of (active) risk appetite.  

 

In the univariate case we can write this as 

yt = c mt / (mt
2 + v2) 

where the notation is taken from previous sections. 

It is interesting to study the characteristics of this optimal position function. To 

aid that study Chart 2 illustrates the active positions in the univariate case for each of the 

three approaches as a function of the forecast. As can be observed, like the MPT and 
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naïve approaches, the approach of using the theory of active portfolio management 

(TAPM) generates zero positions when the forecasts are zero. As the forecasts increase so 

the positions increase in a similar fashion to the MPT approach. Then, contrary to modern 

portfolio theory, as the forecasts increase further, the positions begin to level off 

exhibiting a similar profile to the naïve approach. Then as the forecasts increase yet 

further the positions from the TAPM approach decrease toward zero again.  

Probably the most significant characteristic of positions generated from a 

mean/second-moment optimisation is that there is a maximum position. It can be shown 

that in the univariate case the maximum occurs when the forecast is one standard 

deviation in size. In the multivariate case the maximum position occurs when mtmt
T = V, 

although this maximum can only be achieved if V has a particular form. From a trustee’s 

perspective the fact that the active manager has a limit to the position size provides an 

extra level of implicit risk control. 

 The most significant negative feature of mean/second-moment optimisation is that 

we have lost the attractive feature of mean/variance that when the covariance matrix is 

diagonal each asset position will only be a function of the forecast of that asset. 

 

4.3.2. Deriving the information ratio 

 Unfortunately we have not been able to derive an expression for the information 

ratio of the mean/second-moment approach in the multivariate case, but have however 

been able to derive it in the univariate case. In Appendix A.6 we show that the 

information ratio of the univariate mean/second-moment approach is given by 

IR = [	(x) / (x
(-x)) – 1]½ 
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where x = (1-IC2)½ / IC and 	() and 
() are the standard normal pdf and cdf respectively. 

 This expression is not easy to interpret, and is clearer in graphical form. Chart 3 

plots the IR of the TAPM approach together with the IRs of the MPT and naïve 

approaches as the information coefficient increases. Just as for the MPT and naive 

approaches, the value of IR for the TAPM approach equals 0 when IC equals 0. However, 

unlike the first two approaches, the IR for the TAPM approach has no upper bound. As 

the information coefficient tends to 1, IR tends to infinity. Implying that risk free non-

zero portfolio residual returns are available. 

Graphically, the optimal property of the TAPM approach is clear, although when 

the information coefficient is no more than moderate, all three approaches have similar 

information ratios. 

 

4.3.3. An explanation of our findings 

 The key to explaining the surprising results that we have outlined above lies with 

the time varying residual return expectations. In the case of the MPT approach, the 

varying expectations imply that the amount invested must also vary through time. 

However, modern portfolio theory considers the investment amount a fixed quantity. 

Therefore, what the MPT approach does not take into account is the additional portfolio 

return volatility that arises from varying the investment amount (a point noted by Bodie, 

Kane and Marcus 1993). 

 In the environment of low volatility of abnormal return forecast (reflected by IC 

close to 0), the MPT approach must be near to the optimal IR (because the investment 

amount will hardly vary in which case MPT is known to be optimal). However, as this 
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volatility increases, the volatility of the active position increases, so the active portfolio 

return volatility also increases. Such an increase is not present in volatility of the active 

portfolio returns from the naïve approach return because the active position is constant. 

Eventually then, it can be shown that the volatility of the returns from MPT approach will 

offset that approach’s return expectation and, in terms of maximising the information 

ratio, the naïve strategy will begin to dominate. 

The TAPM approach goes even further than the naïve approach as it dampens 

down the positions that are generated from large expected return forecasts. This 

dampening reduces the likelihood of very large returns, positive or negative, and 

therefore reduces the volatility of the resulting active portfolio returns. Recall that we 

earlier observed that the MPT approach was negatively impacted by not accounting for 

the volatility in the expected returns. The TAPM approach accounts for this. 

 

5. A critical review of assumptions 

We recognise that we make a strong statement in suggesting that active managers 

should not be using the MPT approach to generate investment positions, and it is 

incumbent of us to critically assess our work. 

5.1. Assumptions on the trustee’s objective 

Our key assumption is that the trustee maximises Sharpe ratio. This assumption 

requires only that the trustee assumes a single period investment, uses modern portfolio 

theory, and uses the market separation property. These last two assumptions are 

essentially beyond question, although the market separation property does require 
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unlimited borrowing and lending of the risk free asset, and both require trading to be free 

of taxes, transactions costs, and other frictions. 

For modern portfolio theory to be consistent with the decision theoretic approach 

of maximising expected utility we do require that utility of wealth is quadratic or that 

returns are normally distributed. For many practical purposes asset returns are considered 

normal (although evidence of heavier tails has been found, see for example Fama 1965 

and Blattberg and Gonedes 1974). However, even if asset returns are normally 

distributed, our active portfolio returns (made up of the product of a normal distribution 

and the distribution of our positions) may not be normally distributed (a point noted by 

Dybvig and Ross 1985). It is then theoretically arguable that the trustee should be using 

the utility theoretic approach directly, rather than mean/variance, in which case the 

Sharpe ratio may not be the appropriate measure. In practice this issue is ignored, 

although the academic community have recently indicated the risk of that stance. In 

particular skew and kurtosis can render the expected return and variance poor measures 

of return location and risk respectively. Ergo the Sharpe ratio becomes an inaccurate 

measure of risk-adjusted return. For example Goetzmann et al (2002) illustrate how better 

than market Sharpe ratios are obtainable without any forecasting ability simply by using 

sophisticated derivative strategies to make the portfolio return distribution heavily 

skewed and fat tailed. To some extent this does not impact us since we have not explicitly 

attempted to alter the distribution of portfolio returns so as to improve information ratio, 

but rather have optimally used actual forecasting ability. We do however need to be 

careful that our active portfolio returns do not exhibit excessive skew and kurtosis. It is 

difficult to specify the exact distribution of the portfolio returns, but in the MPT approach 
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we can show that the coefficient of skew is approximately 6×IC and the coefficient of 

kurtosis is approximately 9. We take comfort in the fact that the kurtosis of the other two 

approaches should be closer to normality, and skew is only significant once IC becomes 

large, which is not borne out in practice. 

We are left to justify our single period investment assumption. Certainly over an 

infinite time period we should expect the trustee to make rebalances to the allocation of 

investment wealth, but the spirit of the task is intended as a single period decision and 

over a shorter period of say three to five years our assumption is accurate. 

5.2. Assumptions on the active manager’s objective 

We have assumed that the active manager should maximise the information ratio 

in a multi period environment. 

Much has been written about the correct objective for the multi period problem 

(early articles include Samuelson 1969, Hakannson 1970, and Fama 1970, followed by 

the textbooks of Merton 1990 and Duffie 1996), and the Sharpe ratio has been identified 

as sub-optimal in a multi-period context (see for example Bodie, Kane and Marcus 1996). 

But the crucial point is that these theories are not relevant here, for the portfolio 

management objective is not something that the active manager can choose, but instead 

remains the responsibility of the trustee. 

Given that the trustee faces a single period decision we take maximising the 

information ratio as the appropriate criterion from the original work of Treynor and Black 

(1973), and the modern textbooks of Bodie, Kane, and Marcus (1996) and Grinold and 

Kahn (1999) for example. 
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As Bodie, Kane, and Marcus (1996) point out; to be strictly theoretically correct 

the trustee should continually allocate differing amounts to the active manager as a 

function of the size of active manager forecasts. Then both the trustee and the active 

manager have multi period problems, but it is operational impractical, and prohibitively 

expensive, for the trustee to do this and the single period problem remains the pertinent 

one. 

 

5.3. Assumptions on returns and forecasts 

Our first three assumptions: that the efficient market hypothesis holds in the long 

run; that any abnormal return is only expected to exists in the short run (if at all); and that 

our forecasting of any abnormal return is unbiased, all appear to be reasonable.  It is 

Assumption 4 where we assume that our forecasts and the errors in our forecasts are 

independent that is debatable. We are unsure of the implications of a violation of this 

assumption. 

Assumption 5, the normal distribution assumption, is not a concern to us as we 

only use it in parts of our article and it is entirely in keeping with mainstream theory 

although we recognise that it might not hold up to empirical study. 

Not only is Assumption 6 (active positions are independent of the market) 

reasonable, but a violation should be of concern to a trustee, because the active manager 

should be attempting to maximise the independent residual return (risk adjusted). In 

practice the activities of the active manager can become connected to the market if the 

trustee imposes active position constraints that are dependent on the market. In this event 
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it is particularly important to ensure that the independent residual returns are being 

measured. 

Our final assumption that the active manager can take any size position in the 

market portfolio is commonplace in practice, although the results in the article could be 

derived subject to the constraint that yt
T1 = 0 if required. 

Our biggest concern with the framework we have identified here is the fact that 

we have assumed the covariance matrices be known and fixed in time. That they are fixed 

through time does not permit us to be more confident about our forecasts at one point in 

time relative to another. However, the alternative, assuming time varying covariance 

matrices leads to non-normal distributions and all the complications that that entails. 

More of a concern in practice is the fact that the covariance matrices are assumed 

known. This can lead to significant problems. In particular it is not possible to identify 

ex-ante market return sensitivities (i.e. betas) and therefore the two components of the 

return decomposition may not be independent ex-post. This leads to all the problems 

discussed in Section 3.5. Additionally, implicit in taking forecast variance as known is 

the assumption that our forecast variance is reflective of our ability to forecast (i.e. that � 

= IC�). If this is not so, and in practice it almost certainly will not be, then we need to 

scale our forecasts in our relationship between forecast and return so that �t = 	mt + �t, 

where 	 denotes a diagonal scaling matrix that might be termed the humility multiplier.  

It is then possible to recalculate all of the above equations incorporating this new scaling 

factor. Of course ex-post we can simply multiply the forecasts by 	 and therefore 

proceed without it. 
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 Also embedded in our framework is the assumption that the ICs are known. Once 

again in an ex-ante context this assumption is violated. In terms of our variances we 

could adjust forecast variance with our humility multiplier, 	, but in this situation this too 

is unknown. In terms of correlations, in an ex-ante context it may be that we cannot use 

ICs at all and must resort to � = � + V directly in order to identify V. Even this relies on 

the independence assumption between forecasts and errors. 

 

6. Existing literature 

Following Treynor and Black’s original security selection model there is little 

written on a structure for active portfolio management, with a key exception being the 

textbook of Grinold and Kahn (1999). We have followed their structure quite closely, and 

have generalised and expanded many of their results. More broadly, much of the work in 

active management can be cast in a total portfolio context (such as the link between 

Sharpe ratios and information ratios) and as such we can refer to literature in that area. 

The most well known article in the financial literature that focuses on the issue of 

changing forecasts is by Dybvig and Ross (1985). Although the article focuses on the role 

of the security market line, there are some key results with relation to our own work. 

Dybvig and Ross discuss the impact on portfolio performance from changing 

positions that inevitably arise from changing return forecasts. They also identify the 

difference between the trustee’s single period decision and the active manager’s multi 

period decision, and find that varying positions in a portfolio add to the portfolio risk 

from a trustee’s perspective. 
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Dybvig and Ross demonstrate that mean/variance efficient positions generated 

from return forecasts where the active manager has information could yield an inefficient 

portfolio in the mean/variance sense (i.e. a portfolio with lower Sharpe ratio than the 

market), but share the conclusions of Mayers and Rice (1979) in that, for the special case 

of security selection, the managed portfolio will have a higher Sharpe ratio than the 

market, assuming the active manager has information and uses mean/variance efficient 

positions. 

Hansen and Richard (1987) provide results relating to portfolio efficiency (in a 

mean/variance sense) through the use of conditional information in an asset-pricing 

context. In the context of our work they find that the unconditional Sharpe ratio is not 

necessarily maximised by a sequence of single period mean/variance optimisations if the 

expected returns change through time. 

Our interest is in furthering these results by finding the portfolio of maximum 

information ratio. Ferson and Siegel (2001) have considered a similar problem but in the 

total portfolio context where positions must then sum to one. They also find that single 

period investment positions must exhibit dampening to maximise long run Sharpe ratio, 

and by making certain assumptions such as the risk free rate is zero (which is entirely 

appropriate for residual returns) we can reconcile our results with their equations for 

optimal positions. 

We would like to make it clear that we have endeavoured to find the active 

portfolio management approach that converts insight in asset returns into additional 

portfolio return in a way that maximises information ratio, and therefore Sharpe ratio. To 

this end we consider our work largely detached from the recent articles such as the one by 
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Goetzmann et al (2002) where active portfolios positions can be generated using 

sophisticated derivative strategies that generate high information ratios even though no 

insight into asset returns exists. 

 

7. Conclusions 

 There are several main conclusions to be drawn from our work. We have detailed 

a formal mathematical framework for considering active portfolio management. It is 

consistent with the existing literature, and in particular deals with the multi-period 

setting. Using this framework we have derived a formula for identifying the covariance 

matrix of forecast errors to be used in our active portfolio construction. We noted that this 

matrix may need to be adjusted if the active manager has only been allocated a subset of 

the asset universe. We have argued that the practice of using the total asset return 

correlations is poor, and in fact suggested that zero correlations may be reasonable 

thereby validating linear allocation rules for active management. We also showed that 

there may be a difference between residual portfolio returns that are uncorrelated with the 

market, and returns in excess of the benchmark. As such the trustee should ensure that 

performance is appropriately attributed. 

 Assuming an MPT approach to active portfolio management we have derived a 

formula for the information ratio. We showed that this formula is a more general version 

of the existing fundamental law of active management and have therefore termed it the 

generalised fundamental law of active management. Using our generalised law we 

showed that it is better to use specialist active managers at the expense of ignoring 

correlations than to use a lower quality manager who accounts for asset correlations. 
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 Also by using our generalised law we showed that the MPT is not the active 

portfolio management approach that maximises information ratio as it can be beaten by a 

naïve approach, thereby validating the folklore that it is more important to forecast 

direction of return correctly than it is to forecast magnitude. Further, we put forward our 

theory of active portfolio management, which states that the active positions from a 

mean/second-moment optimisation are the ones that maximise information ratio. 

 In terms of further work, our primary task is to identify the impact of the 

violations of our assumptions through ex-ante uncertainty, or by measurement over a 

short time period where sample averages do not match distributional expectation. This is 

particularly important for performance measurement of active managers, and to this end 

we have already found that we can add a term to the fundamental law of active 

management to account for either the positions or the residual returns not averaging zero. 

It seems that the new term dominates the information ratio with only a small impact 

coming from IC. 

 

Appendix 

A.1. Expression for information ratio 

By definition 

IR = E[yT
�] / V[yT

�]½ = E[yT
�] / (E[(yT

��
2] – E[yT

�]2)½. 

So, by defining h as 

IR = 1 / (h – 1)½ 

we can express h as 

h = E[(yT
�)2] / E[yT

�]2. 
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Now, using conditional expectations 

h =  Em[E[yT
��

Ty|mt]] / Em[E[yT
�|mt]]2. 

Given that yt is a function of mt, the conditional expectations can be written as 

E[yT
�|mt] = yt

TE[�|mt] = yt
Tmt, and 

E[yT
��

Ty|mt] = yt
TE[��T|mt]yt = yt

T (mtmt
T+V) yt. 

We can therefore write h as 

h = E[yT (mmT+V) y] / E[yTm]2. 

 

A.2. The function form of positions using an MPT approach 

 The MPT approach involves optimising the expectation of forecast return 

distribtuion offset by a penalised variance of forecast return distribution. Thus we 

optimise an objective function, denoted by f1, given as 

f1(yt) = yt
Tmt – ½ c-1 yt

TWyt 

where c-1 denotes the investor’s coefficient of risk aversion, and W denotes the 

covariance of forecast errors as specified by the investor. 

Setting the differential of f1 with respect to yt equal to zero yields the 

mean/variance optimal position vector as 

yt = c W-1 mt. 

 

A.3. The Generalised Fundamental Law of Active Management 

We take the active positions vector from the MPT approach and therefore use 

equation (35) and for notational convenience take c=1 observing that a constant 

multiplier of positions does not affect information ratio. Hence we adopt 
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yt = W-1mt. 

The residual return on our portfolio is the product of the positions and the asset residual 

returns and therefore given by 

yt
T
�t = mt

TW-1
�t. 

Using our normal distribution assumption, the portfolio return distribution, conditional on 

our forecast of expected return, is given as 

yT
�|mt ~ N(mt

TW-1mt, mt
TW-1VW-1mt). 

Using the reasoning as in Appendix A.1 we express the information ratio in the form 

IR = (E[(yT
��

2] / E[yT
�]2 –1)-½ 

and are left to derive E[yT
�] and E[(yT

��
2]. In order to do this we continue the reasoning 

laid out in Appendix A.1 noting that the marginal expectations of yT
� and (yT

��
2 are 

given as 

E[yT
�] = Em[E[yT

�|mt]] and 

E[(yT
��

2] = Em[E[(yT
��

2|mt]]. 

The first two zero centred moments of yT
� which are extracted directly from the 

distribution of yT
� thus 

E[yT
�|mt] = mt

TW-1mt  and 

E[yT
�

 2|mt] = mt
TW-1VW-1mt + (mt

TW-1mt)2. 

All that remains is to derive the marginal expectations of yT
� and (yT

��
2 from our 

conditional distributions. To do this we need to find E[mTV-1m], E[mTW-1VW-1m] and 

E[(mTV-1m)2]. The first two of these expressions are easily shown to be 

E[mTW-1m] = E[tr(mmTW-1)] = tr(E[mmT]W-1) = tr(�W-1), and 

E[mTW-1VW-1m] = tr(�W-1VW-1). 
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The third expression is considerably harder. In Buckle (2000b) it is shown to be given by 

E[(mt
TV-1mt)2] = 2tr((�V-1)2) + tr2(�V-1) 

These expressions can be plugged into equations (42) and (43) and then into equation 

(27) so the information ratio can then be expressed as 

IR = tr(�W-1) / ( tr(�W-1VW-1) + 2tr((�W-1
�
�))½. 

This expression can be tidied up by noting that the � = � + V thus 

IR = tr(�W-1) / ( tr(�W-1
�W-1) + tr((�W-1)2) )½. 

 

A.4. Deriving the information ratio of the naïve approach 

We take the active positions vector from the naive approach and therefore use 

equation (22) and for notational convenience take K = 1 observing that a constant 

multiplier of positions does not affect information ratio. Hence we adopt 

yt = sign(mt). 

Once again using the reasoning as in Appendix A.1 we express the information ratio in 

the form 

IR = (E[yT
�

2] / E[yT
�]2 –1)-½ 

noting that 

E[yT
�] = Em[E[yT

�|mt]] and 

E[yT
�

 2] = Em[E[yT
�

 2|mt]]. 

The first two zero centred moments of yT
� which are extracted directly from the 

distribution of yT
� thus 

E[yT
�|mt] = sign(mt)Tmt  = |mt|T1 and 

E[yT
�

 2|mt] = |mt|T|mt| + sign(mt)TV sign(mt). 
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Specifically in one dimension, equations (53) and (54) can be simplified to 

E[y�|mt] =  |mt| and 

E[(y�� 2|mt] = mt
2 + v2. 

Trivially then we have that 

E[|mt|] = �(2/�)½ = IC�(2/�)½ and 

E[mt
2 + v2] = �2 

 

Substituting these results into equation (27), the information ratio can then be expressed 

as 

IR = IC�(2/�)½ / (�2 – IC2
�

2(2/�)) ½ 

This expression can be tidied up thus 

IR = IC / ( �/2 – IC2)½. 

A.5. Theorem of Active Portfolio Management 

THEOREM (Theorem of Active Portfolio Management) 

 The single period investment position that maximises the multi-period information 

ratio is the result of a mean/second-moment optimisation. 

 

Mathematical Representation of the Theorem 

 Given a vector of abnormal return forecasts, denoted by mt, and a vector of asset 

residual returns, denoted by �t, then the vector of active positions, denoted by yt, that 

maximises the information ratio, defined as  IR = E[yT
�] / V[yT

�]½, is given as 

yt = c (mtmt
T
�+ V)-1mt 
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where V is the covariance matrix of residual returns conditional on the forecast, 

and c-1 is the scalar coefficient of (active) risk appetite. 

PROOF 

If a position vector maximises IR, then that position vector must also minimise h where 

IR = 1/ (h – 1)½ and h = E[(yT
�)2] / E[yT

�]2. 

Surprisingly, a multivariate version of the Schwarz inequality not only gives us 

the lower bound for h, but does so without requiring us to solve the two expectations in 

our formula. The implication is that the optimal investment approach is known and is 

independent of distributional assumption on the return forecasts. 

THEOREM (multivariate Schwarz inequality) 

 For any two vector distributions U and S 

E[UTU] / E[UTS]2 � 1/E[STS] 

with equality holding if and only if U = cS for some c. 

Proof is deferred to Appendix A.7. 

 We set U  = LTy and S = L-1m where L is the Cholesky decomposition of mmT + 

V
so that LLT = mmT
�+ V (see for example Rencher 1998 for details of Cholesky 

decompositions). Using our version of Schwarz’s inequality, we have that 

h � 1 / E[mT(mmT + V)-1m]. 

We know that equality only holds if U = cS, equivalently if 

yt = c (mtmt
T
�+ V)-1mt. 

This expression represents the strategy that maximises information ratio. 

 The mean/second-moment optimisation approach has an objective function given 

as 
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f2(yt) = yt
Tmt – ½ c-1 yt

T (mtmt
T
�+ V) yt 

provided V is assumed as the covariance matrix (recall we used matrix W in the MPT 

approach). 

Setting the differential of f2 with respect to yt equal to zero yields the mean/second-

moment optimal position vector as 

yt = c (mtmt
T
�+ V)-1mt. 

We observe that this is identical to our expression of the position vector that maximises 

information ratio. 

A.6. Deriving the information ratio of the TAPM approach 

Directly from equation (64) in Appendix A.5 we can see that in one dimension the 

minimum value that h can take is 

1 / E[m2 / (m2 + v2)] 

Where we once again have taken c = 1 for notational convenience. Since mt is normally 

distributed, and using Rieman integrals (see for example Lindgren 1976, p119), the 

expectation can be written 

E[m2 / (m2 + v2)] = ∫(-∞,∞) x2 / (x2 + v2) exp{–½ x2 / v2}/ (2�v2)½ dx. 

Using the closed form integral result (see for example Gradshteyn and Ryzhik 1994, 

p383) 

∫(0,∞) z2 / (z2 + �2) exp{–z2 �2} dz = �½ / (2�) – (�� / 2) exp{�2
�

2}[1 – erf(��)], 

we can show with some algebraic manipulation that 

E[m2 / (m2 + v2)] = 1 – x

(-x) / 	(x) 

where x = �/�
= (1 – IC2)½ / IC, and 	 and 
 are the probability density function and 

cumulative density function respectively of the standard normal distribution. We can then 
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substitute this expectation into equation (68), and then substitute h into equation (28) to 

derive the result that for a given information coefficient, the maximum achievable 

information ratio is 

IR = [	(x) / (x
(-x)) – 1]½. 

Appendix A.7 The multivariate Schwarz inequality 

THEOREM (multivariate Schwarz inequality) 

 For any two vector distributions U and S 

E[UTU] / E[UTV]2 � 1/E[VTV] 

with equality holding if and only if U = cS for some c. 

 

PROOF 

Note that a proof of the multivariate Schwarz inequality is provided here because 

we have been unable to find reference to this result in the statistical literature. We do not 

claim ownership of this result. 

Our proof follows the logic of the univariate version in Lindgren (1976). We 

consider the non-negative random variable (U – cS)T(U – cS) where U and S are vector 

random variables and c is a scalar constant. The expectation of this expression must be 

greater, or equal to zero, and by expanding the quadratic this gives us that 

E[UTU] + c2E[STS] – 2cE[UTS] � 0. 

For this quadratic inequality to hold for all c, the discriminant must be non-positive, so 

E[UTS]2 - E[UTU] E[STS] � 0 

which, when rearranged in a form that suits are analysis, gives us that 

E[UTU] / E[UTS]2 � 1/E[STS]. 
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For equality to hold we must have that the discriminant equals zero, so that 

E[UTS]2 - E[UTU] E[STS] = 0. 

For this to hold for any value of U and S we can only have that U = cS. 
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Chart 1 illustrates how an improvement in information ratio through the use of specialist 

active managers, rather than one generalist, will offset even large correlations between 

the assets, even though the specialists act independently and therefore cannot account for 

this correlation. For example two specialists with an information ratio of 0.8 will produce 

a superior total information ratio than one generalist with information ratio 0.6 who 

accurately accounts for a correlation as large as 0.65. 

Chart 1. Improved information ratio offsets even large correlations
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Chart 2 illustrates the positions taken under three approaches to active portfolio 

management. The modern portfolio theoretic approach is linear function of the forecast; 

the naïve approach is a constant function of the forecast; and the theory of active 

portfolio management approach is a dampened linear function of the forecast. 

Chart 2: Positions from three apporaches to active portfolio management
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Chart 3 illustrates the information ratio from three approaches to active portfolio 

management. The modern portfolio theoretic approach outperforms the naïve approach 

until IC is greater than about 0.5. However, the theory of active portfolio management 

approach outperforms both of the other two. In practice IC is less than 0.3 in which case 

all the approaches perform similarly. 

Chart 3: Information Ratios from three apporaches to active portfolio 
management
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