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Abstract

Weather derivatives are a classic incomplete market. This paper
gives a preliminary exploration of weather derivative pricing using the
‘marginal substitution value’ or ‘shadow price’ approach of mathemat-
ical economics. Accumulated heating degree days (HDD) and com-
modity prices are modelled as geometric Brownian motion, leading to
explicit expressions for swap rates and option values.

1 Introduction

Many companies are exposed to ‘weather risk’. For concreteness, we shall
think in terms of an energy company supplying gas to a retail distributor. If
a winter month such as January is unusually warm then the company’s prof-
its are adversely affected because of the reduced volume of gas sold. Note
that this is a separate issue from price risk which may also be present. The
company can partially hedge the volume risk by trading in weather deriva-
tives, which are normally defined as follows (see Geman [4] for extensive
background information). Let Ti, the ‘temperature on day i’ be the aver-
age of the maximum and minimum temperatures in degrees Celsius on that
day at a specific location (London Heathrow airport in the UK). The daily
number of ‘heating degrees’ is HDDi = max(18−Ti, 0) and the accumulated
‘heating degree days’ (HDDs) over a 1-month (31-day) period ending at date
t is Xt =

∑30
i=0 HDDt−i. Over-the-counter contracts are written with Xt as

the ‘underlying asset’. These may be swaps, the payment at time T being
A(κ−XT ) where A is the point value and κ a fixed number of accumulated
HDDs, or they may be options with exercise value Amax(XT −K, 0)for a
given strike K. The question is what is the value of these contracts, i.e. the
level of the fixed side κ such that the swap has zero value, or the premium
to be paid at time 0 for the call option.
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Since there is no liquid market in these contracts, Black-Scholes style
pricing is inappropriate. Valuation is generally done on an ‘expected dis-
counted value’ basis, discounting at the riskless rate but under the physical
measure, which throws all the weight back onto the problem of weather
prediction. This approach is to some extent justified in an interesting re-
cent paper by Cao and Wei [1] who analyse the problem in an equilibrium
representative agent setting based on that of Lucas’ classic paper [6].

Our analysis here is based on the idea that agents in the weather deriva-
tive market are not ‘representative’ but face very specific risks related to
the effect of weather on their business. From this point of view it makes
sense to say that agents will buy or sell weather derivatives if it increases
their utility to do so. We can now apply the general pricing formula given in
Davis [2], which is an application of a general theory of valuation based on
optimal consumption and investment rules. An excellent exposition of this
theory is given by Foldes [3]. The objective of this paper is to formulate the
problem in the simplest possible setting, putting the emphasis on analytic
tractability. Thus we take accumulated HDDs and commodity prices to be
log-normal, an assumption that – as we argue below – is quite reasonable
based on empirical analysis. In this framework we can get explicit formulas
for swap rates and option values. We can then ask qualitative questions, for
example, does the swap rate depend on volatility? (Answer: yes it does).

The main results are contained in the next section. Section 3 gives a
brief analysis of some weather data, in order to investigate whether a log-
normal distribution for accumulated HDDs is at all realistic. Section 4 gives
numerical results for an example. Concluding remarks are given in section
5

2 Pricing Formulas

We model the the accumulated HDDs (over, say, a 1-month sliding window
ending at time t) by a log-normal process Xt satisfying

dXt = νXtdt+ γXtdw1(t). (1)

Thus at time T ,
XT = exp(m(T ) + γw1(T )) (2)

where

m(T ) = logX0 + (ν − 1

2
γ2)T. (3)

For pricing a weather derivative maturing at time T the main object of
concern is simply the 1-dimensional random variable XT , and our basic
assumption is that this is log-normal, as indicated by (2). We suppose
that the volume of gas sold per unit time is some function v(t) = v(Xt)
and suppose that – at least over some range – we can take v(·) as linear:
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v(t) = αXt. The profit is therefore Yt = αXtSt, where St is the spot price.
As is conventional, we suppose the price to be log-normal:

dSt = µStdt+ σStdw2(t). (4)

In these equations, w1, w2 are standard Brownian motions with correlation
E[dw1dw2] = ρdt. From (1) and (4), Yt satisfies

dYt = θYtdt+ ξYtdw(t) (5)

with Y0 = αS0X0, where
θ = ν + µ+ ρσγ

and
ξ =

√
γ2 + σ2 + 2ργσ.

The new Brownian motion is

dw =
1

ξ
(γdw1 + σdw2).

Suppose the weather derivative has exercise value B(XT ) at time T . In
[2] we gave a valuation formula for an investor whose overall objective is to
maximize the expected utility E[U(HT )] of his portfolio value HT at time
T . This value is

p̂ =
E[U ′(H∗T )B(XT )]

V ′(η)
(6)

where H∗T is an optimal portfolio of tradable assets with initial endowment η
and V (η) = E[U(H∗T )]. In the present case our producer has no investment
decisions: he simply produces up to the level of current demand and sells at
market price. Thus H∗T = YT , the profit at time T . We will assume utility is
logarithmic, U(y) = log y, and then it is easy to see that V (y) = log y+const.
Thus V ′(y) = 1/y and the pricing formula (6) becomes

p̂ = E

[
Y0

YT
B(XT )

]
(7)

Proposition 1 The zero-cost swap rate at time 0 is

κ̂ = e(ν−γ2−ρσγ)TX0. (8)

The option value (7) with B(x) = [x−K]+ is given by

p̂ = BS(x0,K, r, q, γ, T ), (9)

the Black-Scholes call-option formula, in which the ‘riskless rate’ r and ‘div-
idend yield’ q are given by

r = µ+ ν − γ2 − σ2 − ρσγ, (10)

q = µ− σ2. (11)
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Proof: Defining Zt = Y0/Yt we find using (5) and the Ito formula that

dZt = −rZtdt− ξZtdwt, Z0 = 1,

where r is given by (10). Thus

p̂ = E[e−rT exp(−ξ2T/2− ξwT )B(XT )]

= Ê[e−rTB(XT )] (12)

where Ê denotes expectation with respect to the measure P̂ defined by

dP̂

dP
= exp(−ξ2T/2− ξwT )

Recall that Xt satisfies (1). We find that E[dwdw1] = ρ1dt where ρ1 =
(γ+ρσ)/ξ, and dŵ = dw+ξdt is Brownian motion under P̂ by the Girsanov
theorem. It follows that under P̂ there is a Brownian motion ŵ1 such that

dXt = (ν − ρ1γξ)Xtdt+ γXtdŵ1(t). (13)

We note that the ‘drift’ is ν − ρ1γξ = ν − γ2 − ρσγ = r − q with q defined
by (11). Thus when B(XT ) = XT − κ we have p̂ = e−qTX0 − e−rTκ, so the
zero-cost swap rate is κ̂ = e(r−q)TX0; this is (8). In the case of a call option,
B(XT ) = [XT −K]+, and the result (9) follows from (12) and (13). ♦

2.1 Comments

• The swap rate κ̂ is not equal to the physical measure forward HDD
eνTX0 but is equal to er̃TX0 where r̃ = ν− γ2− ρσγ depends on both
HDD and price volatility.

• If the price is constant (µ = σ = 0) then the ‘dividend yield’ q of (11)
is zero and the option price (9) is just the no-dividend Black-Scholes
price with ‘riskless rate’ r̃. Note that q depends only on the price
parameters. For general µ, σ the discount rate is r = r̃ + µ− σ2. The
effect of price vol on option value is explored in section 4 below.

• The pricing formulas do not involve the demand sensitivity α, so it is
unnecessary to estimate this parameter. Since Yt = αXtSt, adjusting
α is equivalent to changing the units of the price process St. The
pricing formula is invariant under such changes; it only depends on
the drift and volatility parameters of St.

• The riskless rate of interest does not come into the picture in view of
the absence of any trading involving the riskless asset.
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Figure 1: Long-term average temperature and temperatures for 1988

3 HDD Modelling

Weather prediction is a big subject. Nevertheless, some simple things can
be said that provide an adequate basis for at least some derivative pricing
problems. The objective of this section is to provide just enough evidence to
convince the reader that a log-normal model for accumulated HDDs is not
at all unreasonable, and to give easily-implemented parameter estimation
methods. We do not claim to be providing an exhaustive analysis of the
data.

The data set1 consists of daily temperatures (average of maximum and
minimum) at Birmingham, England for the 11 years 1988-1998. We denote
this series by {Ti, i = 1, . . . , 4015}, while {T i, i = 1, . . . , 4015} denotes the
long-term average temperature. For each i, T i is obtained by taking the
average of the 11 temperatures on the corresponding date and then smooth-
ing the series by moving-average smoothing. Thus the T i series is periodic.
Figure 1 shows the two series for the year 1988.

As many researchers have noted, the deviation Di = Ti−T i is accurately
modelled as a low-order autoregression (AR):

Di =
n∑
k=1

akDi−k + bεi, (14)

where εi is a sequence of independent unit-variance gaussian residuals. Here
we restrict ourselves to the first-order case n = 1. The least-squares es-
timates â, b̂ of the parameters a1, b based on the whole data set are â =
0.70, b̂ = 1.99. These estimates are quite stable when estimated over,

1kindly provided to Tokyo-Mitsubishi International by John Kings of the School of
Geography, Birmingham University
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Figure 2: Empirical distribution of residuals and best normal fit

say, 3-year windows of data. A more sophisticated analysis would allow
for seasonally-dependent variability b, but we have stuck to a constant-
parameter model. The residual sequence is then ε̂i = (Di − âDi−1)/b̂. The
first 10 estimated correlation coefficients – again based on all the data – of
the residuals are all in the range ±0.045, indicating that the residuals are
reasonably “white”. What is more striking is the residual empirical distribu-
tion, shown in figure 2 along with the normal density with the same mean
and variance. The fit is astonishingly good. No financial time series be-
haves like this! We are thus happy to represent the deviation from long-run
average temperature as a gaussian first-order AR.
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Figure 3: Simulated HDD distribution and best log-normal fit

The AR (14) with n = 1 and |a1| < 1 converges to a stationary dis-
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tribution with mean zero and standard deviation Σ = b/
√

1− a2
1. The

correlation coefficient at lag k is ak1. Since 0.715 = 0.0047 we see that the
deviations from long-run average at any time more than two weeks ahead
are essentially independent of today’s value. Thus if we want to estimate
the distribution of accumulated HDDs over a 1-month period starting at
any time more than 2 weeks ahead we can simulate Di from the stationary
distribution and take the simulated temperature as Ti = T i + Di. Figure
3 shows the empirical distribution and best log-normal fit for accumulated
HDDs over the month of May, using the estimated parameters â, b̂. The
fit is excellent, and similar results are obtained for other months. In fact,
this is not surprising: the mean temperature in May is around 11 degrees
and with the estimated parameters Σ = 2.77. Thus the 18 degree barrier is
2.5 standard deviations away from the mean, so that the accumulated HDD
is close to being normally distributed. The log-normal distribution with
the same mean and variance gives an excellent approximation to standard
option values, although of course the tail behaviour is radically different.

4 Example
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Figure 4: Option value as function of price volatility, for different values of
correlation

As an example, consider a call option on the accumulated HDDs for
May 2001, written on 1 November 2000 with strike K = 560. From our
simulations, we know that the mean and standard deviation of the accu-
mulated May HDDs are 577 and 35 respectively. (The option is thus ‘at
the money’.) Referring to the representation (2) we find by calculating the
mean and variance that γ = 8.82% and m(T ) = 6.325. If we take X0 = 560
then this implies ν = −0.13%. For the price process we take µ = 0, so
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there is no drift in the price. However, as can be seen in Figure 7, the
value of the option depends significantly on the price volatility. Under the
measure P̂ , Xt has drift r − q = ν + γ2 − ρσγ, while the discount factor is
r = (r − q) + µ − σ2. If ρ = 0 the drift is independent of σ and the option
value increases with σ because the discount factor is reduced. For ρ > 0
both drift and discount factor are reduced with increasing σ; the net effect
is decreasing option value except for very small ρ, as the chart shows. When
ρ < 0 the effects are in the same direction: less discounting and higher drift
lead to increasing value.

5 Concluding remarks

We have offered a simple pricing formula for weather derivatives in terms of
their economic value to the purchaser, based on credible models for HDD and
taking into account price variability. The mathematics is in the spirit of the
Margrabe [7] exchange option formula (see the treatment given by Karatzas
in [5], page 24). The results show in particular that pricing by taking the
real-world expected value discounted at the riskless rate is incorrect.

Various foundational issues remain. While taking the HDD XT at the
exercise time T as log-normal seems harmless, modelling the whole process
(Xt)t∈[0,T ] as geometric Brownian motion – while convenient – is far less
defensible and does affect the pricing. We can see the problem by noting
that moment-matching in equation (2) determines the volatility parameter
γ but not the drift ν since various combinations of X0 and ν give the same
value of m(T ) in (3). In the example of section 4 we took X0 to be the
forward value, but this is to some extent an arbitrary choice. Taking other
values in a reasonable range varies the option price by around ±10%. In fact
the model (1) is simply an indirect way of specifying the correlation between
the final HDD XT and the price process (St). Further work will be directed
towards better models that specify this dependence in an unambiguous way.
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