Wavelet Based PDE Valuation of
Derivatives

M.A.H. Dempster

Centre for Financial Research

Judge Institute of Management
University of Cambridge

&
Cambridge Systems Associates Limited

Co-workers: A. Eswaran, D.G. Richards & G.W.P Thompson

Cambridge University Finance Seminar, 16 March, 2001
Research partially sponsored by Citicorp (Schroder Salomon Smith Barney)

© Centre for Financial Research, Judge Institute of Management, University of Cambridge

www-cfr.jims.cam.ac.uk

1




Qutline

. Introduction
. Wavdet Transforms

. Waveletsand PDE’s

. European Option Valuation

. Cross-currency Swap Valuation

. 3-Factor Interest Rate Swap Valuation

. Simulation Methods for Bermudan Swaptions
. Conclusions and Further Work

0O N OO O b WO N PP

© Centre for Financial Research, Judge Institute of Management, University of Cambridge

www-cfr.jims.cam.ac.uk




1. Introduction

What are wavel ets ?

Wavelets are nonlinear functions which can be scaled and
trandated to form a basis for the Hilbert space L*(R) of square
Integrable functions

Wavelets generalize the trigonometric functions € (s 0 R) which
generate the classical Fourier basisfor L2

Hence there are wavelet -- and fast wavelet transforms -- which
generalize the time to frequency map of the Fourier transform to
pick up both the space and time behavior of afunction
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Source: Robi Polikar’s wavelet tutorial
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Applications of wavelets

 Digital image compression
e Signal processing
e De-noising of signals --filtering

e Numerical analysis
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Wavelets and PDEs

A wavelet based approach to the solution of PDES has been
studied by

e Beylkin (1993)

e Vasilyev, Yuen, Pao (1997)

e Monasse and Perrier (1998)

e Prosser and Cant (1999, 2000)

o Dahmen et al (1999)

e Cohen et al (2000)
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Advantages of using waveletsto
solve derivative valuation PDEs

Wavelet PDE methods combine the advantages of both
spectral (Fourier) and finite-difference methods and allow
both space and time dependent coefficients

L arge classes of operators and functions are sparse or
sparse to high accuracy when transformed into the wavel et
domain

Wavelets are suitable for problems with the multiple
spatial scales common in financial problems

Wavelets can be used for nonlinear terms

Wavelets accurately represent the PDE solution in regions
of sharp transitions
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2. Wavelet Transforms 9

Scaling Functions and Wavelets

 Thescaling function ¢ isthe solution of adilation
equation

o(x) = ﬁi h 9(2x - k)

where @ Isnormalised i.e. }qo(x)dle

« Thewavelet ¢ isdefined interms of the scaling function

W (x) = \Ei 9,02 - k)
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10

 Thebasisfunctions ¢, and ¥;« are generated
from ¢ and ¢ through scaling and translation as

[(Ix -2k
OO

e 12 i L\ —-jl2
qaj,k(x).—Z‘ d2 ' x—-k) =27 o

_ _ o Ox=2'k0O
by (X) =2 @ x -k =2 Y g
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 h:={h},_, and g:={g.}\-, are chosen so that dilations and
trandations of the wavelet ¥ form an orthonormal basis
of 1*(r) I.e.

ij,k(x) wj',k’(x) dx = 5],]' 5k,k’

where 0 denotesthe Kronecker delta

 The two sequences of coefficients h and g are known
from the signal processing literature as filters
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» For any function fOL(R) thereexistsamatrix {d,} such that

F(x)= d; (%)
2.2

where

4y = [ 1000, (X)dx
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» For example the Haar wavelet is defined by h, =h =1/v2

« For the Haar filter the solution to the dilation equation gives the
unit box function for @ I.e.

@(x) =1 for xO[0,1] and O otherwise
@)

X
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The spaces spanned by ¢, and ¢;, over the location
parameter k with the scale parameter | fixed are
usually denoted by

Vj = Span,;, @ «

ij = span,, Y
To implement wave et analysis on a computer we
must have a smallest scale and alargest scale and thus
we limit the range of the scale and location parameters
] and Kk
The spaces V; and W, are termed approximation
subspaces and scaling function subspaces respectively
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 These parameter ranges are chosen according to a
required grid size in numerical computation

* The orthogonal wavelet approximation to a continuous
function f isgiven by

f(x)= Z oo i (X) +-+- +Z Ay ;0 (X) + Z Sk B (X)

where J isthe number of resolution scalesand k
ranges from O to the number of coefficientsin the
specified component
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e For Daubechies wavelets the length L of thefiltersh
and g isrelated to (M-1)" degree polynomid
approximation for a fixed number J of resolution
scales

* Thisisguaranteed by requiring the wavelet v to have
M :=L/2 vanishing momentsi.e.

}(,U(X)dex =0

for m=0,...M-1
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Daubechies wavelet ¢
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Biorthogonal wavelets

Cohen, Daubechies and Feauveau (1992)
» Four basic function types -- two primals and two duals

* The biorthogonal wavelet approximation is expressed
In terms of the dual wavelet functions

f(x)= Z oo i (X) +-+- +Z dy_ 5  (X) + Z So,ké?),k(x)
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Biorthogonal B-spline wavelets
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e Biorthogonal wavelets are not orthogonal but they
satisfy the biorthogonality relationships

fqu,k(x) @) dx=q; Q,
quj,k(x) & (x)dx=0
¥, @ (X)) dx=0
[@ 0 @ (9 dx =0, 4,
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Biorthogonal approach

« Biorthogonal wavelets are symmetrical and generalize the
orthogonal wavelet approximation

e Basisfunctions for biorthogonal wavel et spaces are generated
from the primal scaling function ¢ and the dual scaling
function @

e Biorthogonal systems are thus derived from a paired hierarchy
of approximation subspaces

-V, OVO V-
. . OV V.

i1 j J+1“.
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* Wavelet innovation spaces W, and V\71 are defined by 2
Vi,,=V, W,

J+1
V... = 0 W

j+1 j j

<

with \7j Ow, VO v'\'/j

« Basisfunctions for the wavelet innovation spaces are generated by the primal
and dual wavelets ¢ and (J/

» Projections of afunction f onto finite dimensional scaling function space V,
or wavelet space W, are given by

R )= ((W),2,09) g, (%)
Ry F09 =3 (F (W7, (), (%)
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Deslauriersand Dubuc (1989) Donoho (1992)

e The biorthogonal interpolating wavelet transform has basis
functions of the form

@)= d2'x-K)
Wi () =2 x -2k -1)
@69 = Ax=x,)
where 6 is the Dirac delta function and x; , Isagrid point in the

gpatial dimensionat scale level |

o Anexplicit formfor ¢ isunknown but the cor_respondi nagl_
Wavc?lt_et coefficients can be derived using the biorthogonal ity
conditions

* Thesewavelets are interpolating because the primal scaling

function @(X) isequal to1for x=0and O for x #0 leading to
polynomial interpolation of up to order M-1 between grid points
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Fast interpolating wavelet :
transform algorithm

« The projection of afunction f onto afinite dimensional
scaling function space V, is given by

RF0O=Y (f(W),g,(9) g, ()
= > f(kI2)g,(9
= Z S k@ x (X)
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Fast interpolating wave et transform algorithm structure 25

| Finest:26=64
{df df |Sf Sf Sf ...... Sf J}T
J-1,0? ' 3_1123‘1_1 J-1,0'~J-11'~J-,2 J—l,ZJ_l—
!
f f f f f f T
{ SEETIRNE dJ—l,zJ-l—l 1d; 20,0 22924 1Sy 2000 Sy o072 —J}
!
f f f f f f T
{ Ao [0l d o IS g8 e 4}

Coarsest: 23=8

!

WJ—1D\NJ—Q \NJDs L4 VJ—P

Example: J:=6 P:=3
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The number of operations required for the transform algorithm for P
resolution levelsisam y 2 =2"m(2"*-1) as 2M filter coefficients
define the primal scaling function which spans the space of
polynomial of degree lessthan M-1

Calculation of the wavelet coefficients d/, for a given resolution
level | can be accomplished in 2(M-1)+ 1 floatl ng point operations
and the sub-sampling process for the scaling function coefficients
requires afurther 2 operations for atotal of 2+1M operations
required per resolution level |

For fixed J and P the fast interpolating wavelet transform algorithm
IS O(M) for exact (M-1)% order polynomial approximation

Since the finest resolution in a spatial grid of N pointsis J=log,N for
fixed M and P the complexity of the transform 1ISO(N)
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3. Wavelets and PDEs

Decomposition of differential operators
* Define 9" such that

. _p 4
07 f(x):=R, @ij f(x)

* Repeated application of the approximation subspace decomposition
gives

) B —) J-1 d™ [ 1]
IO T 2 Rigee 7 2,7 1)
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« For example the decomposition of the first derivative
operator 9 isgiven by

dx
J-1 d 31
0,=R,.+ > Ry ] Row * D> Ry
=3P X 1 2T-p
« Alternatively 9, =wWao W™ where 9, = PVJiPVJ and

ax
w and w are orthogonal matrices denoting the forward

and inverse transforms withw =w' =w™
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« Using the sampling nature of the dual scaling function
0% can be written as to take account of domain boundaries as

EQZJK 7 (@-K) gty k=0, M -1

% Z J .k ¢(a k)%a 2 =M

dqu
DZ" a-k)gR, k=2' -M +1,-..,2’
= Z ( ) @)
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e Theentire operator 4° can thus be determined provided
the values of % =de(a-k)/dx can be obtained

e An approach to determining filter coefficients » for a
derivative of order n isgiven by Prosser and Cant
(1999)

 Ther development provides analytic expressions for the
resulting scaling function ¢ and its derivative filter
coefficients
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Non constant coefficients

* Wavelet-based PDE methods have mainly dealt with
constant coetficients but financial PDEs frequently

have non-constant coefficients

* (Canonical transformation of the variables 1s usually
undestrable or impractical
* Our solution methodology should be able to handle

a wide range of PDEs with non-constant

coefficients
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Pseudo-spectral technique

* Traditional way of handling this problem in the
wavelet PDE literature

— Do an inverse transform at each time step

— Bvaluate the product in physical space

* Advantages

— Straightforward to implement

* Disadvantages

— Computationally expensive
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Combined operator approach

* We construct a new differential operator which

combines non-constant coefficients and derivative
terms

o Start with the usual projection P, of T onto a
wavelet (or scaling) space W,

Py 1(x)= ZSj,k%,k(X)

* Multiplying by a nonlinear function gives
g(x)[R T (3] = Z S [9(X)@, ()]
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* Since 9(X)@x(X) is not a basis for V; project again
to obtain

HCIRAICIEDY Z S1k <9(0P (), B0 > @ (X)

* To determine the mnner product in the case of a
differential operator recall the mterpolating nature
of the dual scaling function to yield

<90, (), @, >=2"g(2 aW'(a ~« )

* We apply the standard decomposition to the above
expression to get the combined differential operator
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PDEsIn 1 space dimension

e Consider afirst order nonlinear hyperbolic PDE defined over an
interval Q=[x,x]

ou _ ou rus « D0
ot 0x

ou .

— ==X (t X =

p» (t) X
ou =

— ==X (t X =

p» (t) X
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e |tswavelet transformed counterpart is

0_ ,_ _
5 e (U 0 yel 5S" 00
whereos ﬁﬂ Z R0 and 8® isthe standard decomposition

of % defined as D:’tédx =

« Using the multiresolution strategy to discretize the problem we
represent the domain P+1 timesfor anumber P of different
resolutions of the discretization

e Thereare P wavelet spaces and the coarse resolution scaling
function spacev,_, (P=1)
 |nthe transform domain each representation of the solution defined

at some resolution P must be supplemented by boundary
conditions
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« A traditional finite difference scheme replaces partial derivatives
with algebraic approximations at grid points and solves the
system of algebraic equations to obtain a numerical solution of
the PDE

* The method of lines transforms the PDE into avector ODE by
replacing the spatial partial derivatives with their wavel et
approximations but retaining the time derivatives

 Thevector ODE issolved intime using astiff ODE solver

* A method based on the backward differentiation formula
(LSODE) from Lawrence Livermore Laboratories and an Euler
method have been implemented in C/Fortran 90 on an IBM
RS6000/590 and an Athlon 650

The complexity of the method iIsO(N7) for time discretization T
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e The entire multiresolution wavelet machinery presented so
far can be extended to several space dimensionsd by
taking straight forward Cartesian products of appropriate
approximation and scaling subspaces -- i.e. tensor products
of appropriate wavelet bases -- to result in afast wavelet
transform of O(N) for N :=nd for spatial discretization n

* Theimposition of boundary conditions for nonlinearly
bounded domains is nontrivial but these are fortunately
rare in PDE derivative valuation problems which usually
are Cauchy problems on a strip
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4. European Option Valuation

e TheBlack ScholesPDE is
2
a—C+10282 0 C23 +rSa—C -rC =0
ot 2 0S 0S

where Sis stock price, g isvolatility and r istherisk free rate of interest

* Transform to the heat diffusion equation
ou _ 0°u
or ox°

for —o<X <07 >0

using S=Xe* andt=T -2r/0?
o ThenC(ST) := max(SX, 0) becomesfor k :=2r/c?

1

C(x,7)=e?

(k—l)x—%(k H)%r

Xu(x,7)
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« For avanilla European call option the boundary conditions are
C(0,t)=0, C(S;t)~SasS -
* The boundary conditions for the transformed PDE are
u(x,7)=0asx —» —o

—(k+1)x+—(k+1) T
u(x,7) ~ e? aSX - o

O Lwnx  Iawx O
u(x,0) = max g2 2 —ez(k K , 07
[ ]
e The heat equation solution can be transformed back to original

variables as

(k) —(1—k) —(k +)*0*(T)

O(St) =X2 @09(8/ X), > azcr—t)E

where k=2r/c?
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Vanilla European Call

S =10, strike =10, r = 5%, volatility = 20%, maturity=1 Y ear
Exact value: 1.04505

Wavelet method of lines

Space Steps Time Steps Vaue Solution time (seconds)
64 60 1.03515 .05
128 100 1.04220 10
256 200 1.04502 13
512 200 1.04505 .30
1024 200 1.04505 .90
Crank-Nicolson Finite Difference M ethod
Space Steps Time Steps Value Solution time (seconds)
64 60 1.03184 .02
128 100 1.04184 .04
256 200 1.04426 .09
512 200 1.04486 .16
1024 200 1.04501 .30
2000 200 1.04505 57
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Cash or nothing binary call

» The cash-or-nothing call option has a payoff
[M(S)= BH(S- X)
where H isthe Heaviside function, 1.e. if at expiry the
stock price S> X the payoff isB
e The boundary conditions for this option in the transformed
domain are
u(x,7)=0asx - —

B 1(k—1)x+:11(k )27

X
1 1 1
~k-)x B 0 2kwx  =k-px [
u(x,0) =e? 72 [e? 1 —e? 1 0]
X 0 [
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Cash-or-nothing Call

» Same parameters as before, cash given B=3

*  Exactvalue 1.59297 Wavelet method of lines

Space Steps Time Steps Vaue Solution time (seconds)
128 100 1.49683 10

256 200 1.54904 13

512 200 1.59216 .30

1024 400 1.59288 1.02

Crank-Nicolson Finite Difference M ethod

Space Steps Time Steps Value Solution time (seconds)
128 200 1.46296 .04

256 400 1.53061 10

512 400 1.56391 18

1024 400 1.58046 31

2048 800 1.58872 1.35

4096 800 1.59285 2.56

e Speedup: 25
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Supershare binary call

e The supershare binary call option pays an amount 1/d if the
stock price lies between X and X+d at expiry

e The payoff of thisoption is

1 1/d
Nn(s)= E(H(S— X)-H(S-X -d))

X X +d

which becomes the Dirac deltafunction inthelimit as d \, 0

e The boundary conditions for this option in the transformed
domain are

u(x,7)=0asx - —o
u(x,7)~0asx - o

Lk-1)x

u(x,0) =€  (H(Xe" = X)-H(Xe" =X —d))/dX
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Supershare Binary Call

o Same parameters as before, parameter d=3

* Exactvalue0.13855 Wavelet method of lines

Space Steps Time Steps Vaue Solution time (seconds)
128 100 12796 10

256 200 13310 14

512 200 .13808 .30

1024 400 .13848 1.04

Crank-Nicolson Finite Difference M ethod

Space Steps Time Steps Vaue Solution time (seconds)
128 200 12369 .04

256 400 13290 .09

512 400 13435 .16

1024 400 13666 34

2048 800 13787 1.35

4096 800 .13800 2.56

8000 800 .13835 511

Speedup : 4.9
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5. Cross-currency Swap Valuation

 We consider a 10 year cross-currency cancellable fixed-fixed
swap with quarterly reset dates, a 2 day decision period and
exchange of principal on first and last days

o Similar to the floating-floating deals discussed in Dempster &
Hutton (1997) and JP Morgan/Risk(1999)

« 1-factor extended Vasicek yield curve modelslead to a3D
parabolic PDE of the form

ov 1 :
P —SHN (0 V)H 0
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o Solved for the normalized deal value 39 timesin
backwards time with a backwards dynamic programming
reset of theinitial condition at each quarter

* Boundary conditions are set at 3¢ of the state
distributions and the computed deal is --value
O-- with the same initial term structures, mean reversions
and forward volatility specification in both economies

* A 3D wavelet method of lines code in C/Fortran 90 and
an explicit finite difference method in C have been
Implemented on an IBM RS6000/590 and an Athlon 650
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Cross Currency Swap

 Domestic Fixed Rate=10%, Foreign Fixed Rate=10%

* Exactvaue: 0 Wavelet method of lines
Discretization Vaue Solution time
(seconds)

20x8x8x8 -0.00082 1.2
20 x 16 x16 x16 -0.00052 6.54
20 x 32 x32 x 32 -0.00047 40.40
40 x 64 x 64 x 64 -0.00034 410.10
100 x 128 x 128 x 128 | -0.00028 4240.30
160 x 256 x 256 x 256 | -0.00025 53348.10

Explicit Finite Difference M ethod

Value Solution time
(seconds)

20x8x8x8 -0.00109 0.28
20 x 16 x16 x16 -0.00101 1.70
20 X 32 x32 x 32 -0.00074 16.82
40 x 64 x 64 x 64 -0.00058 188.10
100 x 128 x 128 x 128 | -0.00046 2421.6
160 x 256 x 256 x 256 | -0.00038 33341.8
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6. 3-Factor Interest Rate Swap Valuation

3D Gaussian Model

* The short rate s given by
r(t) =s(t) + X, (t) + X, (t) +X,(t)
where S(t) is a deterministic function
dX, =y, X,dt + g, dw,
dX, =, X, dt +o,dW,
dX, =y, X, dt + o,dW,
and E[dW,dW,] = p,dt

* Bond prices have a closed form in this model
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* If ”denotes the value of the derivative security under the
t

spot measure exp(-— I r(u)du) V (X, X,, Xg,t) 15 a martingale.

* Using [to’s lemma the PDE satistied by the value function is

oV oV 1 o/ 1 .0V 1 0/
—+ Xy Xy —— += 0, — += 0, — += 05—
Mo TH e g TH X, 2 ax1 2% %2 2% ox
0/ oV
+0,0,0, ——— g0 —+ 0.0, — t+X +X +XV+ =)

* 'This PDE must be solved with appropriate boundary

conditions
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Deal Specification

Fixed for floating LIBOR swap
Payment at end of each period is p; =Zg[L(t;,.t;)-r']
where 7 is the fixed rate, o i1s the accrual factor, Z 1s

the notional principal and L(t; ;,t;) is the LIBOR
rate for period tj.t;

Payment B(t,_,,t,)p, at the end of each period
Value of the swap at # < T'is the sum of the

expected present values of all future payments

PDE solved with terminal condition for each period
given by V(t;) = B(t, ,,t;) p, +V(t,,) over the spatial
orid points
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Bermudan Swaption

* The counterparty has the option to enter the swap at
the beginning of every period

* The terminal condition for each period 1s given by

V(t;) =max{3,V(t))}

where 2 represents the sum of the conditional
expected present values of all future payments after 7

* 'The PDE is solved for each period with the terminal

condition given above

© Centre for Financial Research, Judge Institute of Management, University of Cambridge

www-cfr.jims.cam.ac.uk




53

Bermudan Swaption

e 1Year, 2 Periods
 Fixed Rate=5%, Initial Flat Term Structure=5%

e MCvaue: 0.09921
Wavelet method of lines

Discretization Value Solution time
(seconds)

100x 32 x 16 x 8 .10302 .80

100x 64x 32 x 16 .10091 16.47

100 x 128 x 64 x 16 .09966 130.05

100 x 256 x 128 x 16 | .09952 702.87

Dufort Frankel Explicit Finite Difference M ethod

Discretization Value Solution time
(seconds)

100x 32 x 16 x 8 .10451 15

100x 64x 32 x 16 .10105 3.23

100 x 128 x 64 x 16 .09987 24.80

100 x 256 x 128 x 16 | .09970 148.26
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7. Benchmark Simulation methods for 54

Bermudan Swaptions

e Can we use simulation methods to price Bermudan swaptions?

— Choose a (sub-optimal) exercise rule and use normal Monte-Carlo to get a
negatively biased estimate

— Construct an approximation to the option value at a mesh of points determined
from randomly generated sample paths working backwards

» Three approaches.

— Andersen (1999)

» Defineascorefunction f (e.g. the immediate value exercise value) and an
exerciserule ‘exerciseat t if f(S )>H, athreshold determined by solving an
optimization problem’

— Broadie and Glasserman (1997) Stochastic Mesh
» Generates consistent, but positively and negatively biased estimators
— Longstaff and Schwartz (1998) (similar to Pedersen (1999))

» Approximate the value-of-continuation as alinear combination of user supplied
basis functions
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o Simulate aset of random pathsfor S
— Denote by S' the value of S at timet on the ith path and by D(S/',t) the
stochastic discount factor to apply from (S_',t-1) to (S',t)
« Construct approximation to the swaption value at these points
recursively
— Set V(s/,T) to be the value of exercise at thefinal time T

— Choose a set of basis functions {b;(st)} and use |east-squares to construct an
approximation W(s, T-1)=% a(T-1) by(s,T-1) to the value of continuation at time
T-1 by regressing D(S/,T) V(S/,T) on b,(S;.,,T-1)

— YieldsW(s,T-1) which can be used to define an exercise rule in an obvious way

— Finaly define V(S;.,',T-1) to be the value of immediate exercise if we choose
to exerciseand D(S/,T) V(S{,T) if we choose to continue

« Thetime-0 option valueis obtained by averaging the D(S,',1)V(S,',1)
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Longstaff & Schwartz method :

e Many improvements are possible

Use European swaption prices as outer control variates in the final Monte-
Carlo calculation

Use the value of the remaining swap as an inner control variable when
performing the least-squares regression (cf. Hedged Monte Carlo of
Potters, Bouchaud & Sestovic (2000))

Improve the exercise strategy using extra information:

* Do not exercise if the current value of the remaining swap is below zero
» (stronger) Do not exercise if the value of one of the remaining European
swaptions is more than current value of remaining swap
Since the computations spend virtually all time pricing European swaptions
use avery fast approximation for these. For example for a20NC10, we
can price more than 100,000/s on a 650M hz Athlon with an error less than
0.01 b.p.
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7. Conclusions and Further Work

O(N) wavelet based PDE methods generalize O(N log, N) spectral
methods without their drawbacks

Wavelets are ideally suited for complex derivative valuations which
INnvolve several space scales e.g. dueto payoff curvature or
discontinuities and result in greater accuracy at a given discretization
level with substantial speedups -- using prototype code -- over optimized
finite difference codes in dimensions up to 3

We are currently developing athresholded 3D wavelet code which
should improve both speedup and memory use by an order of magnitude

through sparse wavel et representation

However fast Monte Carlo techniques are currently the method to beat!

Onto 2 and 3 factor cross currency swap valuationin5and 7D...
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