Cambridge University Finance Seminar 27 October 2000

Pricing Spread Options with the Fast Fourier Transform

M.A.H. Dempster

Co-worker: S.S.G. Hong
Centre for Financial Research
Judge Institute of Management Studies
University of Cambridge

© Centre for Finance Research, Judge Institute of Management, University of Cambridge

Contents

- Introduction
- Spread Option Pricing Review
- Fourier Transform Techniques for Vanilla Options
- Pricing Spread Options with the FFT
- Computational Results
- Conclusions and Future Work

1. Introduction

What is a Spread Option?

- Two Underlying Assets: S_1 , S_2
- Spread (basis): $S_1 S_2$
- Payoff: $(S_1(T) S_2(T) K)_+$
- Price: $V_T(K) = E_Q[e^{-rT}(S_I(T) S_2(T) K)_+]$

© Centre for Finance Research, Judge Institute of Management, University of Cambridge

Why are they important?

- Invaluable tools for hedging and speculating...
- ... in almost all markets!
 Energy Crack spread, Spark spread
 Commodity Crush spread, Cotton calendar spread
 Equity Index spread
 Bond NOB spread, TED spread
 Credit Derivatives Credit spread
- Indispensable for managing "Correlation risks"

Hedging Using Spread Options

An oil refinery firm can short a call on the spread of oil future prices: $F_l - F_s$

- F_l : long output = Refined product
- F_s : short input = Brent crude
- *K* : strike = marginal conversion cost
- $(F_l(T) F_s(T) K)_+$: payoff of the crack spread

© Centre for Finance Research, Judge Institute of Management, University of Cambridge

Hedging Using Spread Options

- If the spread is greater than the cost, the option is exercised by the holder and the firm meets its obligation by producing
- If the spread is less than the cost, the option expires worthless and the firm will not produce
- either way the firm earns the option premium
- i.e. a call on the spread replicates the payoff structure of a firm's production schedule

Speculating using Spread Options

A speculator can trade the correlation between two prices, indices or bond yields (LTCM):

- If we speculate on a correlation drop, we long a call on spread
- If we speculate on a correlation rise, we short a call on spread

The reasoning is similar to going long on a vanilla call on a single asset if we think volatility will rise, with the variance of the spread replacing the volatility of the single asset

© Centre for Finance Research, Judge Institute of Management, University of Cambridge

Speculating Using Spread Options

The spread variance depends on:

- volatility of the long leg
- volatility of the short leg
- correlation between the two

The first two can be traded by options on individual prices We need a spread option to trade the third (Mbanefo 1997)

The Problem

- Set up good models for the dynamics of the factors, which accommodates stochasticities in interest rates, volatility...
- Compute the price of a spread option under such models
- Study how the price depends on the model specification, in particular the volatility and correlation structure
- Design appropriate calibration procedures

© Centre for Finance Research, Judge Institute of Management, University of Cambridge

2. Spread Option Pricing Review

Existing Approaches: I

• Model the spread as a Geometric Brownian motion:

$$X := S_1 - S_2$$
$$dX = X (\mu dt + \sigma dW)$$

• apply the Black-Scholes formula:

$$\begin{split} V_T(K) &= \mathrm{E}_{\mathrm{Q}} \left[e^{-rT} \left[S_I(T) - S_2(T) - K \right]_+ \right] \\ &:= \mathrm{E}_{\mathrm{Q}} \left[e^{-rT} \left[X(T) - K \right]_+ \right] \end{split}$$

- Simple but dangerous!
 - spread can go negative
 - a multi-factor problem by nature

Existing Approaches: II

• Model S_1 , S_2 as Geometric Brownian motions:

$$dS_I = S_I (\mu_I dt + \sigma_I dW_I)$$

$$dS_2 = S_2 (\mu_2 dt + \sigma_2 dW_2)$$

where $E_O[dW_1 dW_2] = \rho dt$

- ρ is the correlation between the prices
- Apply a conditioning technique to turn the two-dimensional integral into a single one

(K. Ravindran 1993, D. Shimko 1994)

© Centre for Finance Research, Judge Institute of Management, University of Cambridge

$$\begin{split} V_T(K) &= e^{-rT} \int_0^\infty \int_{S_2 + K}^\infty (S_1 - S_2 - K) f_T(S_1, S_2) dS_1 dS_2 \\ &= e^{-rT} \int_0^\infty \left[\int_{S_2 + K}^\infty [S_1 - (S_2 + K)]_+ f_{1|2}(S_1 | S_2) dS_1 \right] f_2(S_2) dS_2 \\ &= e^{-rT} \int_0^\infty C(S_2) f_2(S_2) dS_2 \end{split}$$

where

- $f_T(\cdot|\cdot)$: joint p.d.f. of $S_I(T)$, $S_2(T)$... bivariate log-normal
- $f_{1/2}(\cdot|\cdot)$: conditional density of $S_I(T)$ given $S_2(T)$... log-normal
- $f_2(\cdot)$: marginal density of $S_2(T)$ log-normal
- $C(\cdot)$: an integral similar to the Black-Scholes call price

Existing Approaches: II

Simple, Two-factor, but...

- Only works when distributions are normal
- Prices are the only sources of randomness...
- No stochastic interest rate, convenience yield
- Constant (deterministic) volatility
- Trivial correlation structure

© Centre for Finance Research, Judge Institute of Management, University of Cambridge

Existing Approaches: III

Variants on the previous approach

- Approximation by piecewise linear payoff function (N.D. Pearson 1995)
- Edgeworth Series Expansion (D. Pilipovie, J. Wengler 1998)
- Lattice and PDE method

A GARCH model with co-integration is also proposed and the spread option is valued using a Monte Carlo method (J.C. Duan, S.R. Pliska 1999)

3. Fourier Transform Techniques for Vanilla Options

What is a Fourier Transform?

$$f(x) \mapsto \phi(v) = \int_{-\infty}^{\infty} f(x) \cdot e^{ivx} dx$$

$$\phi(v) \mapsto f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \phi(v) \cdot e^{-ivx} dv$$

- probability density functions → characteristic functions
- differentiation w.r.t. $x \rightarrow$ multiplication by -iv and inverting

$$f'(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} (-i\upsilon \cdot \phi(\upsilon)) \cdot e^{-i\upsilon x} d\upsilon$$

• option pricing = integration of p.d.f. times payoff

... and a Fast Fourier Transform?

an efficient algorithm for computing the sum

$$Y_k = \sum_{j=0}^{N-1} X_j \cdot e^{-\frac{2\pi i}{N}jk}$$
 for $k = 1, ..., N$

for a complex array $X=(X_i)$ of size N

- reduces the number of multiplications from an order of N^2 to Strassen (1967) $N \log_2 N$
- crucial for approximating the Fourier integral

$$\int_{-\infty}^{\infty} f(x) \cdot e^{iux} dx \approx \sum_{j=0}^{N-1} f(x_j) e^{iux_j} \Delta x$$

Black-Scholes via Fourier Transform

S. Heston (1993), G. Bakshi & D.B. Madan(1999),
 P.Carr & D.P. Madan (1999)

To price a European call under Black-Scholes we need

- $s_T := \log(S_T)$: log-price of the underlying at maturity
- $q_T(.)$: risk-neutral density of the log-price s_T
- $k := \log(K)$: log of the strike price
- $C_T(k)$: price of a T-maturity call with strike e^k
- $f_T(.)$: characteristic function of the risk-neutral density q_T

© Centre for Finance Research, Judge Institute of Management, University of Cambridge

Characteristic function under Black-Scholes

$$d \ln S = (r - \frac{1}{2}\sigma^{2})dt + \sigma dW$$

$$\Rightarrow s_{T} \sim N\left(s_{0} + (r - \frac{1}{2}\sigma^{2})T, \sigma^{2}T\right)$$

$$\Rightarrow \phi_{T}(u) \equiv E_{Q}\left[e^{iu \cdot s_{T}}\right]$$

$$\equiv \int_{-\infty}^{\infty} e^{iu \cdot s} q_{T}(s) ds$$

$$= \exp\left[\left[s_{0} + (r - \frac{1}{2}\sigma^{2})T\right] - \frac{1}{2}\sigma^{2}T \cdot u^{2}\right]$$

Fourier transform of the (modified) call (P. Carr & D.B. Madan 1999)

$$C_{T}(k) = E_{Q} \left[e^{-rT} \left(S_{T} - K \right)_{+} \right]$$
$$= \int_{k}^{\infty} e^{-rT} \left(e^{s} - e^{k} \right) q_{T}(s) ds$$

• The call price is not square-integrable since

$$C_T(k) \rightarrow S_0 , k \rightarrow -\infty$$

• Define the modified call price, for some $\alpha > 0$

$$c_T(k) := \exp(\alpha k) C_T(k)$$

© Centre for Finance Research, Judge Institute of Management, University of Cambridge

• The Fourier transform of the modified call price $c_T(k)$ is given by

$$\psi_{T}(v) := \int_{-\infty}^{\infty} e^{ivk} c_{T}(k) dk$$

$$= \int_{-\infty}^{\infty} \int_{k}^{\infty} e^{-rT} e^{(\alpha+iv)k} (e^{s} - e^{k}) q_{T}(s) ds dk$$

$$= \int_{-\infty}^{\infty} e^{-rT} q_{T}(s) \int_{-\infty}^{s} e^{(\alpha+iv)k} (e^{s} - e^{k}) dk ds$$

$$= \int_{-\infty}^{\infty} e^{-rT} q_{T}(s) \left[\frac{e^{(\alpha+1+iv)s}}{(\alpha+iv)(\alpha+1+iv)} \right] ds$$

$$= \frac{e^{-rT} \phi_{T} \left(v - (\alpha+1)i \right)}{(\alpha+iv)(\alpha+1+iv)}$$

• But ϕ_T is also known in closed form!

Inverting thus yields the call price:

$$C_{T}(k) = \frac{e^{-\alpha k}}{2\pi} \int_{-\infty}^{\infty} e^{-i\nu k} \psi_{T}(\nu) d\nu$$

Approximate this, using trapezoid or Simpson's rule, with a finite sum and then apply the Fast Fourier Transform

$$\begin{split} C_{T}(k_{m}) &\approx \frac{e^{-\alpha k_{m}}}{2\pi} \sum_{j=0}^{N-1} e^{-i\upsilon_{j}k_{m}} \psi_{T}\left(\upsilon_{j}\right) \eta \\ &= \frac{e^{-\alpha k_{m}}}{2\pi} \sum_{j=0}^{N-1} \left[\left(-1\right)^{j+m} \psi_{T}\left(\upsilon_{j}\right) \eta\right] \cdot e^{-\frac{2\pi i}{N} j m} \end{split}$$

for m=0,...,N-1, where

$$v_j = (j - N/2)\eta$$
 $k_m = (m - N/2)\lambda$ $\lambda \cdot \eta = \frac{2\pi}{N}$

Note: With an N grid in the Fourier sum, this gives option prices with N equally spaced strikes

© Centre for Finance Research, Judge Institute of Management, University of Cambridge

Extending the payoff

By modifying the input function of the inverse transform, $\psi_T(\cdot)$, we can handle the following instrument with the same technique:

- $\left[e^{A \cdot s_T + B} e^k\right]_+$: call on bonds (s_T now is the short rate) $\left[(A \cdot s_T + B) k\right]_+$: call on yields
- $P(s_T)$: payoff contingent on polynomial in s_T
- $H(s_T)$: can even do general payoff in C^{∞} via Taylor series expansion! (G. Bakshi & D.B. Madan 1999)

Extending Distribution

- Normality can be relaxed...
- Explicit expression of the p.d.f. not needed
- Key: Characteristic functions!
- the underlying can evolve as
- - O. U. or C. I. R. processes
- - Affine diffusion with jumps
- VG (Variance Gamma) process...
- many of the above have no analytic density but their characteristic functions are known

© Centre for Finance Research, Judge Institute of Management, University of Cambridge

Extending numbers of factors

• Stochastic volatility, stochastic interest rate... can be incorporated

$$dS = S(r dt + \sqrt{v} dW_1)$$

$$dv = \kappa_v (\mu_v - v)dt + \sqrt{v} dW_2$$

$$dr = \kappa_{rv} (\mu_{rv} - r)dt + \sigma_r dW_3$$
:

... as long as the factors have analytic characteristic functions

- this includes pretty much all the diffusion models in the literature:
- Multifactor CIR models (Chen-Scott...)
- General Affine Diffusion models (Duffie, Kan, Singleton...)
- Gaussian interest rate models (Longstaff-Schwartz...)
- Stochastic Volatility models (Heston, Bates, Hull-White...)

Extending number of assets

- Now consider options whose payoffs are contingent on two assets S_1 , S_2
- Example (Bakshi & Madan 1999): a generalisation of European call with the following payoff: $(e^{s_1(T)} e^{k_1})_+ \cdot (e^{s_2(T)} e^{k_2})_+$
- we can price it in a similar fashion; let $c_T(k_1, k_2) := \exp(\alpha_1 k_1 + \alpha_2 k_2) \cdot C_T(k_1, k_2)$ $\equiv e^{\alpha_1 k_1 + \alpha_2 k_2} \int_{k_1}^{\infty} \int_{k_2}^{\infty} e^{-rT} \left(e^{s_1(T)} e^{k_1} \right) \cdot \left(e^{s_2(T)} e^{k_2} \right) q_T(s_1, s_2) ds_2 ds_1$

© Centre for Finance Research, Judge Institute of Management, University of Cambridge

• Consider its Fourier transform:

$$\psi_{T}(v_{1}, v_{2}) := \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{iv_{1}k_{1} + iv_{2}k_{2}} c_{T}(k_{1}, k_{2}) dk_{2} dk_{1}$$

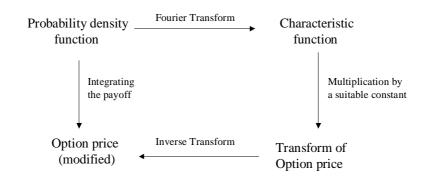
$$= \frac{e^{-rT} \phi_{T} \left(v_{1} - (\alpha_{1} + 1)i, v_{2} - (\alpha_{2} + 1)i \right)}{(\alpha_{1} + iv_{1})(\alpha_{1} + 1 + iv_{1})(\alpha_{2} + iv_{2})(\alpha_{2} + 1 + iv_{2})}$$

• Inverting thus yields the option price:

$$C_{T}(k_{1},k_{2}) = \frac{e^{-\alpha_{1}k_{1}-\alpha_{2}k_{2}}}{(2\pi)^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-iv_{1}k_{1}-iv_{2}k_{2}} \psi_{T}(v_{1},v_{2}) dv_{2} dv_{1}$$

• Compute this with a two-dimensional FFT

Moral of the story



© Centre for Finance Research, Judge Institute of Management, University of Cambridge

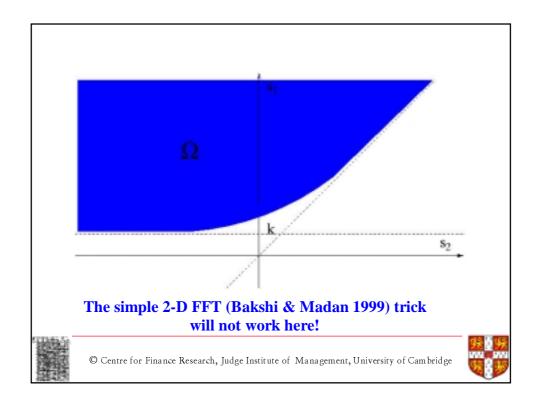
4. Pricing Spread Options with the FFT

• Let us now try to price a call on the spread S_1 - S_2

$$\begin{split} V_T(k) &= E_Q \Big[e^{-rT} (S_1 - S_2 - K)_+ \Big] \\ &= e^{-rT} \int_{-\infty}^{\infty} \int_{\log(e^{s_2} + e^k)}^{\infty} (e^{s_1} - e^{s_2} - e^k) q_T(s_1, s_2) ds_1 ds_2 \\ &\equiv e^{-rT} \int \int_{\Omega} (e^{s_1} - e^{s_2} - e^k) q_T(s_1, s_2) ds_1 ds_2 \end{split}$$

• Big problem: the exercise region Ω to be integrated over has a curved boundary

$$\Omega := \left\{ (s_1, s_2) \in R^2 \mid e^{s_1} - e^{s_2} - e^k \ge 0 \right\}$$



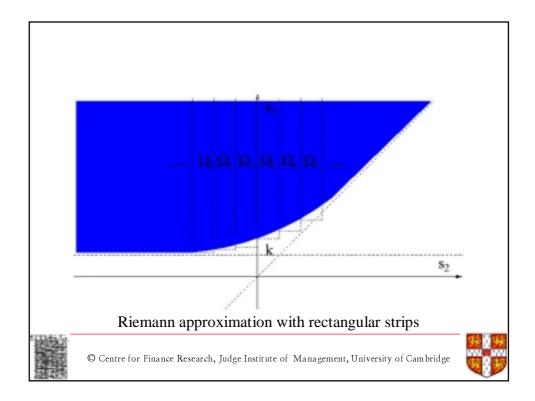
Approximating the Exercise Region

• Approximating it with rectangular strips (Riemann) as

$$V_{T}(k) = e^{-rT} \int \int_{\Omega} (e^{s_{1}} - e^{s_{2}} - e^{k}) q_{T}(s_{1}, s_{2}) ds_{1} ds_{2}$$

$$\approx e^{-rT} \sum_{u=0}^{N-1} \int \int_{\Omega_{u}} (e^{s_{1}} - e^{s_{2}} - e^{k}) q_{T}(s_{1}, s_{2}) ds_{1} ds_{2}$$

• The integral can be computed over each rectangular region Ω_u , u=0,...,N-1



- We DON'T have to do N integrals!!!
- A single 2-D transform will produce $N \times N$ of

$$\int_{k_1(m)}^{\infty} \int_{k_2(n)}^{\infty} (e^{s_1} - e^{s_2} - e^k) q_T(s_1, s_2) ds_1 ds_2$$

for m, n = 0, ..., N-1

• These are sufficient for the *N* components we require since for different strikes *k* of the spread option we only need to pick different components to sum and no additional transform is needed

Why the FFT?

• Consider the following model:

$$dS_{1} = S_{1} \left(r dt + \sqrt{\mathbf{v}_{1}} d \mathbf{W}_{1} \right)$$

$$dS_{2} = S_{2} \left(r dt + \sqrt{\mathbf{v}_{2}} d \mathbf{W}_{2} \right)$$

$$d\mathbf{v}_{1} = \kappa_{1} (\mu_{1} - \mathbf{v}_{1}) dt + \sqrt{\mathbf{v}_{1}} d \mathbf{W}_{3}$$

$$d\mathbf{v}_{2} = \kappa_{2} (\mu_{2} - \mathbf{v}_{2}) dt + \sqrt{\mathbf{v}_{2}} d \mathbf{W}_{4}$$

with $E_Q[dW_i dW_j] = \rho_{ij} dt$

• Direct generalisation of 1-D stochastic volatility models with non-trivial correlation!

© Centre for Finance Research, Judge Institute of Management, University of Cambridge

- No existing method can handle this!
 - conditioning trick won't work
 - lattice obviously fails...
 - a PDE in 4 space variables
 - slow convergence for Monte Carlo
- But easy (relatively) with the Fourier Transform approach!
 - as the number of factors go up, the payoff structure based on the price differences remains the same
 - the characteristic function involves more parameters and complicated expressions (naturally) but is still known in closed form
 - the transform will still be two dimensional

5. Computational Results

- Anthlon 650 MHz with 512 MB RAM running Linux
- Code in C++
- Invoke Simpson's rule for approximation of the Fourier integral
- Use the award winning FFTW code ("Fastest Fourier Transform in the West") written by M Frigo and S Johnson from MIT (1999)

© Centre for Finance Research, Judge Institute of Management, University of Cambridge

Pricing Spread Options under Two-factor GBM

• First we compute spread option prices with the model (Existing Approach II):

$$dS_{I}=S_{I}\left(\mu_{I}\ dt+\sigma_{I}\ dW_{I}\right)$$

$$dS_{2}=S_{2}\left(\mu_{2}\ dt+\sigma_{2}\ dW_{2}\right)$$
 where $E_{Q}\left[dW_{I}\ dW_{2}\right]=\rho\,dt$

• We compare prices to those obtained by direct 1-D integration (using conditioning)

雅 · 班

Error Variation With Strikes

Strike	Analytic	FFT	Error (b.p.)
0	6.56469	6.564078	0.932488
0.1	6.52267	6.522448	0.341628
0.2	6.480852	6.480436	0.641932
0.3	6.439226	6.439017	0.324435
0.4	6.397804	6.397531	0.426712
0.5	6.356578	6.356316	0.410849
0.6	6.315548	6.315321	0.359201
0.7	6.27472	6.27449	0.367451
0.8	6.234087	6.233878	0.335393
0.9	6.193652	6.19345	0.325424
1	6.153411	6.153223	0.306302
1.1	6.113369	6.113193	0.288202
1.2	6.07352	6.073361	0.261818
1.3	6.03387	6.033721	0.247201
1.4	5.994414	5.994279	0.2244
1.5	5.955153	5.95503	0.205267
1.6	5.916084	5.915977	0.181615
1.7	5.877211	5.877117	0.161329
1.8	5.838531	5.83845	0.138798
1.9	5.800047	5.79998	0.115989
2	5.761753	5.761697	0.098485

 $\begin{aligned} & \text{Maturity} = 1.0 \\ & \text{Interest Rate} = 0.1 \\ & \text{Initial price of Asset } 1 = 100 \\ & \text{Initial price of Asset } 2 = 100 \\ & \text{Dividend of Asset } 1 = 0.05 \\ & \text{Dividend of Asset } 2 = 0.05 \\ & \text{Volatility of Asset } 1 = 0.2 \\ & \text{Volatility of Asset } 1 = 0.1 \\ & \text{Correlation} = 0.5 \end{aligned}$

Number of Discretisation N = 4096 Integration step $\eta = 1.0$ Scaling factor $\alpha = 2.5$

Table 1. Two-factor spread option prices across strikes

© Centre for Finance Research, Judge Institute of Management, University of Cambridge

Accuracy of Alternative Methods

(Athlon 650 MHz with 512 MB RAM)

Fast Fourier Transform			Monte Carlo					
Number of				Number of Time Steps				
Discretisation	Lower	Upper		Simulations	1000 2000		00	
512	4.44	25.6		10000	129.15	-0.05184	70.81	-0.05095
1024	1.13	13.9		20000	22.34	-0.03623	40.67	-0.0359
2048	0.32	7.2		40000	7.44	-0.02574	7.63	-0.02573
4096	0.1	3.65		80000	18.34	-0.01808	4.94	-0.01818

Table 2. Accuracy of alternative methods for the two-factor Geometric Brownian motion model in which the analytic price is available using direct integration: Error in basis point

Impact of Volatility and Correlation

Correlation

		0.5	0	-0.5
		6.675496	8.494941	9.979849
2	0.1	6.675800	8.495493	9.981407
sse		(0.454684)	(0.649928)	(1.561482)
Volatility of asset 2	0.2	7.510577 7.511055 (0.636531)	10.549590 10.550798 (1.145356)	12.870614 12.873037 (1.882598)
	0.3	9.712478 9.714326 (1.901766)	13.261339 13.264996 (2.757088)	16.01200 16.18352 (3.965540)

Maturity = 1.0 Interest Rate = 0.1 Initial price of Asset 1 = 100 Initial price of Asset 2 = 95 Dividend of Asset 1 = 0.05 Dividend of Asset 2 = 0.05 Volatility of Asset 1 = 0.2

Strike of the spread option = 5.0

The first value is computed using the Fast Fourier Transform method.

The second value is the analytic price computed using the conditioning technique (the one-dimensional integral evaluated using the qromber routine in the Numerical Recipe for C).

The third value is the error of the FFT method in basis points.

Table 3. 2-factor spread option prices across volatilities and correlations

© Centre for Finance Research, Judge Institute of Management, University of Cambridge

Pricing Spread Options under Three-factor Stochastic Volatility Models

$$dS_1 = S_1 \left(r dt + \sigma_1 \sqrt{v} dW_1 \right)$$

$$dS_2 = S_2 \left(r dt + \sigma_2 \sqrt{v} dW_2 \right)$$

$$dv = \kappa (\mu - v) dt + \sigma_v \sqrt{v} dW_v$$

$$E_{\mathcal{Q}}[dW_1\ dW_2] = \rho dt \quad E_{\mathcal{Q}}[dW_1\ dW_v] = \rho_1 dt \quad E_{\mathcal{Q}}[dW_v\ dW_2] = \rho_2 dt$$

- Characteristic function is known in closed-form so that the FFT method is applicable
- Benchmark with a Monte Carlo method

Characteristic Function of the 3-Factor Model

$$\begin{split} \phi_T(u_1, u_2) &:= E_{\mathbb{Q}} \left[\exp(iu_1 s_1(T) + iu_2 s_2(T)) \right] \\ &\equiv \exp \left[iu_1 \left(rT + s_1(0) \right) + iu_2 \left(rT + s_2(0) \right) \right. \\ &\left. - \frac{\kappa \mu}{\sigma_v^2} \left[2 \ln \left(1 - \frac{(\theta - \Gamma)(1 - e^{-\theta T})}{2\theta} \right) + (\theta - \Gamma)T \right] \right. \\ &\left. + \frac{2\zeta(1 - e^{-\theta T})}{2\theta - (\theta - \Gamma)(1 - e^{-\theta T})} v(0) \right] \end{split}$$

© Centre for Finance Research, Judge Institute of Management, University of Cambridge

Computing Time of Alternative Methods

(Athlon 650 MHz with 512 MB RAM)

Fast Fourier Transform						
Number of	10 S	trikes	100 Strikes			
Discretisation	GBM SV		GBM	SV		
512	1.04	1.11	1.1	1.2		
1024	4.28	4.64	4.48	4.83		
2048	18.46	19.54	18.42	19.74		
4096	74.45	81.82	76.47	81.27		

Monte Carlo: 1000 Time Steps						
Number of	10 S	trikes	100 Strikes			
Simulation	GBM SV		GBM	SV		
10000	38.2	144.87	41.95	151.75		
20000	76.22	288.09	83.81	303.31		
40000	152.5	576.25	168.48	606.53		
80000	304.95	1152.9	335.2	1212.76		

Monte Carlo: 2000 Time Steps						
Number of	10 S	trikes	100 Strikes			
Simulation	GBM	SV	GBM	SV		
10000	75.57	287.41	79.83	295.21		
20000	157.28	574.18	159.08	590.23		
40000	303.37	1149.25	317.49	1184.32		
80000	606.4	2298.37	636.33	2359.05		

Table 4. Computational time (seconds) of alternative methods for the two-factor Geometric Brownian motion model and the three-factor Stochastic Volatility model

Spread Option Prices by Alternative Methods

Fast Fourier Transform				
N	Lower	Upper		
512	5.059379	5.068639		
1024	5.062695	5.067405		
2048	5.063545	5.065897		
4096	5.063755	5.064492		

Explicit Finite Difference				
No of Discret				
Space	Time	Price		
100 * 100 * 100	400	5.0845		
100 * 100 * 100	1600	5.0769		
100 * 100 * 100	2500	5.076		
100 * 100 * 100	10000	5.0748		
200 * 200 * 100	1600	5.0703		
200 * 200 * 200	1600	5.0703		
200 * 200 * 100	2500	5.0694		
200 * 200 * 100	10000	5.0682		
300 * 300 * 100	4000	5.0668		

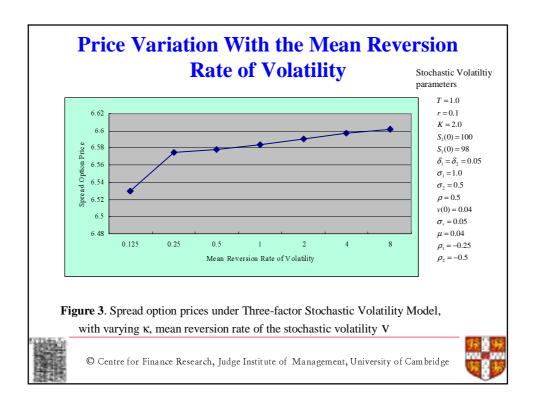
	Monte Carlo Simulation			
Number of				
Simulation	Steps	Price	(standard error)	
1280000	1000	5.052372	-0.004301	
1280000	2000	5.053281	-0.004297	
1280000	4000	5.037061	-0.004286	
2560000	1000	5.04989	-0.003039	
2560000	2000	5.051035	-0.003039	
2560000	4000	5.042114	-0.003037	
51 20000	1000	5.047495	-0.002148	
51 20000	2000	5.046263	-0.002148	

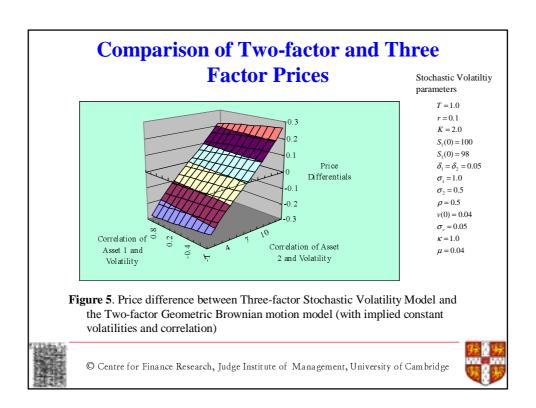
Table 2. Accuracy of alternative methods for the three-factor Stochastic Volatility model

© Centre for Finance Research, Judge Institute of Management, University of Cambridge

Price Variation With the Volatility of the **Stochastic Volatility** Stochastic Volatiltiy parameters 6.65 T = 1.0r = 0.16.6 K = 2.0Spread O ption price 6.55 6.45 6.45 $S_1(0) = 100$ $S_1(0) = 98$ $\delta_1 = \delta_2 = 0.05$ $\sigma_1 = 1.0$ $\sigma_2 = 0.5$ $\rho = 0.5$ v(0) = 0.046.35 $\kappa = 1.0$ $\mu = 0.04$ 6.3 $\rho_1 = -0.25$ 0.01 0.02 0.03 0.04 0.1 0.2 $\rho_2 = -0.5$ Volatility of Volatility Figure 2. Spread option prices under Three-factor Stochastic Volatility Model,

with varying $\sigma_{_{\!\scriptscriptstyle V}}$, volatility of the stochastic volatility V





Conclusions and Future Work

- Existing approaches are unable to price spread options beyond two-factor GBM models (e.g. stochastic volatility and correlation, general affine models)
- The Fast Fourier Transform provides a robust method for pricing spread option under such models
- Computation times do not increase with the number of random factors in the diffusion model
- Method is applicable to other exotic options
- On to the 4-factor model which allows full freedom to the future correlation surface...
- Fast wavelet transform O(N) versus $O(N \log N)$ for FFT

