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1. Introduction

What isa Spread Option ?

Two Underlying Assets: S, S,

Spread (basis): S-S,

Payoff: (S(T) - S(T) - K),

Price: V(K) = Egl & (S§(T) - S(T) - K), |
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Why arethey important?
» Invaluabletools for hedging and speculating...

e ...inamost all markets!
Energy Crack spread, Spark spread
Commodity Crush spread, Cotton calendar spread
Equity Index spread
Bond NOB spread, TED spread
Credit Derivatives Credit spread

* Indispensable for managing "Correlation risks"
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Hedging Using Spread Options

An oil refinery firm can short a call on the spread of oil
future prices: F, — F,

* F, :long output = Refined product

F, : short input = Brent crude

K : strike = marginal conversion cost

(F(T) - F(T) - K), : payoff of the crack spread
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Hedging Using Spread Options

 |If the spread is greater than the cost, the option is
exercised by the holder and the firm meets its obligation
by producing

» |If the spread isless than the cost, the option expires
worthless and the firm will not produce

» either way the firm earns the option premium

I.e. acall on the spread replicates the payoff structure of a
firm’s production schedule
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Speculating using Spread
Options

A speculator can trade the correlation between two prices,
indices or bond yields (LTCM):

 If we speculate on a correlation drop, we long a call on
spread

» If we speculate on a correlation rise, we short a call on
Spread

The reasoning is similar to going long on avanillacall on a
single asset if we think volatility will rise, with the
variance of the spread replacing the volatility of the
single asset
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Speculating Using Spread
Options
The spread variance depends on:

« volatility of the long leg
« volatility of the short leg
* correlation between the two

The first two can be traded by options on individual prices
We need a spread option to trade the third (M banefo 1997)
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The Problem

¢ Set up good models for the dynamics of the factors, which
accommodates stochasticities in interest rates, volatility...

» Compute the price of a spread option under such models

» Study how the price depends on the model specification,
in particular the volatility and correlation structure

» Design appropriate calibration procedures
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2. Spread Option Pricing Review
Existing Approaches: |

* Model the spread as a Geometric Brownian motion:
X:=S -8,
dX=X(pdt+ odw)

» apply the Black-Scholes formula:

Vi(K) = Eq[ €[ S(T) - S,(T) K], ]
=Eq[eT[X(T) K. ]

» Simple but dangerous!

- spread can go negative
- amulti-factor problem by nature
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Existing Approaches: ||

* Modd S;, S, asGeometric Brownian motions:
dS,= S, (1 dit+ o dwy)
dS,=S, (M, dt+ g, dW,)

where E, [dW, dW,] = pdt
» p isthe correlation between the prices

* Apply aconditioning technique to turn the two-dimensional
integral into asingle one

(K. Ravindran 1993, D. Shimko 1994)

E © Centre for Finance Research, Judge Institute of Management, University of Cambridge %g

Vi(K)=e [ (S-S, -K) (S, S,)dsds,
=e" ['H [S (S +KL. fi,(S[S)dS . (S)ds,
=" [(C(S),(S,)ds,

where

o fr(]") :joint p.d.f. of S(T),S(T) ... bivariate log-normal

. f1|z('| 1) : conditional density of S;(T) given S,(T) ... log-normal
e f,() : marginal density of S,(T) .... log-normal

e C{() :anintegral similar to the Black-Scholes call price
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Existing Approaches: ||

Simple, Two-factor, buit...

* Only works when distributions are normal

» Prices are the only sources of randomness...

* No stochastic interest rate, convenience yield
» Constant (deterministic) volatility

 Trivial correlation structure
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Existing Approaches: 111

Variants on the previous approach

» Approximation by piecewise linear payoff function
(N.D. Pearson 1995)

» Edgeworth Series Expansion (D. Pilipovie, J. Wengler
1998)

e Lattice and PDE method

A GARCH model with co-integration is also proposed
and the spread option is valued using a Monte Carlo
method (J.C. Duan, S.R. Pliska 1999)
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3. Fourier Transform Techniques
for Vanilla Options

What isa Fourier Transform ?
f(X) > @U) = J’_°° f (x) [@%dx

oU) > f(X) = % J’: o) @ *du

® probability density functions — characteristic functions

differentiation w.r.t. x - multiplication by -iv and inverting

, 1 o . .
f'(x) = —J’ (-iv p(v)) &""*du
27 ==
¢ option pricing = integration of p.d.f. times payoff
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... and a Fast Fourier Transform?

 an efficient algorithm for computing the sum
N-1 '

o
Y=y X v for k=1,...,N

J:
for acomplex array X=(X) of size N

* reducesthe number of multiplications from an order of N? to
Nlog, N  Strassen (1967)

» crucial for approximating the Fourier integral
N-1
o i i UX;
J'_m f(x) & dx= Z, f(x)e™ Ax

]:
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Black-Scholesvia Fourier Transform

» S. Heston (1993), G. Bakshi & D.B. Madan(1999),
P.Carr & D.P. Madan (1999)

To price a European call under Black-Scholes we need
e s;:=1og(S;) : log-price of the underlying at maturity

*  0Oq(.): risk-neutral density of the log-price s;
 k=log(K): log of the strike price

e C{K): priceof a T-maturity call with strike €*

« fi(.): characteristic function of the risk-neutral density o
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Characteristic function under
Black-Scholes

dinS=(r —%az)dt +odw
O s ~ N(sg (¢ %JZ)T,JZT)
0 e EEH
EJ’_me'”BqT (s)ds
=expHs, +(r -;0°)TH-,0°T U°H
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Fourier transform of the (modified) call
(P. Carr & D.B. Madan 1999)

C () =E " (S -K).H
= J’: e (eS —ek)qT(s)ds

» Thecall priceis not square-integrable since

G - &, k- -
» Define the modified call price, for some a >0

cr(k) := exp(ak) C+(K)
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 The Fourier transform of the modified call price c(K) is given by
@, (v)= ﬁ;e‘“ch (k)dk
- I: f: e Tel@ Wk (g® — g, (s)dsdk
= [ Tar (9 e (e —e")kds

(a+1+iv)s O

© u
:J‘_ e‘rTqT(s) 0€ 7 O

a+iv)(a +1+v)H

_e"g (v-(a+Di)
(a+iv)(a +1+0)

e But %risalso known in closed form!
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» Inverting thusyields the call price:
e—ak

C (k) = - I_we-'u W, (v)du

» Approximate this, usng trapezoid or Simpson's rule, with afinite sum and
then apply the Fast Fourier Transform

Tk N —ivU;
Crlk) =5y € e (0o

—a - 27 .
e kn N1 _ij

> e e

21T
for m=0,...,N-1, where

v, =(j=-N/2n  k,=(m=-N/2)A m;:%”

Note: Withan N gridinthe Fourier sum, this gives option priceswith N
equally spaced strikes
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Extending the payoff

By modifying the input function of the inverse transform,
¢4(-) , we can handle the following instrument with the
same technique:

" " — g : call on bonds ( s; now is the short rate)

[(AG; +B) -K], : cal onyields

P(s;) : payoff contingent on polynomial in s;

H(s;) : can even do general payoff in C* via Taylor
series expansion! (G. Bakshi & D.B. Madan 1999)
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Extending Distribution

* Normality can be relaxed...

» Explicit expression of the p.d.f. not needed
» Key: Characteristic functions!

» theunderlying can evolve as

- O.U.orC.I.R. processes

- Affine diffusion with jumps

- VG (Variance Gamma) process...

many of the above have no analytic density but their characteristic
functions are known
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Extending numbersof factors

» Stochastic volatility, stochastic interest rate... can be incorporated
ds = sl dt + v dw;)

dv=x«, (uv - v)dt +/v dW,
dr =« (1, —r)dt + o, dw,

... aslong as the factors have analytic characteristic functions

* thisincludes pretty much all the diffusion models in the literature:
*  Multifactor CIR models (Chen-Scott...)
Genera Affine Diffusion models (Duffie, Kan, Singleton...)

* Gaussianinterest rate models (Longstaff-Schwartz...)
Stochagtic Valatility models (Heston, Bates, Hull-White...)

L]
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Extending number of assets

* Now consider options whose payoffs are contingent on two assets

ST
» Example (Bakshi & Madan 1999): a generaljsation of European
call with the following payoff: (esl(T) —ekl) [ﬁeSz(T) - kz)

+ +

» wecanpriceit inasimilar fashion; let

Cr (K, k,) = exp(a.k, +a,k,) [T (k;, K,)
= a1k1+a2k2J’k°°J’k°° i (esl(T) _ ekl)[ﬁesz(T) _ gl )QT (s,s,)ds,ds,
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e Consider its Fourier transform:

Yr ()= [ € (i, )k, ok,
_ €"g(0-(a,+Di,u,~ (@, + D))
(al + I Ul)(al +1+ I U1)(az + I Uz)(az +1+ I UZ)

* Inverting thus yields the option price:

~a1k —ak,

e

(k. k,) = U ey (u,,0,)du,du,

» Compute this with atwo-dimensional FFT
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Moral of the story

Probability density __ FowierTransiom - characteristic

function function
Integrating Multiplication by
the payoff asuitable congtant
OpthI’! pnce ) Inverse Transform Transform of
(modified) < Option price
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4. Pricing Spread Optionswith the FFT
* Letusnow try to priceacall onthespread S, - S,
V; (K) = Egle™ (S-S, - K).|
=€ [ e (B —€ —€0 (55,)d5ds,
=e"[ [ (€* —e" ~e")qr (s, 5,)dsds,

» Big problem: the exerciseregion Q to be integrated over
has a curved boundary

Q::{(sl,sz)DR2| esl—eSZ—e"zo}
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b

Thesmple 2-D FFT (Bakshi & Madan 1999) trick
will not work herel
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Approximating the Exer cise Region

» Approximating it with rectangular strips (Riemann) as

Vr(k)=e™ [ [ (6% ~€* ~€)qr (s, ;)dsds,

~e" N}j [ fp, (€ —€" —€)a(s,5,)dsds,

» Theintegral can be computed over each rectangular
region Q,, u=0,...,N-1

% © Centre for Finance Research, Judge Institute of Management, University of Cambridge %g




b

Riemann approximation with rectangular strips
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* WeDON'T havetodo N integrals!!!

* Asingle 2-D transform will produce NxN of

j: " (en-e%—€")q,(s,s,)dsds,

(m) Jk ()

for mn=20, ..., N-1

» These are sufficient for the N components we require since

for different strikes k of the spread option we only need to pick
different components to sum and no additional transform is needed
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Why the FFT?

» Consider the following model :
ds, =5, dt+Jv,dw;)
ds, = S,(r dt+ Jv,dw,)
dv, = k(14 —v,)dt + /v, dW,
dv, =k,(u, —v,)dt+,/v,dW,
with Eg [dW, dW] = p, dt

» Direct generalisation of 1-D stochastic volatility models with
non-trivial correlation !
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* No existing method can handle this!
- conditioning trick won't work
- lattice obvioudly fails...
- aPDE in 4 space variables
- dow convergence for Monte Carlo

» But easy (relatively) with the Fourier Transform approach!
- asthe number of factors go up, the payoff structure based on the
price differences remains the same
- the characteristic function involves more parameters and

complicated expressions (naturaly) but is still known in closed
form

- the transform will still be two dimensional
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5. Computational Results

Anthlon 650 MHz with 512 MB RAM running Linux

Codein C++

Invoke Simpson's rule for approximation of the
Fourier integral

Use the award winning FFTW code ("Fastest Fourier Transformin
the West™) written by M Frigo and S Johnson from MIT (1999)
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Pricing Spread Optionsunder
Two-factor GBM

* First we compute spread option prices with the model
(Existing Approach I1):
dS,= S (py dt+g; dWy)
dS,='S, (U, dt+ 0, dW,)
where Eq [dW, dW,] = pdt

* We compare prices to those obtained by direct 1-D
integration (using conditioning)
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Error Variation With Strikes

Strikel Analytic| FFT| Error (b.p.)
0 6.56469| 6.564078| 0.932488
0.1 6.52267| 6.522448| 0.341628]
0.2| 6480852 6480436 0.641932)
03]  6.439226| 6.439017| 0.324439
0.4  6.397804| 6.397531] 0.426712)
0.5|  6.356578| 6.356316) 0.410849
0.6|  6.315548) 6.315321] 0.35920]
0.7] 6.27472|  6.27449| 0.367451)
0.8|  6.234087| 6.233878) 0.335393
0.9 6.193652] 6.19345 0.325424]
1 6.153411) 6.153223 0.306302)
11  6.113369] 6.113193] 0.288202]
1.2 6.07352| 6.073361| 0.261818
13 6.03387| 6.033721| 0.247201)
14  5.994414| 5.994279 0.2244]
15 5.955153] 595503 0.205267]
16| 5916084 5.915977| 0.181615)
1.7 5.877211| 5877117 0.161329
1.8 5.838531] 583845 0.138799]
19 5.800047| 579998 0.115989
2| 5761753| 5761697| 0.098485

Maturity = 1.0
Interest Rate = 0.1
Initial price of Asset 1 =100
Initial price of Asset 2 =100
Dividend of Asset 1 =0.05
Dividend of Asset 2 =0.05
Volatility of Asset 1= 0.2
Volatility of Asset 1= 0.1
Correlation =0.5

Number of Discretisation N = 4096
Integration stepn = 1.0
Scding factor a = 2.5

Table 1. Two-factor spread option prices
across strikes
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Accuracy of Alter native M ethods
( Athlon 650 MHz with 512 MB RAM )

Fast Fourier Transform Monte Carlo
Number of Number of Time Steps
Discretisation | Lower | Upper Simulations 1000 2000
512 4.44 25.6 10000 129.15 |-0.05184| 70.81 |-0.05095
1024 113 139 20000 2234 |-0.03623| 4067 | -0.0359
2048 0.32 7.2 40000 744 |-002574| 7.63 |-0.02573
4096 0.1 3.65 80000 1834 |-0.01808| 4.94 |-0.01818

Table 2. Accuracy of alternative methods for the two-factor Geometric Brownian
motion model in which the andytic priceis available using direct integration: Error
in basis point




Impact of Volatility and Correlation

05 0 05
6.675496 8.494941 9.979849
~ 01 6.675800 8.495493 9.981407
[ (0.454684)|  (0.649928)  (1.561482)
G )
B 7.510577 10.549590 12.870614 IMan”fVR= 10 o1
5|l 02 7511055 10550798  12.873037 Initial o6 of Accet 1= 100
S (0.636531)]  (1.145356)  (1.882598) Inital price of Acet 2= 95
Dividend of Asset 1= 0.05
9.712478  13.261339 16.01200 Dividend of Asset 2= 0.05
03  9.714326)  13.264996 16.18352 Volatility of Asset 1= 0.2
(1901766)|  (2.757088) _ (3.965540)

Strike of the spread option = 5.0
Thefirst valueis computed using the Fast Fourier Transform method.

The second valueis the analytic price computed using the conditioning technique (the one-dimensional integral is

evaluated using the gromb.c routine in the Numerica Recipefor C).

Thethird valueisthe error of the FFT method in basis points.

Table 3. 2-factor spread option prices across volatilitiesand
correlations
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Pricing Spread Options under Three-factor
Stochastic Volatility Models
ds =5 (r dt +o,vdwy)
dS, =S, (r dt +0,vaw, )
dv = k(1 —V)dt +a,~/vdw,
EoldW, dW,] = pdt - Eg[dW, dW,] = pydt  Eg[dW, dW,] = p,dt

* Characterigtic function is known in closed-form so that the FFT
method is applicable

* Benchmark with a Monte Carlo method
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Characteristic Function of the 3-Factor M odel

& (U, Uy) = Eg [exp(iu,s (T) +iu,s,(T))]

= expHu, (1T +5,(0)) +iu, (rT +s,(0))
i, 0 @-Na-eMo, o0
e ke

., 2a-e)
20-(6-N)(1-€

[l
0
VO
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Computing Time of Alter native M ethods

( Athlon 650 MHz with 512 MB RAM )
Monte Carlo: 1000 Time Steps

Number of 10 Strikes 100 Strikes
Simuiation | GBM v GBM v
10000 382 | 14487 | 4195 | 15175
Fast Fourier Transform 20000 | 7622 | 288.09 | 8381 | 3033l
Nurrber of 10 Strikes 100 Strikes 40000 | 1525 | 576.25 | 16848 | 60653
Discretistion| GBM | SV | GBM v 80000 | 30495 | 11529 | 3352 | 121276
512 104 | 111 11 12
1024 428 | 464 | 448 | 483 .
2048 1846 | 1954 | 1842 | 19.74 Morte Carlo: 2000 Time Steps __
4096 7445 | 8L82 | 7647 | 8L27 Nurber of 10 Strikes 100 Strikes
Simuation | GBM sV GBM sV
10000 | 7557 | 287.41 | 79.83 | 295.21
20000 | 15728 | 57418 | 150.08 | 590.23
40000 | 30337 | 1149.25 | 317.49 | 1184.32
80000 | 6064 | 2298.37 | 636.33 | 2359.05

Table 4. Computationa time (seconds) of aternative methods for the two-factor
Geometric Brownian motion model and the three-factor Stochastic Volatility model
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Spread Option Prices by Alter native M ethods

Fast Fourier Transform

N Lower Upper
512 5.059379 | 5.068639
1024 | 5.062695 | 5.067405
2048 | 5.063545 | 5.065897
4096 | 5.063755 | 5.064492

Explict Finite Difference

No. of Discretisation Morte Carlo Sirulation

Space Time Price Number of
100> 100 * 100 400 5.0845 Smulation Steps Price (standard error))
100 *100*100 | 1600 5.0769 1280000 | 1000 | 5.052372 | -0.004301
100 %100 *100 | 2500 5.076 1280000 | 2000 | 5.053281 | -0.004297
100 * 100 * 100 | 10000 | 5.0748 1280000 | 4000 | 5.037061 | -0.004286
200 %200 %100 | 1600 5.0703 2560000 | 1000 | 504989 | -0.003039
200 %200 %200 | 1600 5.0703 2560000 | 2000 | 5.051035 | -0.003039
200 %200 %100 | 2500 5.0694 2560000 | 4000 | 5.042114 | -0.003037
200 %200 %100 | 10000 [ 5.0682 5120000 | 1000 | 5.047495 | -0.002148
300 *300 * 100 4000 5.0668 5120000 2000 5.046263 -0.002148

Table 2. Accuracy of alternative methods for the three-factor Stochastic Volatility

model

© Centre for Finance Research, Judge Institute of Management, University of Cambridge

Price Variation With the Volatility of the
Stochastic Volatility sochasicV oatty

parameters
6.65 T=10
6.6 *— % o o r=01
M v \ K=20
2 655 S(0)=100
: \ S(0)=98
g 65 \ 6,=5,=005
= -
S g,=10
= Bk \ 0,=05
]
g 64 p=05
& v(0) =0.04
6.35 k=10
H=0.04
6.3 ‘ . ‘ , ‘ 0,=-0.25
001 0.02 0.03 0.04 0.1 0.2 p,=—05
Volatility of Volatility

Figure 2. Spread option prices under Three-factor Stochastic Volatility Model,
withvarying o, , volatility of the stochagtic volatility V
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Price Variation With the M ean Rever sion

Rate of Volatility

Stochastic Vol atiltiy
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T=10
r=0.1

K =20
S(0) =100
S(0)=98
8,=0,=0.05
g,=10
g,=05
p=05
v(0) =0.04
o,=0.05
H=0.04
p,=-0.25
p,=—05

Figure 3. Spread option prices under Three-factor Stochastic Volatility Model,
with varying K, mean reversion rate of the sochastic volatility V
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Comparison of Two-factor and Three

Factor Prices

Price
Differentials
2
Correlation of © o il .
Asset 1 and Z:. 3 Correlation of Asset
Volatility W 2 and Volatility

Stochastic Vol atiltiy
parameters

T=10
r=0.1

K =20
S(0) =100
S(0)=98
8,=0,=0.05
g,=10
g,=05
p=05
v(0) =0.04
o,=0.05
k=10
H=0.04

Figure 5. Price difference between Three-factor Stochastic Volatility Model and
the Two-factor Geometric Brownian motion model (with implied constant

volatilities and correlation)
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Conclusions and Future Work

» Existing approaches are unable to price spread options beyond
two-factor GBM models (e.g. stochastic volatility and correlation,
general affine models)

» The Fast Fourier Transform provides a robust method for pricing
spread option under such models

» Computation times do not increase with the number of random
factors in the diffusion model

» Method is applicable to other exotic options

* Onto the 4-factor model which allows full freedom to the future
correlation surface. ..

» Fast wavelet transform O(N) versus O(N log N) for FFT
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