

Why model?

- OR disasters such as at Barings 1995 and Daiwa Securities 1996 alerted regulators and financial institutions to the absence of pricing guidelines
- Pricing OR can highlight risky business units, assets, activities
- Objectivity, Predictability, Quantifiability

Nuclear Safety (USA)

- P(Meltdown in any given plant in a year) = 1/20000
- P(No meltdown in any of 600 plants in any year)
 = (1 0.00005)⁶⁰⁰ = 0.970
- P(Meltdown in a plant in next 5 years) = 14%
- P(Meltdown in a plant in next 10 years) = 26%
- P(Meltdown in a plant in next 20 years) = 44%
- P(Meltdown in a plant in next 50 years) = 78%

`	-	
$Q(p) = \lambda$	$+\etaQ_{\scriptscriptstyle 0}(p)$	
$\lambda = $ location,	$\eta = $ scale,	$\xi = \text{shape}$
Model	$Q_0(p)$	
Normal	$\Phi^{-1}(p)$	
Gumbel	$-\ln(-\ln p)$	
Frechet	$(-\ln p)^{-\xi}$	
Weibull	$-(-\ln p)^{\xi}$	
GEV	$\frac{1}{\xi} \left\{ 1 - (-\ln p) \right\}$	$\left \xi \right $

Estimating Quantiles

- The objective is to estimate the quantiles of the loss distribution or aggregate loss distribution (a Maximum-at-Risk measure)
- High quantiles like 99.99% can be too conservative, overpricing the risk

	~ 1			° Pa					
Probabilit	y plo	ts							
Data:	7 10 1	5 18	20 2 ⁻	1 22 24	25 32	36 !	52 80	120	
Distribution	95%	95 9	% CI	width	99%	95 %	% Cl	width	120
Normal	83	60	107	47	104	74	134	60	99.7
Lognormal	86	48	154	106	141	68	295	227	97.9
Gumbel	94	73	116	43	111	87	135	48	>99
Weibull	87	56	134	78	121	74	198	124	99
Logistic	70	45	95	50	94	59	129	70	>99
Loglogistic	83	43	161	118	162	64	411	347	98

	ł	Fitting a	GEV	
7 10 15 18	Hill estProbab location	imates shape ility Weighten n <mark>mu</mark> and sca	e xi ed Moments es ile psi and/or x	stimates <mark>xi</mark>
20 21 22 24 25 32 36 52 80 120	mu psi xi r 90% 95% 99%	Iill+PWM 19.361 7.270 0.607 0.991 54.319 80.029 202.711	PWM fit 20.131 13.087 0.347 0.986 64.762 88.127 168.520	

Testing model fit

• There is as yet no formal test for fit for three-parameter models such as the GEV

- The Kolmogorov-Smirnov test lacks power
- Probability plots (P-P, Q-Q) and other diagnostic plots require skilled interpretation

				u en		
The large	st i	fraud (or	r attempt	ed fraud)	of the r	nonth
Largest		1994	1995	1996	1997	1998
maximum	1	907,077	1,100,000	6,600,000	600,000	1,820,000
	2	845,000	650,000	3,950,000	394,672	750,000
	3	734,900	556,000	1,300,000	260,000	426,000
	4	550,000	214,635	410,061	248,342	423,320
	5	406,001	200,000	350,000	239,103	332,000
	6	360,000	160,000	200,000	165,000	294,835
	7	360,000	157,083	176,000	120,000	230,000
	8	350,000	120,000	129,754	116,000	229,369
	9	220,357	78,375	109,543	86,878	210,537
	10	182,435	52,049	107,031	83,614	128,412
	11	68,000	51,908	107,000	75,177	122,650
smallest	12	50,000	47,500	64,600	52,700	89,540

	Case S	Study	Į		
 Maximum loss Rolling 12 max estimator for sl weighted mom 	selecte kima to hape, an tents) fo	ed for fit Gl nd PW or loca	each 1 EV by <mark>/M (p</mark> ation a	nonth Hill' robab nd sc	n s ility ale
Year to December	1992	1993	1994	1995	1996
95% quantile (£m)	2.9	5.9	14.0	1.1	5.1
99% quantile (£m)	12.9	29.2	122.9	3.3	28.1
(Cruz, Col	eman &	z Salkin	, 1998,	2000

Limitations				
 A simulation study using data from shows that Hill plus PWM give estimation of quantiles Sample sizes of about 100 seem to Other estimation methods fare work 	om 12 unstab o be req orse	-samp le uired		
From 30 independent GEV(0,1,	0.5) sat	mples		
Quantile	95%	99%		
True value 6.83 17.				
Average of 30 independent ests	5.81	15.85		
Estimated standard error	3 06	12 95		

Does it matter?

- In the case study, the rolling data allowed the impact of extreme loss to be seen, and its effect to decline in time
- It provided a price to be set which reflected the occurrence of extreme loss and which could be compared with hedge prices

- Assume censoring at the just influential point and estimate using maximum likelihood
- Unlikely to solve the small sample problem

- Bayesian statistics:
 - Impose probabilistic constraints which restrict the model and its parameter values to "acceptable" ranges
 - Data are often from time-varying processes, so
 - For rolling data, we update parameter estimates, either by Bayes' rules, or by centring at the most recent estimated values
 - Use Bayes hierarchical modelling of parameter values (Medova 2000)

Simulation workshop ... F(x) = (1-α)F_{NEL} (x) + αF_{EL} (x) (α small) Treat EL as contamination Model as a mixture of an NEL distribution and an EL distribution This needs prior experience And extensive trials No simple quantile function

- and cause, activity, realised loss/nearmiss, etc
- Allows relationships between loss and severity and correlations with other loss predictors
- Allows time-varying behaviour modelling

References

- Reiss R-D & Thomas M. (1997) Statistical Analysis of Extreme Values. Birkhauser.
- Embrechts P, Kluppelberg C, & Mikosch T. (1997) Modelling Extremal Events. Springer.
- Cruz M, Coleman R, & Salkin G. (1998) Modeling and measuring operational risk. *Journal of Risk* **1**, 63-72. *Also in:*
- Embrechts P (Editor) (2000) Extremes and Integrated Risk Management. Risk Books, London. *And summarised in:*
- Coleman R & Cruz M. (1999) Operational risk measurement and pricing (Learning Curve). *Derivatives Week* VIII, No. 30, July 26, 5-6.
- Gilchrist W. (2000) Statistical modelling with quantile functions. Chapman & Hall/CRC.
- Coles S & Powell E. (1996) Bayesian methods in extreme value modelling: A review and new developments. *International Statistical Review* **64**, 119-136.