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This presentation

• Extreme risk 

• Why quantify extreme operational risk?

• Quantile models

• Modelling severity

• A small sample simulation workshop  

• Severity and frequency aggregation



Mad Cows

• Extreme risk events are rare

• Rare events can have extreme 
consequences
• Chernobyl, CJD, lottery jackpot, bank failure

• Balance of risk
• DDT and inoculations

•These save lives despite some damaging 
consequences

Operational Risk

• Losses from business activity other than 
market (price variability) and credit (non-
repayment) and from external events



Why model?

• OR disasters such as at Barings 1995 and 
Daiwa Securities 1996 alerted regulators 
and financial institutions to the absence of 
pricing guidelines

• Pricing OR can highlight risky business 
units, assets, activities

• Objectivity, Predictability, Quantifiability

Basle Committee on Banking Supervision

• Capital allocation
• internal or regulatory pricing

• Supervision and control
• risk management

• these absorb potential risk capital

• Transparent and consistent management
• reporting, external pricing (scoring), hedging



US banking regulations

• The US banking regulators are set to 
impose a capital allocation to reserves to 
cover extreme loss due to operational risk

• This will be at the same rate for all banks 
regardless of the quality of management, 
control, and supervision 

• This is because there is no agreed 
quantification process

Worldwide insured losses
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Return value models

• Building regulations require
• P(catastrophic loss in any year)  <  1/50

• Nuclear plants, dams, bridges, sea dykes
• P(catastrophic loss in any year)  <  1/10,000

• These are return values

•defined via quantiles

Return value models

• P(An extreme loss (> x) in a year)  <  p

• P(No loss > x in any year)  > 1 - p   gives

• P(No loss > x over k years)  >  (1 - p)k

• The 100p% quantile gives the loss x

exceeded in 100(1-p)% of the years

• Q(p) = x



Nuclear Safety (USA)

• P(Meltdown in any given plant in a year)  =  1/20000

• P(No meltdown in any of 600 plants in any year)           

=  (1 - 0.00005)600   =  0.970 

• P(Meltdown in a plant in next 5 years)    =  14% 

• P(Meltdown in a plant in next 10 years)  =  26% 

• P(Meltdown in a plant in next 20 years)  =  44% 

• P(Meltdown in a plant in next 50 years)  =  78% 

Quantile models
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Quantile measures

• Lower quartile,  Q(.5) 

• Median,  Q(.25) 

• Upper quartile,  Q(.75) 

• Inter-quartile range,  Q(.75) - Q(.25) 

• Quartile difference, Q(.75) - 2Q(.5) + Q(.25)

• Galton skewness,  G = QD/IQR

• and so on

Loss Severity

We have data to 
choose this level

We must model the tail 
to choose this level

Small &
frequent

running costs reserves
Regulation, bonds, 
government support

Covered by

Large & 
less frequent

Jumbo
& rare

These 
need 
pricing



Estimating Quantiles

• The objective is to estimate the quantiles 
of the loss distribution or aggregate loss 
distribution (a Maximum-at-Risk measure) 

• High quantiles like 99.99% can be too 
conservative, overpricing the risk 

Modelling Severity
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Estimated Location (Sample Mean) = 34.4
Estimated Scale (Sample Standard Deviation) = 31.0
Estimated Shape (pdf) ??  — non-normal

Losses in order of size:

7 15 80 120



Probability plots: two parameter distributions

Probability plots

Data: 7 10 15 18 20 21 22 24 25 32 36 52 80 120

Distribution 95%   95% CI width 99%   95% CI width 120

Normal 83 60 107 47 104 74 134 60 99.7
Lognormal 86 48 154 106 141 68 295 227 97.9
Gumbel 94 73 116 43 111 87 135 48 >99
Weibull 87 56 134 78 121 74 198 124 99
Logistic 70 45 95 50 94 59 129 70 >99
Loglogistic 83 43 161 118 162 64 411 347 98

Modelling Severity

• With many small losses and very few very 
large, the distribution shows 
• skewness (asymmetry with a long right tail) 

• kurtosis (leptokurtic, peakedness) 

• We fit the Generalised Extreme Value 
Distribution (GEV) model taken from 
Extreme Value Theory: 
• a three-parameter model



Generalised Extreme Value Distribution

10

24
36

22

7

120

15

Losses

time

52

2021
18

80

25

The theoretical limiting case for maxima over equal 
time periods gives the GEV for severity

Fitting a GEV
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• Hill estimates shape xi

• Probability Weighted Moments estimates 
location mu and scale psi and/or xi

Hill+PWM PWM fit
mu 19.361 20.131
psi 7.270 13.087
xi 0.607 0.347
r 0.991 0.986
90% 54.319 64.762
95% 80.029 88.127
99% 202.711 168.520



GEV P-P probability plot 
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GEV logQ-logQ probability plot
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Testing model fit

• There is as yet no formal test for fit for 
three-parameter models such as the GEV
• The Kolmogorov-Smirnov test lacks power

• Probability plots (P-P, Q-Q) and other 
diagnostic plots require skilled interpretation

Example: Frauds in a UK retail bank

1994 1995 1996 1997 1998
1 907,077 1,100,000 6,600,000 600,000 1,820,000
2 845,000 650,000 3,950,000 394,672 750,000
3 734,900 556,000 1,300,000 260,000 426,000
4 550,000 214,635 410,061 248,342 423,320

5 406,001 200,000 350,000 239,103 332,000
6 360,000 160,000 200,000 165,000 294,835
7 360,000 157,083 176,000 120,000 230,000
8 350,000 120,000 129,754 116,000 229,369
9 220,357 78,375 109,543 86,878 210,537

10 182,435 52,049 107,031 83,614 128,412
11 68,000 51,908 107,000 75,177 122,650
12 50,000 47,500 64,600 52,700 89,540

The largest fraud (or attempted fraud) of the month 
Largest 
maximum

smallest 
maximum



Probability plot for 1997
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Hill+PW PWM 
mu 119.56 128.190
psi 42.41 89.510
xi 0.59 0.213
r 0.97 0.982
90% 319.20 386.630
95% 463.15 499.087
99%  1136.49 827.465

Case Study 

• Maximum loss selected for each month

• Rolling 12 maxima to fit GEV by Hill’s 
estimator for shape, and PWM (probability 
weighted moments) for location and scale

Year to December 1992 1993 1994 1995 1996
95% quantile (£m) 2.9 5.9 14.0 1.1 5.1
99% quantile (£m) 12.9 29.2 122.9 3.3 28.1

Cruz, Coleman & Salkin, 1998, 2000



Limitations

• A simulation study using data from 12-samples 
shows that Hill plus PWM give unstable 
estimation of quantiles 
•Sample sizes of about 100 seem to be required 

•Other estimation methods fare worse

• From 30 independent GEV(0,1,0.5) samples

Quantile 95% 99%
True value 6.83 17.95
Average of 30 independent ests 5.81 15.85
Estimated standard error 3.06 12.95

Small sample estimation

• Sample sizes are small

• Historical data are unreliable

• An extreme loss in a small sample is over-
represented (EL case)

• No extreme loss in a small sample under-
represents extreme losses (NEL case)

• Fitting a small sample will not model the 
true situation



Does it matter? 

• In the case study, the rolling data allowed 
the impact of extreme loss to be seen, and 
its effect to decline in time

• It provided a price to be set which reflected 
the occurrence of extreme loss and which 
could be compared with hedge prices

Simulation workshop

• The workshop sought a compromise 
using ideas from influence analysis 

• The influence of the largest value in 
each case would be used to make it just 
influential

• This does not solve the small sample 
problem



Simulation workshop ...

• Assume censoring at the just influential 
point and estimate using maximum 
likelihood 

• Unlikely to solve the small sample 
problem

Simulation workshop ...

• Bayesian statistics:

• Impose probabilistic constraints which restrict the 
model and its parameter values to “acceptable” ranges 

• Data are often from time-varying processes, so

•For rolling data, we update parameter estimates, 
either by Bayes’ rules, or by centring at the most 
recent estimated values 

• Use Bayes hierarchical modelling of parameter values 
(Medova 2000)



Simulation workshop ...

)small()()()1()( ααα xFxFxF ELNEL +−=

• Treat EL as contamination
• Model as a mixture of an NEL distribution 

and an EL distribution

• This needs prior experience

• And extensive trials

• No simple quantile function

Statistical modelling of loss data

• Estimating severity (loss size distribution)
• Choosing a distribution, and testing its fit

• Estimating its parameters and quantiles 

• Estimating frequency (loss rate distribution)
• Model the process of loss events

• Aggregating severity and frequency
• Simulation, validation and testing



Loss Frequency : Poisson Process

• The Poisson Point Process is the model 
generally used for the time points at which 
a random sequence of events occur

• The points occur at random at a constant 
rate

Aggregating Severity/Frequency  
Models for the joint process

prob

Losses sizes Number of Losses

probSeverity Frequency

prob

Aggregated losses

Aggregated Loss risk transfer premiums
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Needs simulation
No analytic solution

Alternatives:
• FFT
• Panjer Algorithm
• Recursion

Aggregated loss distribution



Marked point processes

• The points are the times of loss events

• The marks show the loss

•and cause, activity, realised loss/near-
miss, etc

• Allows relationships between loss and 
severity and correlations with other loss 
predictors

• Allows time-varying behaviour modelling

Resampling Techniques

• The Jackknife and
Bootstrap are techniques 
that can reduce estimator  
bias and create confidence 
intervals 

• The jackknife resamples to 
give estimates each with one 
observation omitted

• The bootstrap resamples 
(with replacement) to give a 
set of parameter estimates 
that can be used to obtain 
confidence intervals

Location parameter

Shape parameter

Scale parameter

Jacknife Test for Model GEV
Shape Std Err = 0.4208, Scale Std Err = 116,122.0647,

Location Std Err = 126,997.6469
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