Advanced Financial Models

Sample question 2(b)
By the second fundamental theorem of asset pricing, for fixed $T>0$, there exists a unique equivalent martingale measure \mathbb{Q} on $\left(\Omega, \mathcal{F}_{T}\right)$ for the numéraire asset with price N, so that $\left(S_{t} / N_{t}\right)_{0 \leq t \leq T}$ is a \mathbb{Q}-martingale.

Claim: If ξ_{t} is the payout of a replicable contingent claim with maturity t, then the intial cost of replication of this claim is $N_{0} \mathbb{E}^{\mathbb{Q}}\left(\xi_{t} / N_{t}\right)$.

Proof. Suppose that $\left(H_{s}\right)_{1 \leq s \leq t}$ is self-financing, i.e. such that $H_{s} \cdot P_{s}=H_{s+1} \cdot P_{s}$ for all $1 \leq s \leq t-1$. Let $X_{0}=H_{1} \cdot P_{0}$ and $X_{s}=H_{s} \cdot P_{s}$ for $1 \leq s \leq t$. Then X / N is a \mathbb{Q}-martingale. Indeed, for $1 \leq s \leq t$ we have

$$
\begin{aligned}
\mathbb{E}^{\mathbb{Q}}\left(X_{s} / N_{s} \mid \mathcal{F}_{s-1}\right) & =\mathbb{E}^{\mathbb{Q}}\left(H_{s} \cdot P_{s} / N_{s} \mid \mathcal{F}_{s-1}\right) \\
& =H_{s} \cdot \mathbb{E}^{\mathbb{Q}}\left(P_{s} / N_{s} \mid \mathcal{F}_{s-1}\right) \\
& =H_{s} \cdot P_{s-1} / N_{s-1} \\
& =X_{s-1}
\end{aligned}
$$

[Since the market is complete, all random variables are bounded, so there is no concern about integrability in the conditional expectations.] In particular, if $\xi_{t}=X_{t}$, then $N_{0} \mathbb{E}^{\mathbb{Q}}\left(\xi_{t} / N_{t}\right)=$ $X_{0}=H_{1} \cdot P_{0}$, the initial cost of the replicating strategy.

Now, the initial cost of a replicating strategy for a call option with payout $\xi_{t}=\left(S_{t}-K\right)^{+}$ for $0 \leq t \leq T$ is given by

$$
C(t, K)=N_{0} \mathbb{E}^{\mathbb{Q}}\left[\frac{1}{N_{t}}\left(S_{t}-K\right)^{+}\right]
$$

Now

$$
\begin{aligned}
C(t+1, K) & =N_{0} \mathbb{E}^{\mathbb{Q}}\left[\left(\frac{S_{t+1}}{N_{t+1}}-\frac{K}{N_{t+1}}\right)^{+}\right] \\
& \geq N_{0} \mathbb{E}^{\mathbb{Q}}\left[\left(\frac{S_{t+1}}{N_{t+1}}-\frac{K}{N_{t}}\right)^{+}\right] \text {since } N_{t+1} \geq N_{t}>0 \text { a.s. } \\
& =N_{0} \mathbb{E}^{\mathbb{Q}}\left\{\left.\mathbb{E}^{\mathbb{Q}}\left[\left(\frac{S_{t+1}}{N_{t+1}}-\frac{K}{N_{t}}\right)^{+}\right] \right\rvert\, \mathcal{F}_{t}\right\} \text { tower } \\
& \geq N_{0} \mathbb{E}^{\mathbb{Q}}\left\{\left(\mathbb{E}^{\mathbb{Q}}\left[\left.\frac{S_{t+1}}{N_{t+1}} \right\rvert\, \mathcal{F}_{t}\right]-\frac{K}{N_{t}}\right)^{+}\right\} \text {Jensen } \\
& =N_{0} \mathbb{E}^{\mathbb{Q}}\left[\left(\frac{S_{t}}{N_{t}}-\frac{K}{N_{t}}\right)^{+}\right] \text {martingale } \\
& =C(t, K)
\end{aligned}
$$

where we have used the \mathcal{F}_{t}-measurability of N_{t} and the convexity of $x \mapsto x^{+}$.
Remark 1. One could, in principle, discuss completeness without discussing arbitrage. For instance, consider the one-period case, with no dividends. The market is complete iff for
every contingent claim with payout ξ_{1} there exists a portfolion H_{1} such that $\xi_{1}=H_{1} \cdot P_{1}$ almost surely. Note that this definition does not even mention the initial prices P_{0}. So one could, in principle, even discuss one-period completeness without even assuming that the market has time-0 prices.

However, question 2(b) discussed above asks about the initial replication cost $H_{1} \cdot P_{0}$, so without some assumption on the intial prices, this problem would be impossible.
(By the way, we were able to prove that completeness implies that there are only a finite number of disjoint events of positive probablity without without assuming no-arbitrage. But in general, there is little point discussing completeness for a market that has arbitrage.)

