Advanced Financial Models

Michael Tehranchi
Sample question 1
(b) Note $F(0, m)=(1-m)^{+}$and hence $C_{T}=\left(S_{T}-K\right)^{+}$. Now

$$
\begin{aligned}
\mathbb{E}\left(C_{T} \mid \mathcal{F}_{t}\right) & =\mathbb{E}\left[\left(S_{T}-K\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =S_{t} \mathbb{E}\left[\left.\left(e^{-\sigma^{2}(T-t) / 2+\sigma\left(W_{T}-W_{t}\right)}-\frac{K}{S_{t}}\right)^{+} \right\rvert\, \mathcal{F}_{t}\right] \\
& =S_{t} F\left((T-t) \sigma^{2}, \frac{K}{S_{t}}\right) \\
& =C_{t}
\end{aligned}
$$

so $\left(C_{t}\right)_{0 \leq t \leq T}$ is a martingale.
(c) For $0 \leq s \leq t$ write

$$
\hat{S}_{t}=\hat{S}_{s} \mathbb{1}_{\{t \leq \tau\}} e^{\lambda(t-s)} \frac{S_{t}}{S_{s}}
$$

Note that $\frac{S_{t}}{S_{s}}=e^{\sigma\left(W_{t}-W_{s}\right)+\mu(t-s)}$ and $\mathbb{1}_{\{t \leq \tau\}}$ are independent given $\hat{\mathcal{F}}_{s}$.
Now

$$
\mathbb{E}\left(\left.\frac{S_{t}}{S_{s}} \right\rvert\, \hat{\mathcal{F}}_{s}\right)=1
$$

since $\frac{S_{t}}{S_{s}}$ is independent of \mathcal{F}_{s} and τ.
Also, we have

$$
\mathbb{P}(\tau \geq t \mid \tau<s)=0
$$

and

$$
\mathbb{P}(\tau \geq t \mid \tau \geq s)=e^{-\lambda(t-s)}
$$

by the lack-of-memory property of exponentials. That is,

$$
\mathbb{P}\left(\tau \geq t \mid \hat{\mathcal{F}}_{s}\right)=e^{-\lambda(t-s)} \mathbb{1}_{\{s \leq \tau\}}
$$

Hence

$$
\mathbb{E}\left(\hat{S}_{t} \mid \hat{\mathcal{F}}_{s}\right)=\hat{S}_{s}
$$

from which the conclusion follows.

