Advanced Financial Models

Sample questions

Problem 1. Let W be a Brownian motion and let $S_{t}=S_{0} e^{\mu t+\sigma W_{t}}$ for a real constant μ and positive constants σ, S_{0}.
(a) Find μ such that the process S is a martingale in its natural filtration.

For the rest of the question, let μ be such that S is a martingale. Further, define a function by

$$
F(v, m)=\int\left(e^{-v / 2+\sqrt{v} z}-m\right)^{+} \phi(z) d z
$$

for non-negative v, m where $\phi(z)=\frac{e^{-z^{2} / 2}}{\sqrt{2 \pi}}$ is the standard normal density.
(b) Fix positive constants T, K and let

$$
C_{t}=S_{t} F\left((T-t) \sigma^{2}, \frac{K}{S_{t}}\right)
$$

for $0 \leq t \leq T$. Show that C is a martingale.
Now let $\hat{S}_{t}=\mathbb{1}_{\{t \leq \tau\}} e^{\lambda t} S_{t}$ where τ is an exponential random variable with rate λ, independent of W.
(c) Show that \hat{S} is a martingale in its natural filtration.

Problem 2. (a) What does it mean to say that a discrete-time market model is complete? (Assume no asset pays a dividend.)

Consider discrete time model of a market with two assets, a numéraire with price process N and a stock with price process S. Suppose the market is complete, and that $N_{t+1} \geq N_{t}$ almost surely for all $t \geq 0$. Let $C(T, K)$ be the initial replication cost of a European call option on the stock with strike K and maturity T.
(b) Show that $T \mapsto C(T, K)$ is increasing for each $K>0$.
(c) Compute $C(1,18)$ in the case where $\left(N_{0}, S_{0}\right)=(10,10)$ and

$$
\mathbb{P}\left(\left(N_{1}, S_{1}\right)=(15,20)\right)=1 / 2=\mathbb{P}\left(\left(N_{1}, S_{1}\right)=(20,15)\right)
$$

Problem 3. Let $\left(Z_{t}\right)_{0 \leq t \leq T}$ be a given discrete-time integrable process adapted to the filtration $\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}$. Let $\left(U_{t}\right)_{0 \leq t \leq T}$ be its Snell envelope defined by

$$
\begin{aligned}
U_{T} & =Z_{T} \\
U_{t} & =\max \left\{Z_{t}, \mathbb{E}\left[U_{t+1} \mid \mathcal{F}_{t}\right]\right\} \text { for } 0 \leq t \leq T-1
\end{aligned}
$$

(a) Show that U is a supermartingale. Show that U is a martingale if Z is a submartingale.

Let $\left(S_{t}\right)_{0 \leq t \leq T}$ be such that the increments $S_{1}-S_{0}, \ldots, S_{T}-S_{T-1}$ are independent and identically distributed, and let the filtration be generated by S. Fix a measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$ and let $Z_{t}=f\left(S_{t}\right)$. Suppose that Z_{t} is integrable for each $t \geq 0$, and let U be the Snell envelope of Z.
(b) Show that there exists a deterministic function V such that $U_{t}=V\left(t, S_{t}\right)$.

Problem 4. Suppose $\left(W_{t}\right)_{t \geq 0}$ is a Brownian motion and $\left(S_{t}\right)_{t \geq 0}$ evolves as

$$
d S_{t}=\underset{1}{a\left(S_{t}\right) d W_{t} .}
$$

Let $V:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}_{+}$be the unique solution to

$$
\begin{aligned}
& \frac{\partial}{\partial t} V(t, S)+\frac{a(S)^{2}}{2} \frac{\partial^{2}}{\partial S^{2}} V(t, S)=0 \\
& V(T, S)=g(S) \text { for all } S \in \mathbb{R}
\end{aligned}
$$

Finally, let $\xi_{t}=V\left(t, S_{t}\right)$ for $0 \leq t \leq T$. Assume that the functions a, V, and g are smooth and bounded with bounded derivatives.
(a) Show that

$$
\xi_{t}=\mathbb{E}\left[g\left(S_{T}\right) \mid \mathcal{F}_{t}\right]
$$

where $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ is the filtration generated by the Brownian motion.
Let $U:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ be the unique solution to

$$
\begin{aligned}
& \frac{\partial}{\partial t} U(t, S)+a(S) a^{\prime}(S) \frac{\partial}{\partial S} U(t, S)+\frac{a(S)^{2}}{2} \frac{\partial^{2}}{\partial S^{2}} U(t, S)=0 \\
& U(T, S)=g^{\prime}(S) \text { for all } S \in \mathbb{R}
\end{aligned}
$$

Let $\pi_{t}=U\left(t, S_{t}\right)$ for $0 \leq t \leq T$. Assume U is smooth and bounded with bounded derivatives.
(b) Show that

$$
\xi_{t}=V\left(0, S_{0}\right)+\int_{0}^{t} \pi_{s} d S_{s}
$$

Problem 5. Let X be a given an n-dimensional random vector.
(a) Suppose that $H \in \mathbb{R}^{n}$ is such that $H \cdot X \geq 0$ almost surely and $\mathbb{P}(H \cdot X>0)>0$. Prove that there does not exists a positive random variable ρ such that $\mathbb{E}(\rho)=1$ and $\mathbb{E}(\rho X)=0$.

Given a positive random variable ζ, define a function F on \mathbb{R}^{n} by

$$
F(h)=\mathbb{E}\left[e^{-h \cdot X} \zeta\right] .
$$

Suppose F is everywhere finite and smooth. Let

$$
f=\inf _{h \in \mathbb{R}^{n}} F(h) .
$$

A sequence $\left(h_{k}\right)_{k}$ such that $F\left(h_{k}\right) \rightarrow f$ is called a minimising sequence.
(b) Suppose there exists a bounded minimising sequence. Show that there exists a positive random variable ρ such that $\mathbb{E}(\rho)=1$ and $\mathbb{E}(\rho X)=0$.
(c) Suppose every minimising sequence is unbounded. Show that there exists a vector $H \in \mathbb{R}^{n}$ such that $H \cdot X \geq 0$ almost surely and $\mathbb{P}(H \cdot X>0)>0$.

Problem 6. Let S be a positive random variable such that $\mathbb{E}(S)=1$.
(a) Prove that

$$
M(\theta)=\mathbb{E}\left(e^{\theta \log S}\right)
$$

is well-defined and bounded for all $\theta \in\{p+\mathrm{i} q: 0 \leq p \leq 1, q \in \mathbb{R}\}$, where $\mathrm{i}=\sqrt{-1}$.
(b) Prove the identity

$$
\mathbb{E}\left[(S-K)^{+}\right]=1-\frac{2 \sqrt{K}}{\pi} \int_{-\infty}^{\infty} \frac{M\left(\frac{1}{2}+\mathrm{i} y\right) e^{-\mathrm{i} y \log K}}{1+4 y^{2}} d y \text { for all } K>0
$$

(c) Explain briefly why the above identity in part (b) is useful in the context of a stochastic volatility model such as the Heston model.

Problem 7. Consider a discrete-time market with n assets with prices $\left(P_{t}\right)_{t \geq 0}$. No asset pays a dividend.
(a) What is an investment-consumption arbitrage? What is a terminal-consumption arbitrage?
(b) What is a numéraire strategy? Prove that if the market has an investment-consumption arbitrage and a numéraire strategy, then the market has a terminal consumption arbitrage.
Problem 8. Consider a discrete-time market model with prices $\left(P_{t}^{T}\right)_{t \in[0, T], T \geq 1}$ where P_{t}^{T} is the price at time t of a risk-free zero-coupon bond of unit face value and maturity T. Assume that the prices are adapted to a filtration $\left(\mathcal{F}_{t}\right)_{t \geq 0}$, and that the market is free of arbitrage.
(a) Explain why $P_{t}^{T}>0$ almost surely for all $0 \leq t \leq T$.
(b) Define the spot interest rate r_{t} in terms of the bond prices. Define the bank account B_{t} in terms of the spot interest rate. What does it mean to say a probability measure \mathbb{Q} is a risk-neutral measure for this model?
(c) Show that $T \mapsto P_{t}^{T}$ is non-increasing almost surely for all t if and only if $r_{t} \geq 0$ almost surely for all $t \geq 0$.
Problem 9. Consider a market with two assets, a bank account with time-t price $e^{r t}$ and a stock whose price dynamics satisfy

$$
\begin{aligned}
d S_{t} & =S_{t}\left(r d t+\sqrt{v_{t}} d W_{t}\right) \\
d v_{t} & =\left(a-b v_{t}\right) d t+c \sqrt{v_{t}}\left(\rho d W_{t}+\sqrt{1-\rho^{2}} d Z_{t}\right)
\end{aligned}
$$

where r, a, b, c and ρ are contants, with $a, b>0$ and $-1 \leq \rho \leq 1$, and W and Z are independent Brownian motions.

Let $F:[0, T] \times \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$satisfy the partial differential equation

$$
\frac{\partial F}{\partial t}+S r \frac{\partial F}{\partial S}+(a-b v) \frac{\partial F}{\partial v}+\frac{1}{2} S^{2} v \frac{\partial^{2} F}{\partial S^{2}}+c \rho S v \frac{\partial^{2} F}{\partial S \partial v}+\frac{1}{2} c^{2} v \frac{\partial^{2} F}{\partial v^{2}}=r F
$$

with boundary condition $F(T, S, v)=\sqrt{S}$.
Introduce a contingent claim with time- T payout $\xi_{T}=\sqrt{S_{T}}$.
(a) Show that there is no arbitrage relative to the bank account in the augmented market if the time- t price of the contingent claim is given by $\xi_{t}=F\left(t, S_{t}, v_{t}\right)$. You may use a fundamental theorem of asset pricing as long as it is stated carefully. You may also use standard results from stochastic calculus, such as Itô's formula, without justification.

Suppose that $F(t, S, v)=\sqrt{S} e^{A(t) v+B(t)}$ for some functions $A, B:[0, T] \rightarrow \mathbb{R}$.
(b) Show that the function A satisfies an ordinary differential equation. You should derive the equation, including the boundary conditions, but need not solve it.

Problem 10. Now suppose that $X=\left(X_{t}\right)_{t \geq 0}$ is a discrete-time local martingale adapted to a filtration $\left(\mathcal{F}_{t}\right)_{t \geq 0}$. Suppose \mathcal{F}_{0} is trivial.
(a) Show that if X is integrable, then X is a true martingale.
(b) Show that if X is non-negative, then X is a true martingale.
(c) Let $\left(K_{t}\right)_{t \geq 1}$ be a predictable process. Let $M_{0}=0$ and

$$
M_{t}=\sum_{s=1}^{t} K_{s}\left(X_{s}-X_{s-1}\right)
$$

for $t \geq 1$. Show that M is a local martingale.
Problem 11. Let $\left(S_{t}\right)_{t \geq 0}$ be a discrete-time martingale such that S_{0} is an integer and for all $t \geq 1$ the increment $\bar{S}_{t}-S_{t-1}$ is valued in the set $\{-1,0,1\}$.
(a) Prove the identity

$$
\left(S_{T}-K-1\right)^{+}-2\left(S_{T}-K\right)^{+}+\left(S_{T}-K+1\right)^{+}=\mathbf{1}_{\left\{S_{T}=K\right\}}
$$

for integers K and $T \geq 0$.
(b) Prove the identity

$$
\left(S_{T}-K\right)^{+}=\left(S_{0}-K\right)^{+}+\sum_{t=1}^{T} f\left(S_{t-1}-K\right)\left(S_{t}-S_{t-1}\right)+\frac{1}{2} \sum_{t=1}^{T} \mathbf{1}_{\left\{S_{t}=K\right\}}\left(S_{t}-S_{t-1}\right)^{2}
$$

for integers K and $T \geq 1$, where f is defined by

$$
f(x)=\mathbf{1}_{\{x>0\}}+\frac{1}{2} \mathbf{1}_{\{x=0\}} .
$$

Let

$$
C(T, K)=\mathbb{E}\left[\left(S_{T}-K\right)^{+}\right]
$$

for integers K and $T \geq 0$ and

$$
\sigma^{2}(T, K)=\operatorname{Var}\left(S_{T+1} \mid S_{T}=K\right)
$$

for integers K and T such that $\left|K-S_{0}\right| \leq T$.
(c) Using parts (a) and (b), or otherwise, prove the identity

$$
C(T+1, K)-C(T, K)=\frac{1}{2} \sigma^{2}(T, K)[C(T, K+1)-2 C(T, K)+C(T, K-1)]
$$

for integers K and T such that $\left|K-S_{0}\right| \leq T$.
Problem 12. Let ξ be a random variable with finite exponential moments. Define two functions

$$
C(k)=\mathbb{E}\left[\left(e^{\xi}-e^{k}\right)^{+}\right] \text {for real } k
$$

and

$$
M(z)=\mathbb{E}\left[e^{z \xi}\right] \text { for complex } z
$$

(a) Show that the identity

$$
M(z)=\int_{-\infty}^{\infty} C(k) f(z, k) d k
$$

holds for all complex $z=x+\mathrm{i} y$ with $x>1$, where $f(z, k)=z(z-1) e^{(z-1) k}$.
(b) Show that the identity

$$
C(k)=\frac{1}{2 \pi \mathrm{i}} \int_{x_{0}-\mathrm{i} \infty}^{x_{0}+\mathrm{i} \infty} \frac{M(z)}{f(z, k)} d z
$$

holds for all real k and $x_{0}>1$.
[You may assume a complex path integral can be computed as a Lebesgue integral by the formula

$$
\int_{x_{0}-\mathrm{i} \infty}^{x_{0}+\mathrm{i} \infty} h(z) d z=\mathrm{i} \int_{4}^{+\infty} h\left(x_{0}+\mathrm{i} y\right) d y
$$

Also, you may use the following identity without proof:

$$
\frac{1}{2 \pi \mathrm{i}} \int_{x_{0}-\mathrm{i} \infty}^{x_{0}+\mathrm{i} \infty} \frac{e^{a z}}{z(z-1)} d z=\left(e^{a}-1\right)^{+}
$$

for real a and real $x_{0}>1$.]

