Advanced Financial Models

Michael Tehranchi
More on the notes page 78
Given an n-dimensional Itô process R, let H be an n-dimensional previsible process such that

$$
d\left(H_{t} \cdot R_{t}\right)=H_{t} \cdot d R_{t}
$$

Let Z be a scalar Itô process. Claim:

$$
\begin{equation*}
d\left(H_{t} \cdot R_{t} Z_{t}\right)=H_{t} \cdot d\left(R_{t} Z_{t}\right) \tag{*}
\end{equation*}
$$

Indeed, by Itô's formula in the form

$$
d\left(U_{t} V_{t}\right)=U_{t} d V_{t}+U_{t} d V_{t}+d\langle U, V\rangle_{t}
$$

we have

$$
\begin{aligned}
d\left(H_{t} \cdot R_{t} Z_{t}\right) & =Z_{t} d\left(H_{t} \cdot R_{t}\right)+H_{t} \cdot R_{t} d Z_{t}+d\langle H \cdot R, Z\rangle_{t} \\
& =H_{t} \cdot Z_{t} d R_{t}+H_{t} \cdot R_{t} d Z_{t}+\sum_{i=1}^{n} H_{t}^{i}\left\langle R^{i}, Z\right\rangle_{t} \\
& =H_{t} \cdot d\left(R_{t} Z_{t}\right)
\end{aligned}
$$

In particular, if P is a price process and Y is a martingale deflator, if the process H satisfies

$$
d\left(H_{t} \cdot P_{t} Y_{t}\right)=H_{t} \cdot d\left(P_{t} Y_{t}\right)
$$

then we also have

$$
d\left(H_{t} \cdot P_{t}\right)=H_{t} \cdot d P_{t}
$$

Proof: use equation (*) with $R_{t}=P_{t} Y_{t}$ and $Z_{t}=1 / Y_{t}$.

