Let Y and N be positive adapted processes. Assume that NY is a martingale. Fix $T > 0$, and let define a measure Q on (Ω, \mathcal{F}_T) by

$$\frac{dQ}{dP} = \frac{N_T Y_T}{N_0 Y_0}.$$

Now suppose the adapted process X is such that XY is a P-martingale. Claim: X/N is a Q-martingale.

Proof: By Bayes’ formula we have

$$E^Q \left(\frac{X_T}{N_T} \big| \mathcal{F}_t \right) = \frac{E^P (X_T Y_T \big| \mathcal{F}_t)}{E^P (N_T Y_T \big| \mathcal{F}_t)} = \frac{X_t Y_t}{N_t Y_t} = \frac{X_t}{N_t}.$$

Remark 1. Let Y be a local martingale deflator, N the price of a numéraire asset and X the wealth from a self-financing strategy. In all cases we know that both NY and XY are local martingales. However, suppose that NY happens is a true martingale. Then we can define an equivalent martingale measure with respect to the numéraire. If XY also happens to be a true martingale for P, then the above calculation shows that the discounted wealth X/N is a true martingale for Q.

We used this idea around pages 80 of the notes, when when finding minimal cost replicating strategies via the martingale representation theorem. Indeed, the first step was to define a true martingale M via $M_t = E^P (\xi_T Y_T \big| \mathcal{F}_t)$ and then show that there exists a self-financing strategy whose wealth process satisfies $X_t Y_t = M_t$. So the claim says $X_t = N_t E^Q (\xi_T / N_T \big| \mathcal{F}_t)$.
