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8. Special numéraires and equivalent martingale measures 35
9. Contingent claim pricing and hedging 39
10. Replication with calls and puts 47
11. Call prices from moment generating functions 49
12. Super-replication of American claims 51
13. A dual approach to optimal stopping 54

Chapter 2. Brownian motion and stochastic calculus 57
1. Brownian motion 57
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Financial mathematics as a subject is young (as compared to, say, number theory), but
it is mature enough now that there has emerged some consensus on the notation, vocabulary
and important results. These notes are an attempt to present many of the main ingredients
of this theory, mainly concerning the pricing and hedging of derivative securities.

But before launching into the story, we will begin by acknowledging some of the real-world
complications that will not be discussed at length hereafter.

1. Standing assumptions: complications we ignore

Unfortunately, actual financial markets are very complicated. Of course, in order to
develop a systematic financial theory, it is prudent to concentrate on the essential features
of these markets and ignore the less essential complications. Therefore, the theory that will
be presented in these notes is concerned with the analysis of market models that have plenty
of simplifying assumptions.

That is not to say that these complications are not important. Indeed, there is active
ongoing research attempting to remove these simplifying assumptions from the canonical
theory. Below is a list of these assumptions.

1.1. Dividends. The total stock of a publicly traded firm is divided into a fixed number
N of shares. The owner of each share is then entitled to the fraction 1/N of the total profit
of the firm.1 A portion of the firm’s profit is usually reinvested by management, for instance
by building new factories, but the rest of the profit is paid out to the shareholders. In
particular, the owner of each share of stock will receive periodically a dividend payment.

However, in this course,

we will usually assume that there are no dividend payments.

Actually, this assumption is not as terrible as it sounds. We will see see shortly how to
adapt the theory developed for assets that pay no dividends to incorporate assets that have
non-zero dividend payments.

1.2. Tick size. Financial markets usually have a smallest increment of price, the tick.
(The tick refers back to the days when prices were quoted on ticker tape.) Indeed, the tick
size can vary from market to market, and even for assets traded in the same market.

However, in this course,

we will assume that the tick size is zero.

This is a convenient assumption for those who prefer continuous mathematics to discrete. It
is usually a harmless assumption, unless the prices of interest are very close to zero.

1Actually, things are even more complicated. For instance, stocks can be classified as either common or
preferred, with implications on dividends, voting rights and claims on the firm’s assets in case of bankruptcy.
Also, the number N of shares outstanding is not necessarily fixed–firms may issue new shares to raise cash,
or they might buy back shares raising the stock price to reward the shareholders.
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1.3. Transactions costs. Financial transactions are processed by a string of middle
men, each of whom charge a fee for their services. Usually the fee is nearly proportional to
the size of the transaction.

However, in this course,

we will assume that there are no transactions costs.

This assumption is justified by by the fact that transactions costs are often very small relative
to the size of typical transactions. But one must always remember that in some applications,
it might not be wise to neglect these costs.

1.4. Short-selling constraints. In the real world, it is actually possible for someone
to sell an asset that he does not own. The essential mechanism is to borrow a share of that
asset from a broker, and then immediately to sell it to the market. This procedure is called
short selling.

Brokers, however, place contraints on this behaviour. Indeed, they usually require collat-
eral and charge a fee for their service. Furthemore, if the market price of the asset increases,
or if the price of the collateral decreases, the broker may ask the short seller to put up even
more collateral.

However, in this course,

we will assume that there are no short-selling constraints.

Indeed, the theory of discrete-time trading is cleaner without additional assumptions on the
sizes of trades. But we will see that to overcome some technical problems in the theory of
continuous-time trading, it will be natural to restrict trading to what are called admissible
strategies.

1.5. Divisibility of assets. There is another real-world trading constraint of a rather
technical nature. The smallest unit of stock is the share. A share cannot be further divided
– it is generally impossible to buy half a share of a particular stock.

However, in this course,

we will assume that assets are infinitely divisible.

1.6. Bid-ask spread. Real-world trading is asymmetrical since the price to buy a share
is usually higher than the price to sell it. The reason is that are two different ways to buy
or sell an asset listed on an exchange: the limit order and the market order.

A limit buy order is an offer to buy a certain number of shares of the asset at a certain
price. A limit sell order is defined similarly. The collection of unfilled limit orders is called
the limit order book.

At any time, there is the highest price for which there is an order to buy the asset.
This is called the bid price. The lowest price for which there is an order to sell is called
the ask price. The bid/ask spread is the difference. Figure 1 illustrates the evolution of a
hypothetical limit order book as various orders arrive and are filled.

A market order are instructions to execute a transaction at the best available price.
In particular, if the market order is to buy, then the lowest limit sell order is filled first.
Therefore, for small market buy orders, the per share price paid is the ask price. Similarly,
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if a market sell order arrives, then the highest limit buy order is filled first, and hence the
per share price received is the bid price.

However, in this course,

we will assume that there are no bid-ask spreads.

This assumption is justified by the observation that in many markets, the spread is very
small. However, in times of crisis, this assumption is not usually applicable, and hence the
theory breaks down dramatically.

Figure 1. Top left. The bid price is £8 and the ask is £11. Top right.
A limit sell order for three shares at £11 arrives. Bottom left. A limit buy
order for two shares at £8 is cancelled. Bottom right. A market order to
buy five shares arrives. Note that four shares are sold at £11 and one at £12.
After the transaction, the ask price is £12.

1.7. Market depth. As described above, there are only a finite number of limit orders
on the book at one time. If a large market buy order arrives, for instance, then the lowest
limit sell order is filled first. But if the market order is bigger than the total shares available
to buy at the ask price, then the limit orders at the next-to-lowest price are filled, and
progresses up the book until the market order is finally filled. In this way, the ask price
increases.
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The market depth is the number of shares available to buy or sell at the ask or bid price
respectively. Equivalently, the depth of a market is a measure of the size of a market order
necessary to move quoted prices.

However, in this course,

we will assume that there is infinite market depth.

Equivalently, we will assume that investors are small relative to the limit order book, so they
are price takers, not price makers. However, the most recent financial crisis shows that this
assumption does not always approximate reality – just ask the traders at Lehman Brothers!

2. Further modelling complications

Microeconomic models usually involve the interaction of hypothetical agents who are
endowed with preferences over some set of economic variables. The observed outcome of the
system is then described by an equilibrium in which the competing preferences of the various
agents are balanced through some economic mechanism, such as trade.

We will not deal much with such equilibrium models, but note here that equilibrium
models make predictions about the structure of prices in a financial market (after we have
made all of the simplifying assumptions listed above). In particular, in an equilibrium model,
there cannot be an arbitrage. This will be explained in Chapter 1, but for the sake of this
preface, we discuss some of the standard assumptions of equilibrium models and why they
may fail in real life.

2.1. The expected utility hypothesis. In many standard microeconomic models,
agents have preferences over random variables. For instance, suppose that the agent is
young now but is planning for retirement. The amount of money that the agent will have
in his pension fund when he retires can be modelled as a random variable. Of course, the
particular random variable depends on the investment policy the agent chooses now.

The agent much choose his favourite investment strategy. Therefore, we must model his
preferences over random variables. The expected utility hypothesis says that the agent prefers
the random variable X to the random variable Y if and only if

E[U(X)] > E[U(Y )]

where the function U : R→ R, called the agent’s utility function models the agents aversion
risk.

The expected utility hypothesis seems to have a certain intuitive appeal, and practi-
cally, it does make the modelling problem more tractable. Furthermore, von Neumann and
Morgenstern showed that the expected utility hypothesis is equivalent to a sensible seeming
axiomisation of preferences.

2.2. The Allais paradox. The expected utility hypothesis can be tested, and it seems
that real human beings do not always behave as though their preferences are consistent with
it. Consider two games.
Game A. You must choose between a payment of either X or Y pounds, where

X =

 101 with prob. 0.33
100 with prob. 0.66
0 with prob. 0.01

and Y = 100 with prob.1
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Game B. Again you must choose between a payment of either X or Y pounds, but now

X =

{
100 with prob. 0.34
0 with prob. 0.66

and Y =

{
101 with prob. 0.33
0 with prob. 0.67

Apparently, in real experiments, a significant number of people prefer Y in both games.
For these people, their preferences are not compatible with the expected utility hypothesis.
To see why not, suppose for the sake of finding a contradiction that the agent has a utility
function U . Then

Game A: Y preferred ⇔ 0.33 U(101) + 0.66 U(100) + 0.01 U(0) < U(100)

and

Game B: Y preferred ⇔ 0.34 U(100) + 0.66 U(0) < 0.33 U(101) + 0.67 U(0)

But the above inequalities cannot both hold true!

2.3. The Ellsberg paradox. Underlying the expected utility hypothesis is assumption
that economic agents are perfect statisticians. In reality, of course, when faced with a random
outcome, there is risk associated with the realisation of the randomness, but also uncertainty
in the unknown distribution of the randomness. Here is an example.

Consider an urn with 30 balls, coloured red, yellow and black. You know that there are
10 red balls in the urn. However, you do not know the number of yellow balls or the number
of black balls (but, of course, their sum to 20).

A single ball is drawn from the urn. Consider two games:
Game A.

X =

{
100 if red
0 if yellow or black

and Y =

{
100 if yellow
0 if red or black

Game B.

X =

{
100 if red or black
0 if yellow

and Y =

{
100 if yellow or black
0 if red

In experiments, people tend to prefer X in game A and Y in game B. This also contradicts
the expected utility hypothesis. Suppose the agent estimates the probability of drawing
yellow as p where 0 < p < 2/3.

Game A: X preferred ⇔ 1

3
U(100) +

2

3
U(0) > p U(100) + (1− p) U(0)

and

Game B: Y preferred ⇔ (1− p) U(100) + p U(0) <
2

3
U(100) +

1

3
U(0)

a contradiction!
One way to avoid this paradox is to let the agent have preferences not only of risk but

also uncertainty. For example, suppose that there is a probability models P consistent with
the agent’s beliefs. An agent who is very averse uncertainty would prefer X to Y if and only
if

inf
P∈P

EP[U(X)] > inf
P∈P

EP[U(Y )].

This point of view is pursued in an area called robust finance, but we will not discuss it in
these notes.

9



3. Prerequisite knowledge

The emphasis of this course is on some of the mathematical aspects of financial market
models. Very little is assumed of the reader’s knowledge of the workings of financial markets.
However, some mathematical background is needed.

Our starting point is the famous observation (sometimes attributed to Niels Bohr) that
it is difficult to make predictions, especially about the future. Indeed, anyone with even
a passing acquaintance with finance knows that most of us cannot predict with absolute
certainty how the the price of an asset will fluctuate – otherwise we would be much richer!

Therefore, the proper language to formulate the models that we will study is the language
of probability theory. An attempt is made to keep this course self-contained, but you should
be familiar with the basics of the theory, including knowing the definition and key properties
of the following concepts: random variable, expected value, variance, conditional probabil-
ity/expectation, independence, Gaussian (normal) distribution, etc. Familiarity with mea-
sure theoretical probability is helpful, though a crashcourse on probability theory is given in
an appendix.

Please send all comments and corrections (including small typos and major blunders) to
me at m.tehranchi@statslab.cam.ac.uk.
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CHAPTER 1

Discrete-time models

We consider a market with n assets. The identity of the assets is not important as
long as the standing assumptions (zero dividends, zero tick size, zero transaction costs, no
short-selling constraints, infinite divisibility, zero bid-ask spread, infinite market depth) are
fulfilled. We usually think of the assets as being stocks and bonds, but they also can be
more exotic things like pork belly futures.

We will use the notation P i
t for the price of asset i at time t. In this section, the

time index set is the non-negative integers, so the notation t ≥ 0 should be interpreted as
t ∈ {0, 1, 2, . . .}.

1. Measurability and conditional expectations

A modelling assumption that we will use throughout is that the collection of prices P =
(P 1

t , . . . , P
n
t )t≥0 is an n-dimensional stochastic process adapted to a filtration F = (Ft)t≥0.

We now briefly describe what this means.
A stochastic process (Zt)t≥0 is just a collection of random variables (or vectors) indexed

by the parameter t. In our case, the parameter is interpreted as time, either discrete or con-
tinuous. (Recall that when we speak of a random variable Z, we secretly have a probability
space (Ω,F ,P) in the background such that the map Z : Ω → R is F -measurable. See the
crashcourse if this sounds unfamiliar to you.)

We now formalise the concept of information being revealed as time marches forward.
The correct notions are that of a filtration and adaptedness.

Motivation. You are probably already familiar with the notion of the measurability of
a set. Measurability is a hugely important (though technical) idea in the theory of Lebesgue
integration: for instance, Vitali showed that it is impossible to define the Lebesgue measure
of every subset of R.

But on top of its technical importance, measurability has is a way to model information.
Give an probability space (Ω,F ,P), let G be some set of information. For the moment, we
will be vague about what G is, but it intuitively should have the property that an event
A ∈ F is G-measurable iff

P(A|G) ∈ {0, 1}.

Note we have not yet defined the notation P(A|G), but it should thought of as the probability
of the event A given knowledge of the information set G.

For instance, consider the experiment of tossing a fair coin two times. We can model this
experiment on the sample space Ω = {HH,HT, TH, TT}. The set of all events is the set

F = {∅, {HH}, . . . , {HH,HT}, . . . , {HH,HT, TH}, . . . , {HH,HT, TH, TT}}
11



of all 24 = 16 subsets of Ω. The probability measure is just the one that assigns P({ω}) = 1/4
equal probability to each elementary event.

Suppose G is information revealed by the first toss of the coin. The set event

A = { first toss is heads } = {HH,HT}
is G-measurable, since for any sensible definition of the conditional probability we must have

P(A|G) =

{
1 if the first toss is heads
0 if the first toss is tails.

On the other hand, the event

B = { both tosses are heads } = {HH}
is not G-measurable. Indeed, we must have

P(B|G) =

{
1/2 if the first toss is heads
0 if the first toss is tails.

Now returning to the general case, rather than modelling the set G of information as a
new mathematical structure, we simply identify G with the collection of all G-measurable
events. Notice that, assuming that the conditional probability P(·|G) somehow behaves like
an unconditional probability, then G is a sigma-field. The lesson of all of this is that it
makes sense to model information as a sub-sigma-field of the sigma-field of all events F . It
remains to properly define the conditional probability and then check that it has the correct
properties.

We briefly recall some notions from probability.

Definition. Given a probability space (Ω,F ,P), let G ⊆ F be a sub-sigma-field of
events. A random variable X : Ω → R is measurable with respect to G ( or briefly, G-
measurable) if and only if the event {X ≤ x} is an element of G for all x ∈ R.

You know what that the conditional expectation of an integrable random variable X
given a non-null event G means

E(X|G) =
E(X1G)

P(G)

The next theorem leads to a definition of conditional expectation given a sigma-field:

Theorem (Existence and uniqueness of conditional expectations). Let X be an integrable
random variable defined on the probability space (Ω,F ,P), and let G ⊆ F be a sub-sigma-field
of F . Then there exists an integrable G-measurable random variable Y such that

E(1GY ) = E(1GX)

for all G ∈ G. Furthermore, if there exists another G-measurable random variable Y ′ such
that E(1GY

′) = E(1GX) for all G ∈ G, then Y = Y ′ almost surely.

Definition. Let X be an integrable random variable and let G ⊆ F be a sigma-field.
The conditional expectation ofX given G, written E(X|G), is a G-measurable random variable
with the property that

E [1GE(X|G)] = E(1GX)

for all G ∈ G.
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Example. (Sigma-field generated by a countable partition) Let X be a non-negative
random variable defined on (Ω,F ,P). Let G1, G2, . . . be a sequence of disjoint events with
P(Gn) > 0 for all n and

⋃
n∈NGn = Ω.

Let G be the smallest sigma-field containing {G1, G2, . . . , ...}. That is, every element of
G is of the form

⋃
n∈I Gn where I ⊆ N. Then

E(X|G)(ω) = E(X|Gn) =
E(X1Gn)

P(Gn)
if ω ∈ Gn

where the right-hand side denotes conditional expectation given the event Gn.
More concretely, suppose Ω = {HH,HT, TH, TT} consists of two tosses of a fair coin,

and let G = {∅, {HH,HT}, {TH, TT},Ω} be the sigma-field containing the information
revealed by the first toss. Consider the random variable

X(ω) =


a if ω = HH
b if ω = HT
c if ω = TH
d if ω = TT.

Then

E(X|G)(ω) =

{
(a+ b)/2 if ω ∈ {HH,HT}
(c+ d)/2 if ω ∈ {TH, TT}

The important properties of conditional expectations are collected below:

Theorem. Let all random variables appearing below be such that the relevant conditional
expectations are defined, and let G be a sub-sigma-field of the sigma-field F of all events.

• linearity: E(aX + bY |G) = aE(X|G) + bE(Y |G) for all constants a and b
• positivity: If X ≥ 0 almost surely, then E(X|G) ≥ 0 almost surely.
• Jensen’s inequality: If f is convex, then E[f(X)|G] ≥ f [E(X|G)]
• monotone convergence theorem: If 0 ≤ Xn ↑ X a.s. then E(Xn|G) ↑ E(X|G) a.s.
• Fatou’s lemma: If Xn ≥ 0 a.s. for all n, then E(lim infnXn|G) ≤ lim infn E(Xn|G)
• dominated convergence theorem: If supn |Xn| is integrable and Xn → X a.s. then
E(Xn|G)→ E(X|G) a.s.
• If X is independent of G (the events {X ≤ x} and G are independent for each x ∈ R

and G ∈ G) then E(X|G) = E(X). In particular, E(X|G) = E(X) if G is trivial.
• ‘slot property’: If X is G-measurable, then E(XY |G) = XE(Y |G). In particular, if
X is G-measurable, then E(X|G) = X.
• tower property or law of iterated expectations: If H ⊆ G then

E[E(X|G)|H] = E[E(X|H)|G] = E(X|H)

Definition. The conditional probability of an event A ∈ F given a sub-sigma-field G is
defined by

P(A|G) = E(1A|G).

We now come full circle to show that the motivation for defining measurability is com-
patible with the definitions we have chosen:
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Proposition. If P(A|G) ∈ {0, 1} almost surely, then there exists a G-measurable event
A′ such that P(A\A′) = 0 = P(A′\A).

Proof. Since the conditional probability takes values in {0, 1} there exists a G-measurable
event A′ such that

P(A|G) = 1A′ .

Note that

P(A) =E(1A)

= E[E(1A|G)] tower

= E[1A′ ]

= P(A′)

and

P(A ∩ A′) = E(1A1A′)

= E[E(1A1A′|G)] tower

= E[1A′E(1A|G)] slot

= E[12
A′ ]

= P(A′)

and hence

E[(1A − 1A′)
2] = P(A) + P(A′)− 2P(A ∩ A′) = 0.

�

Continuing with the theme of measurability, we introduce a few more terms:

Definition. A filtration F = (Ft)t≥0 on the probability space (Ω,F ,P) is a collection
of sigma-fields such that Fs ⊆ Ft ⊆ F for all 0 ≤ s ≤ t.

Definition. A process X = (Xt)t≥0 is adapted to F iff the random variable Xt is Ft-
measurable for all t ≥ 0.

When discussing an adapted stochastic process but a filtration is not explicitly mentioned,
then we are implicitly working with the natural filtration of the process.

Definition. Given a stochastic process X = (Xt)t≥0, the natural filtration of X, (or the
filtration generated by X) is the smallest filtration for which X is adapted. That is, it is the
filtration (Ft)t≥0 where

Ft = σ(Xs, 0 ≤ s ≤ t).

To gain some intuition about these definitions, consider this example.

Example. Return to the experiment of tossing a fair coin two times. The flow of
information is modelled by the following sigma-fields

• F0 = {∅,Ω},
• F1 = {∅, {HH,HT}, {TH, TT},Ω},
• F2 = F .

14



Now consider a stochastic process (Xt)t∈{0,1,2} that is adapted to the filtration (Ft)t∈{0,1,2}.
Intuitively, the value of the random variable Xt is known once after t tosses of the coin.

For instance, X0 must be a constant,

X0(ω) = a for all ω ∈ Ω,

since there is no information before the experiment. On the other hand, the random variable
X1 must be of the form

X1(ω) =

{
b if ω ∈ {HH,HT}
c if ω ∈ {TH, TT}

since the only information known at time 1 is whether or not the first coin came up heads.
Finally, X2 can be any function on Ω, that is, of the form

X2(ω) =


d if ω = HH
e if ω = HT
f if ω = TH
g if ω = TT.

Alternatively, on this particular filtered probability space, the adapted process X can be
visualised by the tree diagram:

X d

b

1/2
@@��������

1/2
// e

a

1/2
??��������

1/2 ��========

c
1/2
//

1/2
��======== f

g

Notice that for all t ∈ {0, 1, 2} the event {Xt ≤ x} is in Ft for every real x.

For this course, it will be convenient to assume that there is no randomness at time 0.
This can be made formal by assuming

the sigma-field F0 is trivial.

This means that if A is an element F0 then either P(A) = 0 or P(A) = 1. In particular,
every F0-measurable random variable is almost surely constant. In the discrete-time theory,
there nothing loss by further assuming F0 = {∅,Ω}. However, it turns out that this further
assumption is technically inconvenient in the continuous-time theory.

Before continuing to the financial models, we list one final definition in this section.

Definition. A discrete-time process X = (Xt)t≥1 is previsible (or predictable) iff the
random variable Xt is Ft−1-measurable for all t ≥ 1.
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Remark. Note that the time index set for a previsible process (Xt)t≥1 is (usually)
{1, 2, . . .}, not {0, 1, . . .}. In particular, X0 is not necessarily defined.

Remark. In discrete time, a process X is previsible if and only if the process Y is
adapted, where Xt = Yt−1. That is to say, the notion of previsibility can be dispensed with
by simply changing notation. However, in continuous time, there is a more subtle difference
between the notions of previsibility and adaptedness. Therefore, for the sake of a unified
treatment of the discrete and continuous time cases, we keep it in.

2. The set-up

Returning to our financial modelling, we assume that the market prices are given by a
n-dimensional adapted process P = (Pt)t≥0. For the moment, we assume that each asset
may pay a dividend. Let δit be the dividend paid for each share of asset i held at time t. We
assume that (δt)t≥1 is an adapted process. Note that we start time at t = 1 for this process -
the reason will be come clear shortly. Also, recall from the preface that for most of the rest
of the course we will assume that δt = 0 almost surely for all t ≥ 1. But to be clear, we do
not make that assumption now.

To the market described by the adapted processes P and δ, we now introduce an investor.
At time t, the investor comes into the market with an initial amount of money Xt. The
investor receives some income It and consumes some amount Ct.

With the remaining money Xt + It − Ct, the investor buys a portfolio Ht+t ∈ Rn of the
assets, where the real number H i

t+1 denotes the number of shares held in asset i. (If H i
t+1 > 0

then the position is said to be long , and if H i
t+1 < 0 then the position is said to be short .)

There are two important accounting relationships between the variables. First, the bud-
get constraint is

Xt + It − Ct = Ht+1 · Pt,
where we are using the notation

a · b =
n∑
i=1

aibi

for the usual Euclidean inner (or dot) product in Rn. Second, at time t + 1, the investor’s
portfolio is worth Xt+1 = Ht+1 · (Pt+t + δt+1).

Second, we have the accounting identity

Xt+1 = Ht+1 · (Pt+1 + δt+1)

which says that the amount of money the investor has in the market at time t + 1 is equal
to the sum of liquidation value of the assets and the accrued dividends.

We will model the price process P , the dividend process δ and external income process
I as exogenously given adapted processes. We consider the investor’s initial wealth X0 = x
as a given constraint, and the investor’s portfolio process (Ht)t≥1 as her control. In order to
eliminate clairvoyant investors, we insist that the control H is previsibile.

Note that given x and H, the investor’s wealth is

Xx,H
t =

{
x if t = 0
Ht · (Pt + δt) if t ≥ 1

16



and the consumption is then

Cx,H
t = Xx,H

t + It −Ht+1 · Pt.
Now that we have our market model and we’ve introduced an investor into this market,

our first challenge is to find out how to invest optimally. We consider one such optimal
investment problem. The main motivation for studying this problem is to introduce the very
important notion of a martingale deflator.

Let T > 0 be some non-random time horizon and prefers a consumption stream c =
(ct)0≤t≤T to c′ = (c′t)0≤t≤T iff and only if

E[U(c)] > E[U(c′)]

where U : R1+T → R ∪ {−∞} is a given utility function. We will assume that ct 7→
U(c0, . . . , cT ) is strictly increasing for each t, modelling the assumption that the investor
strictly prefers more to less. (Usually we also assume that U is strictly concave, so that the
investor is risk-averse, strictly preferring to consume the non-random quantity E(c) to the
random quantity c, for any non-constant random vector c.)

We suppose that investor’s initial wealth is x given. We also suppose that he will live
exactly to age T , and since he derives no utility from wealth in the afterlife, chooses to
consume his remaining wealth at time T . Summing up, the investor faces the problem

maximise E[U(c)] subject to

{
ct = Cx,H

t for 0 ≤ t ≤ T
cT = HT · (PT + δT ) + IT

With this problem in mind, we introduce an important definition:
With this problem in mind, we introduce an important definition:

Definition. An arbitrage is an n-dimensional previsible process H such that there
exists a non-random time T > 0 with the properties, that the consumption stream

c0 = −H1 · P0,

ct = Ht · (Pt + δt)−Ht+1 · Pt, for 1 ≤ t ≤ T − 1,

cT = HT · (PT + δT )

satisfies

• ct ≥ 0 almost surely for all 0 ≤ t ≤ T ,
• P (ct > 0 for some 0 ≤ t ≤ T ) > 0.

Note that if H f is a feasible investment strategy for the above investment problem and
if Ha is an arbitrage, then H f +Ha is also feasible (since it can be funded with same initial
wealth x). However, the new strategy has strictly higher expected utility

E[U(cf + ca)] > E[U(cf)].

Inductively, the strategy H f + kHa is feasible for every k ≥ 0. In particular, if there is an
arbitrage then there cannot be an optimal investment strategy to the utility maximisation
problem.

Aside. And why do we care about the existence of optimal investment strategies? To
explain, we take a moment to ask where do prices come from? We consider a one-period
model. Assume that that only happens at time 0, so we assign the terminal price vector
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P1 = 0. On the other hand, the vector of dividends δ1 is unknown at time 0. It is possibly
non-zero, but since its value is only revealed at time 1, we model it as a random vector. What
determines the randomness? One could argue that all that matters is the beliefs of the market
participants, not the underlying mechanism that causes the apparent randomness. So, we
assume that there are J investors, and each investor j has a probability measure Pj, where
j = 1, . . . , J modelling the distribution of δ1. We also assume that each agent j comes to
the market with initial capital xj. The market already has the n assets, with total supply of
asset i given by Si and S = (S1, . . . , Sn). The agents trade with each other until each arrive
at an optimal allocation H∗j and collectively determine an initial price P ∗0 . To formalise this,
we have the following definition:

Definition. Given initial wealths xj, utility functions Uj and probability measures Pj,
for j = 1, . . . J which determine the distribution of the random vector P1, let

Hj(p) = arg max{Ej[U(c0, c1)] : c0 = xj −H · p, c1 = H · δ1}

be the optimal portfolio for agent i assuming the initial price is P0 = p. An equilibrium price
P ∗0 is a solution to the equation

J∑
j=1

Hj(P
∗
0 ) = S,

where the notation Ej denotes expectation with respect to Pj.

Note that the above condition says that for the equilibrium initial price P ∗0 , the agents
portfolios H∗j solve their version of the optimal investment problem (*). A consequence of
the previous proposition is the following motivating result:

Proposition. If the market is in equilibrium then no agent can believe there is an
arbitrage.

Before proceeding, we consider a simple consequence of the assumption of no arbitrage
in a market model.

Proposition. Consider a market with n = 1 asset, and assume that δt ≥ 0 almost
surely for all t ≥ 1. If there exists a non-random T > 0 such that PT ≥ 0 almost surely, then
Pt ≥ 0 almost surely for all 0 ≤ t ≤ T .

Proof. Let τ = inf{t ≥ 0 : Pt < 0} and let

Ht = 1{τ<t≤T}

Note that H is previsible since for 1 ≤ t ≤ T we have

{τ < t} = ∪t−1
s=0{Ps < 0} ∈ Ft−1.

Hence ct = −Pt > 0 on {t = τ < T} and cT = PT + δT ≥ 0. Since there is no arbitrage, we
must have P(τ < T ) = 0, or equivalently, P(Ps ≥ 0 for all 0 ≤ s ≤ T−1) = 1 as claimed. �
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3. The first fundamental theorem and martingales

We have tried to argue above that it is natural to insist that our market model is free of
arbitrage strategies. But how can we check that a given price process P is arbitrage free?
The answer is contained in a famous theorem:

Theorem (First fundamental theorem of asset pricing). A market model has no arbitrage
if and only if there exists a martingale deflator.

We spend the next few pages unpacking this theorem. First, we need a definition to get
started:

Definition. A martingale deflator is an adapted (real-valued) process Y such that
Yt > 0 for all t ≥ 0 almost surely, and such that the n-dimensional process

Mt = PtYt +
t∑

s=1

δsYs

is a martingale.

We now briefly review some bits of martingale theory.

*****
Now we come to one of the most important concepts in financial mathematics, the mar-

tingale. A martingale is simply an adapted stochastic process that is constant on average in
the following sense:

Definition. A martingale relative to a filtration F is an adapted stochastic process
M = (Mt)t≥0 with the following properties:

• E(|Mt|) <∞ for all t ≥ 0
• E(Mt|Fs) = Ms for all 0 ≤ s ≤ t.

Remark. The above definition of martingale is the same both discrete- and continuous-
time processes. However, if the time index set is discrete T = Z+, it is an exercise to show
that an integrable process M is a martingale only if E(Mt+1|Ft) = Mt for all t ≥ 0. That is,
it is sufficient to verify the conditional expectations of the process one period ahead.

Below are some examples of martingales.

Example. Let ξ1, ξ2, ξ3, . . . be independent integrable random variables such that E(ξi) =
0 for all i. The process (St)t≥0 given by S0 = 0 and

St = ξ1 + . . .+ ξt

is a martingale relative to its natural filtration. Indeed, the random variable St is integrable
since

E(|St|) ≤ E(|ξ1|) + . . .+ E(|ξt|)
by the triangular inequality and all the terms in this finite sum are finite by assumption.
Also,

E(St+1|Ft) = E(St + ξt+1|Ft)
= E(St|Ft) + E(ξt+1|Ft)
= St + E(ξt+1) = St,
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where the conditional expectation E(ξt+1|Ft) is replaced by the unconditional expectation
E(ξt+1) by the assumption that ξt+1 is independent of Ft = σ(S1, . . . , St) = σ(ξ1, . . . , ξt).

Example. We now construct one of the most important examples of a martingale. Let
X be an integrable random variable, and let

Mt = E(X|Ft).
Then M = (Mt)t≥0 is a martingale.

Integrability follows from the definition of conditional expectation. Now, for every 0 ≤
s ≤ t we have

E(Mt|Fs) = E[E(X|Ft)|Fs]
= E(X|Fs) = Ms

by the tower property. Notice that this example also works in continuous time.
Sometimes we are given a process (Mt)0≤t≤T where T > 0 is a fixed, non-random time

horizon. To check that this process is a martingale, we need only check that

Mt = E(MT |Ft) for all 0 ≤ t ≤ T,

because this corresponds to the construction above with X = MT .

This last example is theorem shows how to take one martingale and build another one.

Proposition. Let M be a martingale and let K be a bounded predictable process. Then
the process X defined by

Xt =
t∑

s=1

Ks(Ms −Ms−1)

is a martingale.

Proof. First, note Xt is Ft-measurable by construction. Also, by assumption, we have
E(|Mt|) < ∞ for all t since M is a martingale and that there exist a constant C > 0 such
that |Kt| ≤ C almost surely for all t ≥ 0. Hence

E(|Xt|) ≤
t∑

s=1

E(|Ks||Ms −Ms−1|)

≤
t∑

s=1

C[E(|Ms|) + E(|Ms−1|)] <∞

Using the predictability of K and the slot property of conditional expectation, we have

E(Xt+1 −Xt|Ft) = E(Kt+1(Mt+1 −Mt)|Ft)
= Kt+1E(Mt+1 −Mt|Ft)
= 0

implying the martingale property E(Xt+1|Ft) = Xt, since Xt is Ft-measurable. �

Remark. The martingale X above is often called a martingale transform or a discrete
time stochastic integral. As we will see, it is one of the key building blocks for the continuous
time theory to come.
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4. Local martingales

It turns out that to prove the 1FTAP, even in the easy direction, we need a little more
technology.

With that introduction, we begin our study of local martingales. First we start with a
definition.

Definition. A stopping time for a filtration (Ft)t∈T is a random variable τ taking values
in T ∪ {∞} such that the event {τ ≤ t} is Ft-measurable for all t ∈ T.

Example. Obviously, non-random times are stopping times. That is, if τ = t0 for some
fixed t0 ≥ 0, then {τ ≤ t} = Ω if t0 ≤ t and ∅ otherwise.

Example. Here is a typical example of a stopping time. Let (Yt)t≥0 be a discrete-time
adapted process and let A be a Borel set (for instance, an interval). Then the random
variable

τ = inf{t ≥ 0 : Yt ∈ A}
(with the usual convention that inf ∅ = +∞) corresponding to the first time the process
enters the set A is a stopping time. Indeed,

{τ ≤ t} =
t⋃

s=0

{Ys ∈ A}

is Ft-measurable because each {Ys ∈ A} is Fs-measurable by the adaptedness of Y , and
Fs ⊆ Ft by the definition of filtration.

Stopping times can be used to stop processes.

Definition. For an adapted process X (in discrete or continuous1 time) and a stopping
time τ , the process Xτ defined by Xτ

t = Xt∧τ is said to be X stopped at τ .

Stopping times interact well martingales: stopped martingales are still martingales.

1If time is continuous, we also need the extra technical assumption that X is progressively measurable
in order that the map ω 7→ Xτ(ω)(ω) is measurable. Fortunately, it is sufficient to assume that sample paths

of X are continuous, which will be enough for this course.
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Proposition. Let X be a discrete-time martingale and let τ be a stopping time. Then
Xτ is a martingale.

Remark. A version of this theorem also holds for continuous-time martingales with
continuous sample paths.

Proof. Note that

Xτ
t = X0 +

t∑
s=1

1{s≤τ}(Xs −Xs−1).

Since the event {t ≤ τ} = {τ ≤ t − 1}c is Ft−1-measurable by the definition of stopping
time, the process Kt = 1{t≤τ} is predictable. Since Xτ is the martingale transform of the
bounded predictable process K with respect to the martingale X, it is a martingale. �

The above result says that the martingale property is stable under stopping. We use this
property as motivation for the following definition.

Definition. A local martingale is an adapted process X = (Xt)t≥0, in either discrete or
continuous time, such that there exists an increasing sequence of stopping times (τN) with
τN ↑ ∞ such that the stopped process XτN is a martingale for each N .

Remark. Note that martingales are local martingales. Indeed, given a martingale X
and any sequence of stopping times τN ↑ ∞, the stopped process XτN is a martingale.

Remark. Note that the local martingale property is also stable under stopping. Indeed,
let X be a local martingale and τ a stopping time. Then by definition, there exists a sequence
of stopping times σN ↑ ∞ such that XσN is a martingale. Hence (XσN )τ = XσN∧τ is again a
martingale since σN ∧ τ is a stopping time. But note that XσN∧τ = (Xτ )σN , implying that
the sequence of stopping times σN ↑ ∞ is such that (Xτ )σN is a martingale. This means Xτ

is a local martingale.

Theorem. Suppose M is a discrete-time local martingale and K is a predictable process.
Let

Xt =
t∑

s=1

Ks(Ms −Ms−1)

for t ≥ 1. Then X is a local martingale.

Remark. This is the martingale transform as before, but now do not insist that K is
bounded or that M is a true martingale. As a consequence, we cannot assert that X is a
true martingale, merely a local martingale. The idea is that by localising, we can study the
algebraic and measurability structure of the martingale transform without worrying about
integrability issues.

Proof. Since M is a local martingale by assumption, there exists a sequence of stopping
times (τn)n with τn ↑ ∞ a.s. such that M τn is a martingale.

Let un = inf{t ≥ 0 : |Kt+1| > n} with the convention inf ∅ = +∞. Note that since K is
predictable we have

{un ≤ t− 1}c = {un ≥ t} = {|Ks| ≤ n for all 0 ≤ s ≤ t} ∈ Ft−1
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and hence that un is a stopping time with un ↑ ∞.2

Finally, let vn = τn ∧ un. Note vn ↑ ∞ and vn is a stopping time since {vn ≤ t} = {τn ≤
t} ∪ {un ≤ t}.

NowM vn = (M τn)un is a stopped martingale, and hence a martingale. Also (Kt1{t≤vn})t≥1

is a predictable process, bounded by n. Writing

Xvn
t =

t∑
s=1

Ks1{s≤vn}(M
vn
s −M vn

s−1)

we see that the stopped process is the martingale transform of a bounded predictable process
with respect to the martingale, and hence is a martingale. �

The next theorem gives a sufficient condition that a local martingale is a true martingale.

Theorem. Let X be a local martingale in either discrete or continuous time. Let Yt be
a process such that |Xs| ≤ Yt almost surely for all 0 ≤ s ≤ t. If E(Yt) < ∞ for all t ≥ 0,
then X is a true martingale.

Proof. Let (τN)N be a localising sequence of stopping times for X. Note that Xt∧τN →
Xt a.s. since τN ↑ ∞. Furthermore, by assumption |Xt∧τN | ≤ Yt which is integrable, so we
may apply the conditional version of the dominated convergence theorem to conclude

E(Xt|Fs) = E(lim
N
Xt∧τN |Fs)

= lim
N

E(Xt∧τN |Fs)

= lim
N
Xs∧τN

= Xs

for 0 ≤ s ≤ t, where we have used the fact that the stopped process (Xt∧τN )t≥0 is a martingale.
�

The following corollary is useful:

Corollary. Suppose X is a DISCRETE-TIME local martingale such that E(|Xt|) <∞
for all t ≥ 0. Then X is a true martingale.

Proof. Let Yt = |X0| + . . . + |Xt|. The process Y is integrable by assumption and
|Xs| ≤ Yt for all 0 ≤ s ≤ t. The conclusion follows from the previous theorem. �

In the absence of integrability, the next best property is non-negativity. First we need
some definitions.

Definition. A supermartingale relative to a filtration (Ft)t≥0 is an adapted stochastic
process (Ut)t≥0 with the following properties:

2Note that

{sup
n
un ≥ t} = ∪n{un ≥ t}

= ∪n ∩ts=1 {|Ks| ≤ n}
= {max

1≤s≤t
|Kt| <∞}
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• E(|Ut|) <∞ for all t ≥ 0
• E(Ut|Fs) ≤ Us for all 0 ≤ s ≤ t.

A submartingale is an adapted process (Vt)t≥0 with the following properties:

• E(|Vt|) <∞ for all t ≥ 0
• E(Vt|Fs) ≥ Vs for all 0 ≤ s ≤ t.

Remark. Hence a supermartingale decreases on average, while a submartingale increases
on average. A martingale is a stochastic process that is both a supermartingale and a
submartingale.

As in the case of the definition of martingale, to show that an adapted, integrable process
U is a supermartingale in discrete time, it is enough to show that E(Ut+1|Ft) ≤ Ut for all
t ≥ 0.

Theorem. Suppose X is a local martingale in either continuous or discrete time. If
Xt ≥ 0 for all t ≥ 0, then X is a supermartingale.

Proof. In the general case, let (τN)N be the localising sequence for X. First we show
that Xt is integrable for each t ≥ 0. Fatou’s lemma yields

E(|Xt|) = E(Xt)

= E(lim
N
Xt∧τN )

≤ lim inf
N

E(Xt∧τN )

= X0 <∞.
Now that we have established integrability, we can discuss conditional expectations. The
conditional version of Fatou’s lemma yields

E(Xt|Fs) = E(lim
N
Xt∧τN |Fs)

≤ lim inf
N

E(Xt∧τN |Fs)

= lim inf
N

Xs∧τN

= Xs

for 0 ≤ s ≤ t, as claimed. �

As before, discrete time local martingales are particularly nice:

Corollary. If X is a DISCRETE-TIME local martingale such that Xt ≥ 0 a.s. for all
t ≥ 0, then X is a martingale.

Proof. By the above theorem, we have that E(|Xt|) = E(Xt) ≤ X0 < ∞. Since X is
integrable, the previous corollary implies X is a martingale. �

Theorem. Suppose that

Xt = X0 +
t∑

s=1

Ks(Ms −Ms−1)

where K is predictable, X is a martingale and X0 is a constant. If XT ≥ 0 a.s. for some
non-random T > 0, then (Xt)0≤t≤T is a true martingale.
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Proof. Just as before, let τN = inf{t ≥ 0 : |Kt+1| > N}. Note Xs1{t≤τN} is integrable
for all 0 ≤ s ≤ t, since M is integrable by definition of martingale, and Ks is bounded on
{t ≤ τN}. Hence we have

0 ≤ E[XT1{T≤τN}|FT−1]

= E[XT−11{T≤τN} +KT1{T≤τN}(MT −MT−1)|FT−1]

= XT−11{T≤τN} +KT1{T≤τN}E[MT −MT−1|FT−1]

= XT−11{T≤τN}.

Taking N → ∞ shows XT−1 ≥ 0 a.s., induction shows that Xt ≥ 0 for all 0 ≤ t ≤ T .
Therefore (Xt)0≤t≤T is a non-negative local martingale in discrete time and hence a true
martingale. �

5. Proof of the 1FTAP, easier direction

Recall our framework. There exist n-dimensional price (Pt)t≥0 and dividend (δt)t≥1 pro-
cesses, adapted to a given filtration (Ft)t≥0. A martingale deflator is a positive (real-valued)
adapted process (Yt)t≥0 such that Y P and Y δ are integrable and

E[Yt+1(Pt+1 + δt+1)|Ft] = YtPt for all t ≥ 0.

Our aim is to show that if there exists a martingale deflator, then there is no arbitrage. We
first prove a useful lemma.

Lemma. Given a real constant x and a n-dimensional previsible process (Ht)t≥1, let

X0 = x

Xt = Ht · (Pt + δt) for t ≥ 1,

and
ct = Xt −Ht+1 · Pt for t ≥ 0.

Suppose there exists a martingale deflator Y . Set

Zt = XtYt +
t−1∑
s=0

csYs.

Then M is a local martingale. Furthermore, if ct ≥ 0 a.s for 0 ≤ t ≤ T − 1 and XT ≥ 0 a.s
for some non-random T > 0, then (Mt)0≤t≤T is a martingale.

Proof. Note that

Zt − Zt−1 = XtYt + Yt−1(ct−1 −Xt−1)

= Ht · [Yt(Pt + δt)− Yt−1Pt−1]

= Ht · (Mt −Mt−1)

where

Mt = PtYt +
t∑

s=1

δsYs.

Note that Z is martingale transform of the previsible processH with respect to the martingale
M , and hence Z is a local martingale.
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Furthermore, if ZT ≥ 0 a.s., from the last theorem of the previous section, we have
(Zt)0≤t≤T is a true martingale �

Proof of the 1FTAP, easier direction. Suppose that there is a martingale defla-
tor Y . Let H be an n-dimensional previsible process and let c0 = −H1 · P0 and

ct = Ht · (Pt + δt)−Ht+1 · Pt for t ≥ 1.

Suppose there is some non-random T > 0 such that cT = HT · (PT + δT ) and ct ≥ 0 almost
surely for all 0 ≤ t ≤ T . To show that H is not an arbitrage, must show that ct = 0 almost
surely for all 0 ≤ t ≤ T .

To this end, let

ZT =
T∑
s=0

csYs.

Since Ys > 0 and cs ≥ 0 for all 0 ≤ s ≤ T , we need only show that ZT = 0 almost surely.
By the pigeon-hole principle, it is sufficient to show

E(ZT ) = 0.

To finish the proof, let

Zt = XtYt +
t−1∑
s=0

csYs for 0 ≤ t ≤ T

where we have set X0 = 0 and Xt = Ht · (Pt + δt) for 1 ≤ t ≤ T . By the previous lemma,
the process (Zt)0≤t≤T is a martingale. Since Z0 = 0, we are done. �

6. Proof of harder direction of the 1FTAP

In this section we will present elements of the proof of the first fundamental theorem of
asset pricing. We will give a complete proof of the one-period case, and sketch the main steps
to prove the full multi-period case. But first, we take a moment to reflect on the economic
motivation.

6.1. Motivation: Langrangian duality. Consider the investor’s utility maximisation
problem to find an investment strategy H to

maximise E[U(c)] subject to

 c0 = x−H1 · P0,
ct = Ht · (Pt + δt)−Ht+1 · Pt for 1 ≤ t ≤ T − 1
cT = HT · (PT + δT )

where the utility function u is increasing in each argument. We have discussed previously
that the existence of a maximiser implies that there does not exist an arbitrage. We now
explain why the existence of a maximiser also points to the existence of a martingale deflator.

As usual in a constrained optimisation problem, we apply the Lagrangian method. Recall
that this involves replacing our given objective function with the so-called Lagrangian which
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encodes the constraints. In this case the Lagrangian is

L(c,H, Y ) =E[u(c0, . . . , cT )] + Y0(x− c0 −H1 · P0)

+ E

[
T−1∑
t=1

Yt[Ht · (Pt + δt)−Ht+1 · Pt − ct] + YT [HT · (PT + δT )− cT ]

]
where the real-valued adapted process (Yt)0≤t≤T is the family of Lagrange multipliers.

To identify the dual feasibility condition, we seek to find conditions on the Lagrange
multiplier process Y implied by the existence of a maximiser of the Lagrangian L(c,H, Y )
over adapted c and previsible H. To this end, we rewrite the Lagrangian as

L(c,H, Y ) =E

[
u(c0, . . . , cT )−

T∑
t=0

Ytct

]
+ xY0

+
T∑
t=1

E{Ht · [(Pt + δt)Yt − Pt−1Yt−1]}.

By formally differentiating with respect to the t-th consumption variable, we find the max-
imised consumption c∗ satisfies

E
[
∂u

∂ct
(c∗)|Ft

]
= Yt.

Differentiating with respect to Ht yields

E[(Pt + δt)Yt|Ft−1] = Pt−1Yt−1

These two conditions suggest that Y is an adapted, positive process such that the process

Mt = YtPt +
t∑

s=1

Ysδs

is a martingale – i.e. Y is a martingale deflator.

6.2. Proof when T = 1. We now proceed to turn those fuzzy heuristics into a proper
proof. We consider the one-period case. So our market data are the prices P0, P1 and the
dividend δ1. Since our calculations only involve P1 + δ1, but not the two terms separately,
there is no loss just assuming δ1 = 0.

We suppose that the market (Pt)t∈{0,1} has no arbitrage, so that for any vector H ∈ Rn

that has the property that H · P0 ≤ 0 ≤ H · P1 almost surely, it must be the case that
H ·P0 = 0 = H ·P1 almost surely. We will show that, given any positive random variable Z,
there exists a martingale deflator Y0, Y1 such that the product Y1Z is bounded by a constant.
This extra boundedness assumption is much stronger than what we need, but it comes for
free from the proof and we will find it useful later in the course.

Let

ζ =
e−‖P1‖2/2

1 + Z
.

Define a function F : Rn → R by

F (H) = eH·P0 + E[e−H·P1ζ].

27



The positive random variable ζ is introduced to ensure integrability. Indeed note that the
integrand e−H·P1ζ ≤ e‖H‖

2/2 is bounded for each choice of H. In particular, the function F
is finite everywhere and (by the dominated convergence theorem) smooth.

We will show that no investment-consumption arbitrage implies that the function F has
a minimiser H∗. By the first order condition for a minimum, we have

0 = ∇F (H∗) = eH
∗·P0P0 − E[e−H

∗·P1ζPt]

and hence we may take

Y0 = eH
∗·P0 and Y1 = e−H

∗·P1ζ.

Note that Y1Z < C for some constant C > 0 (which depends on H∗ in general).
So let (Hk)k be a sequence such that F (Hk)→ infH F (H). If (Hk)k is bounded, we can

pass to a convergent subsequence, by the Bolzano–Weierstrass theorem, such that Hk → H∗.
By the smoothness of F we have

inf
H
F (H) = lim

k
F (Hk) = F (lim

k
Hk) = F (H∗)

so H∗ is our desired minimiser.
It remains to show that no arbitrage implies that there exists a bounded minimising

sequence (Hk)k. We show that if every minimising sequence (Hk)k is unbounded, then there
would be a contradiction.

Now we arrive at a little technicality. Let

U = {u ∈ Rn : u · P0 = 0 = u · P1 a.s.} ⊆ Rn

and let

V = U⊥.
Notice that if u ∈ U and v ∈ V then F (u + v) = F (v). Hence, by projecting a given
minimising sequence onto the subspace V , it is sufficient to consider minimising sequence
(Hk)k taking values in V .

So suppose, for the sake of finding a contradiction, that all minimising sequence (Hk)k
taking values in V are unbounded. We can pass to a subsequence such that ‖Hk‖ ↑ ∞. Now
let

Ĥk =
Hk

‖Hk‖
.

Note that ‖Ĥk‖ = 1 and that Ĥk ∈ V . Since (Ĥk)k is bounded, we can again pass to a

convergent subsequence such that Ĥk → Ĥ. Notice once more that ‖Ĥ‖ = 1 and that

Ĥ ∈ V .
We know that the sequence F (Hk) is bounded (since it is convergent) but we also have

F (Hk) = (eĤk·P0)‖Hk‖ + E[(e−Ĥk·P1)‖Hk‖ζ]

so we must conclude that Ĥ ·P0 ≤ 0 ≤ Ĥ ·P1 a.s. (since otherwise the right-hand side would

blow up). By no-arbitrage, we conclude that the candidate arbitrage Ĥ is not actually an

arbitrage, so Ĥ · P0 = 0 = Ĥ · P1 a.s.
We have shown that Ĥ is in U . But since Ĥ is also in V = U⊥, so we have Ĥ = 0. And,

finally, this contradicts ‖Ĥ‖ = 1. �
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6.3. Elements of the proof of the harder direction of the multi-period 1FTAP.
We have already seen the one period case. The full multi-period proof is a little more difficult
because of some technicalities involving measurability.

We begin with two propositions that show that two of the existential-type results we
needed in one-period proof have measurable versions.

Proposition. Let f : Rn ×Ω→ R be such that f(x, ·) is measurable for all x, and that
f(·, ω) is continuous and has a unique minimiser X∗(ω) for each ω. Then X∗ is measurable.

Let us pause to think about what it means for the unique minimiser x∗ ∈ Rn of a
continuous function g : Rn → R to be in a closed rectangle of the form A = [a1, b1] × · · · ×
[an, bn].

First note that that for all q 6= x∗, we have g(x∗) < g(q). Let Q ⊂ Rn be countable and
dense - for instance, let Q be the set of points with rational coordinates. By the continuity
of g and the density of Q, we have that for every q 6= x∗, there exists a p ∈ Q such that
g(p) < g(q).

Now if x∗ ∈ A, then for any q ∈ Ac ∩Q, there exists a p ∈ A ∩Q such that g(p) < g(q),
since q 6= x∗ and A ∩Q is dense in A.

Conversely, suppose that for any q ∈ Ac∩Q, there exists a p ∈ A∩Q such that g(p) < g(q).
This means

inf
x∈A∩Q

g(x) ≤ inf
x∈Ac∩Q

g(x).

By the continuity of g the above inequality implies

inf
x∈A

g(x) = inf
x∈A∪Ac

g(x) = g(x∗)

and in particular, we have x∗ ∈ A since A is closed.

Proof. For any closed rectangle A ⊂ Rn we have

{ω : X∗(ω) ∈ A} =
⋂

q∈Ac∩Q

⋃
p∈A∩Q

{ω : f(p, ω) < f(q, ω)}

where Q is a countable dense subset of Rn. Since the Borel sigma-field is generated by such
rectangles, this implies the measurability of X∗. �
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We also need a useful measurable version of the Bolzano–Weierstrass theorem.

Proposition. Let (ξi)i≥1 be a sequence of measurable functions ξi : Ω → Rn such that
supi ‖ξi(ω)‖ < ∞ for all ω ∈ Ω. Then there exists an increasing sequence of integer-valued
measurable functions Ij and an Rn-valued measurable function ξ∗ such that

ξIj(ω)(ω)→ ξ∗(ω) as j →∞
for all ω ∈ Ω.

Proof. First we consider the n = 1 case. Let ξ∗(ω) = lim supi ξi(ω). Note ξ∗ is finite-
valued and measurable, and that for every j > 0 there exists an infinite number of i’s such
that ξi(ω) ≥ ξ∗(ω)− 1/j. Now let

Ij = inf{i ≥ j : ξi ≥ ξ∗ − 1/j}.
Since we have the representation of the event

{Ij ≤ h} = ∪hi=j{ξi ≥ ξ∗ − 1/j}
for each h ≥ j, the function Ij is measurable and ξIj → ξ∗ as desired.

Now we prove the claim for any dimension n ≥ 1 by induction. Suppose that the claim
is true for dimension n = N . Let (ξi)i be a sequence of measurable function valued in
RN+1 such that supi ‖ξi(ω)‖ < ∞. Writing ξi = (ζi, ηi) where ζi takes values in RN and ηi
takes values in R, we have by assumption the existence of a measurable sequence Ij and a
measurable ζ∗ such that

ζIj → ζ∗.

Notice that (ηIj(ω)(ω))j is bounded for each ω, and hence by the n = 1 case, there exists
an increasing measurable sequence Jk and a measurable η∗ such that ηIJk → η∗. In particular,

ξIJk → (ζ∗, η∗) = ξ∗

as desired. �

7. Numéraires and equivalent martingale measures

For the previous sections, we have worked in considerable generality. We have allowed our
assets to pay a dividend, and we have even allowed the prices and dividends to be negative.
In this section, we will see the effect of adding more assumptions to our model.

The first assumption that we will make from here on is that, unless otherwise indicated,
there are no dividends:

Assumption: δt = 0 almost surely for all t ≥ 1

Removing dividends from the conversation simplifies things somewhat. For instance, in
this case, a positive adapted process Y is a martingale deflator if and only if the process
Y P is a martingale. It is sometimes useful (for example, for the example sheet) to introduce
some vocabulary:

Definition. In a market with no dividends, a pricing kernel (or stochastic discount
factor or state price density) between times s and t, where 0 ≤ s < t, is a positive Ft-
measurable random variable ρs,t such that

Ps = E(ρs,tPt|Fs).
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Let Y be a martingale deflator, so that E(YtPt|Fs) = YsPs for all 0 ≤ s < t, and let
ρs,t = Yt/Ys. If ρs,tPt is integrable, then ρs,t is a pricing kernel between times s and t.
Conversely, suppose ρs,s+1 is a pricing kernel between times s and s + 1 for s ≥ 0, and let
Yt = ρ0,1 · · · ρt−1,t. Then assuming Y P is integrable, then Y is a martingale deflator.

Hopefully, after several sections where the theory is worked out in full generality, it is
not too difficult to reincorporate dividends into the remaining bits of the course if desired.

The point of this section is now to consider the effect of adding the further assumption
that there exists a portfolio with a strictly positive price.

Definition. A numéraire portfolio is n-dimensional previsible process η = (ηt)t≥0 such
that ηt ·Pt > 0 almost surely for each t ≥ 0, and satisfying the pure-investment self-financing
condition

(ηt − ηt+1) · Pt = 0.

A numéraire asset is an asset with a strictly positive price.

Remark. If asset i is a numéraire asset, then the constant portfolio η defined for all
t ≥ 0 by

ηjt =

{
1 if j = i
0 otherwise

is a numéraire portfolio.

In the context of a market with a numéraire, we consider a different type of arbitrage:

Definition. A terminal consumption arbitrage is a n-dimensional previsible process H
such that there exists a non-random T > 0 such that almost surely we have

c0 = −H1 · P0 = 0

ct = (Ht −Ht+1) · Pt = 0 for 1 ≤ t ≤ T − 1

cT = HT · PT ≥ 0

and
P(cT > 0) > 0.

Note that our first definition of arbitrage allowed for consumption at intermediate times.
Clearly, a terminal consumption arbitrage is an arbitrage according to our earlier def-

inition. We now ask when does the existence of an arbitrage (possibly with intermediate
consumption) imply the existence of a terminal consumption arbitrage.

We come to the answer to our question:

Proposition. Consider a market with a numéraire η and let Nt = ηt · Pt for t ≥ 0.
Let H be an investment-consumption strategy with consumption stream

c0 = x−H1 · P0

ct = (Ht −Ht+1) · Pt,
where x is the initial wealth. Let

Kt = Ht + ηt

t−1∑
s=0

cs
Ns
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for t ≥ 1. Then K is a pure-investment strategy from the same initial wealth x. (That is, K
be the strategy that consists of holding at time t the portfolio Ht but of instead of consuming
the amount ct, instead invest this money into the numéraire portfolio.)

In particular, H is an arbitrage if and only if K is a terminal consumption arbitrage.

Proof. Note that

(Kt −Kt+1) · Pt =(Ht −Ht+1) · Pt − ηt+1 · Pt
ct
Nt

+ (ηt − ηt+1) · Pt
t−1∑
s=1

cs
Ns

=0

so K is a pure investment strategy by the assumption that η is pure-investment. Suppose
cT = HT · PT for some non-random time T . Then

KT · PT = NT

T∑
s=0

cs
Ns

≥ 0.

The left-hand side is positive if and only if ct is positive for some 0 ≤ t ≤ T . �

Now we move to a definition that only makes sense in a market with a numéraire.

Definition. Let P be a market model defined on a probability space (Ω,F ,P). The
measure P is called the objective (or historical or statistical) measure for the model.

Suppose that there exists a numéraire portfolio η and let N = η · P . An equivalent
martingale measure relative to this numéraire is any probability measure Q equivalent to P
such that the discounted price processes (

Pt
Nt

)
t≥0

is a martingale under Q.

Remark. In many accounts of arbitrage theory, the concept of an equivalent martingale
measure has taken centre stage. I believe that its importance has been overstressed. In
particular, it is a numéraire-dependent concept, unlike that of a martingale deflator. For
instance, if there are two assets that both numéraires (for example from the point of view
of a British trader, both the euro and the US dollar are numéraires) then one must be very
careful to specify which one is the numéraire.

Before proceeding, it might be useful to recall some facts from probability theory.

Definition. Let (Ω,F) be a measurable space and let P and Q be two probability
measures on (Ω,F). The measures P and Q are equivalent , written P ∼ Q, iff

{A ∈ F : P(A) = 1} = {A ∈ F : Q(A) = 1}

The above definition says that equivalent probability measures have the same almost sure
events. Complementarily, equivalent probability measures have the same null sets: that is,
P ∼ Q iff

{A ∈ F : P(A) = 0} = {A ∈ F : Q(A) = 0}.
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It turns out that equivalent measures can be characterised by the following theorem.
When there are more than one probability measure floating around, we use the notation EP

to denote expected value with respect to P, etc.

Theorem (Radon–Nikodym theorem). The probability measure Q is equivalent to the
probability measure P if and only if there exists a P-a.s. positive random variable Z such
that

Q(A) = EP(Z1A)

for each A ∈ F .

The random variable Z is called the density, or the Radon–Nikodym derivative, of Q with
respect to P, and is often denoted

Z =
dQ
dP

.

As a mnemonic device, note that the Radon–Nikodym derivative satisfies the identity

Q(A) =

∫
A

dQ
dP

dP.

Also, note that P has a density with respect to Q given by

dP
dQ

=
1

Z
.

We only need the easy direction of the theorem, that the existence of a positive density
implies equivalence, for this course. Here is a proof. The proof of the harder direction is
omitted since we do not need it.

Proof. Suppose P(Z > 0) = 1 and that EP(Z) = 1. Define a set function Q by

Q(A) = EP(Z1A).

Note that Q is countably additive by the monotone convergence theorem. Also, Q(Ω) =
EP(Z) = 1, so Q is a probability measure. If P(A) = 0, then the event {1A = 0} is P-almost
sure and hence

Q(A) = EP(Z1A) = 0.

Conversely, if Q(A) = 0 we can conclude that {Z1A = 0} is P-a.s. by the pigeon-hole
principle since {Z1A ≥ 0} is P-a.s. But since {Z > 0} is P-a.s., we must conclude that
{1A = 0} is P-a.s., i.e. P(A) = 0. Thus Q and P are equivalent. �

Example. Consider the sample space Ω = {1, 2, 3} with the set F of events all subsets
of Ω. Consider probability measures P and Q defined by

• P{1} = 1
2
,P{2} = 1

2
, and P{3} = 0

• Q{1} = 1
1000

,Q{2} = 999
1000

, and Q{3} = 0.

Then P and Q are equivalent. We may take their density Z = dQ
dP to be

Z(1) =
1

500
, Z(2) =

999

500
, Z(3) = 0.

(Since both measures don’t ‘see’ the event {3}, we can let Z(3) be any value.)
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Now, returning to our financial model, we have a result that says, that in a market with a
numéraire, the notion of an equivalent martingale measure is morally the same as the notion
of a martingale deflator.

Proposition. Suppose the market has a numéraire, and fix a non-random time horizon
T > 0. The market model (Pt)0≤t≤T has an equivalent martingale measure relative to the
numéraire if and only if there is a martingale deflator.

Proof. Let Y be a process such that {YT > 0} is P-a.s. and such that YTPT is P-
integrable. Define a new measure Q by the density

dQ
dP

=
YTNT

EP(YTNT )
.

Our analysis turns on the Bayes formula

EQ
(
PT
NT

|Ft
)

=
EP (PTYT |Ft)
EP (NTYT |Ft)

Suppose Y is a martingale deflator. We have

EP (PTYT |Ft) = PtYt.

by definition. Also note that

YtNt − Yt−1Nt−1 = ηt · (YtPt − Yt−1Pt−1)

and hence Y N is a local martingale. However, since Y N is non-negative, we know from last
section that Y N is a true martingale. In particular

EP (NTYT |Ft) = NtYt.

By the Bayes formula we have

EQ
(
PT
NT

|Ft
)

=
Pt
Nt

and hence P/N is a Q-martingale, i.e. Q is an equivalent martingale measure.
Conversely, suppose Q is an equivalent martingale measure. Let

Zt = EP
(
dQ
dP
|Ft
)
.

Note that Z is a positive P-martingale. Let

Yt = Zt/Nt.

Since the random variable PT/NT is Q-integrable by the definition of martingale, we can
conclude that PTYT is P-integrable. Furthermore, the process Y is positive and satisfies

EP (NTYT |Ft) = EP(ZT |Ft)
= Zt

= NtYt.
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Hence by the Bayes formula

EP (PTYT |Ft) = EQ
(
PT
NT

|Ft
)
EP (NTYT |Ft)

=
Pt
Nt

(NtYt)

= PtYt

so that PY is a P-martingale and hence Y is a martingale deflator. �

Combining the two results of this section, we have the usual formulation of the first
fundamental theorem of asset pricing:

Theorem (First Fundamental Theorem of Asset Pricing when there is a numéraire).
Suppose the market has is a numéraire, and fix a non-random time horizon T > 0. The
market model (Pt)0≤t≤T has no terminal consumption arbitrage if and only if there exists an
equivalent martingale measure relative to the numéraire.

8. Special numéraires and equivalent martingale measures

In this section we consider two classes of numéraire assets (and their respective equivalent
martingale measures) that arise very frequently in applications.

Definition. A (risk-free zero-coupon) bond is an asset such that there exists a non-
random time T > 0 (called its maturity date) and such that its price at time T is a non-
random positive constant (called its face value or principal value ). Unless otherwise specified,
we shall assume that the face value of a bond is £1. We will denote the time t price of the
bond of maturity T by P T

t for 0 ≤ t ≤ T .

Proposition. Suppose the market contains a bond. If the market has no arbitrage, then
the bond is a numéraire.

Proof. There are at least two ways to prove this. It is important to understand both
methods.
A ‘primal’ argument. The idea is that if the bond price drops to zero or less, then an investor
could lock in a risk-less profit. In particular, if there is no arbitrage, the price must stay
positive.

In mathematical notation, let

τ = inf{0 ≤ t ≤ T : P T
t ≤ 0}.

with the convention that τ = +∞ if P T
t > 0 for all 0 ≤ t ≤ T .

Note that τ is a stopping time. Consider predictable process Ht = 1{τ<t≤T}. This
corresponds to a portfolio of buying the bond immediately after the price drops to zero or
below and hold it until maturity. Note that

c0 = −HT
1 P

T
0 = −1{τ=0}P

T
0 ≥ 0

ct = (HT
t −HT

t+1)P T
t = −1{τ=t}P

T
t ≥ 0 for 1 ≤ t ≤ T

cT = 1{τ<T}P
T
T ≥ 0.

If there is no arbitrage, then ct = 0 a.s. for all 0 ≤ t ≤ T . Hence τ = +∞ a.s.

35



A ‘dual’ argument. Since there is no arbitrage, there exists a martingale deflator Y . Note
Y P T is a martingale, and hence

P T
t =

1

Yt
E(YT |Ft)

since P T
T = 1 by definition. Since Yt > 0 a.s. for all t ≥ 0, the conclusion follows. �

Since we now know no arbitrage implies that bonds are numéraires, we can discuss
equivalent martingale measures:

Definition. An equivalent martingale measure with respect to a bond of maturity T > 0
is called a T -forward measure.

For an application of forward measures, we consider a forward contract:

Definition. A forward initiated at time t with maturity date T is a contract where,
at time t, no money is exchanged and at time T , an asset with price ST is swapped for F T

t

units of money, where F T
t is known at time t. The quantity F T

t is called the forward price
of the asset.

See the diagram for the timing of the payment streams in a forward contract.

Proposition. Consider a market model with a bond of maturity T and forward contract
initiated at time t and maturing at time T . If the market has no arbitrage, then

F T
t = EQT

(ST |Ft)
where QT is a T -forward measure.

Proof. Let Ds be the price of the forward contract at time s, for t ≤ s ≤ T . Since
there is no arbitrage, we have

Dt = P T
t EQT

(DT |Ft)
Noting that Dt = 0 and DT = ST − F T

t , and that F T
t is Ft-measurable yields the result,

upon rearrangement. �

We now suppose there is a whole family of bonds, indexed by their maturities.
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Definition. Consider a market with bonds of all maturities T ∈ {0, 1, 2, . . .}. The spot
interest rate at time t is

rt =
1

P t
t−1

− 1.

The value of the bank account (or money market account) is given by B0 = 1 and

Bt =
t∏

s=1

(1 + rs) for t ≥ 1.

for all t.

Remark. Note that the spot interest rate and bank account processes are previsible.

The connection between bonds and the bank account is the following:

Proposition. Suppose the arbitrage-free market model has bonds of all maturities. Then
there exists a pure-investment (that is, no consumption) strategy η such that

Bt = ηt · (P 0
t , P

1
t , P

2
t , . . .)

for all t ≥ 0.

Proof. Let ηt = Btδ
t, where δt is the portfolio of holding exactly one bond of maturity

t. That is to say, η is the strategy of investing all of the accumulated wealth in the bond of
maturity t during the interval (t− 1, t]. Note that η is previsible and that

ηt+1 · (P 0
t , P

1
t , P

2
t , . . .) = Bt+1δ

t+1 · (P 0
t , P

1
t , P

2
t , . . .)

= Bt(1 + rt+1)P t+1
t

= Bt

= Btδ
t · (P 0

t , P
1
t , P

2
t , . . .)

= ηt · (P 0
t , P

1
t , P

2
t , . . .).

�

Definition. An equivalent martingale measure with respect to the bank account is
called a risk-neutral measure.

Now we consider a natural application of a risk-neutral measure.

Definition. A futures contract initiated at time t with maturity date T is a contract
where, at time t, no money is exchanged; at every time t < u < T , the sum of fTu units of
money is swapped for fTu−1 units of money; and finally at time T , the asset with price ST is
swapped for fTT−1 units of money, where fTs is known at time s for t ≤ s ≤ T . The quantity
fTt is called the futures price of the asset.

A futures contract is essentially a portfolio of forward contracts of different maturities,
with the payout of each forward dependent on the futures prices at the different times before
maturity. See the diagram for the timing of the payment streams in a futures contract.
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Proposition. Consider a market model with a bank account and futures contracts for
maturity T initiated at each time u for t ≤ u < T . If the market has no arbitrage, then

fTt = EQ(ST |Ft)

where Q is a risk-neutral measure.

Proof. By the 1FTAP says that a market with a dividend paying asset is free of arbi-
trage if and only if there exists a risk-neutral measure Q, i.e. a measure under which the
process M defined by

Mt = Pt/Bt +
t∑

s=1

δs/Bs

is a martingale. In our example, we set δu = fTu − fTu−1 and Pu = 0 for t ≤ u ≤ T , where
fTT = ST .

Note

0 = EQ[Mu+1 −Mu|Fu] = EQ[(fTu+1 − fTu )/Bu+1|Fu]
=
(
EQ[fTu+1|Fu]− fTu

)
/Bu+1

by the Fu-measurability of Bu+1. Hence (fTu )t≤u≤T is a Q-martingale. �

Remark. Let fTt be the futures price of a stock at time t for maturity T . If T 7→ fTt is
non-decreasing, the market for that stock is said to be in contango at time t. And if T 7→ fTt
is non-increasing, the market is said to be in normal backwardation.
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Forward measures and risk-neutral measures are in general different. In particular, for-
ward prices and futures prices usually disagree. But there is an important example where
they agree:

Proposition. Suppose that the spot interest rate process is not random. A probability
measure is a T -forward measure if and only if it is risk-neutral.

Proof. The fundamental result is that if B is a non-random process then

P T
t =

Bt

BT

.

This formula can be seen as an instance of the law of one price; see the first example sheet.
But here is the quick dual argument: Since both Y P T and Y B are martingales we have

Bt =
1

Yt
E(BTYT |Ft)

=
BT

Yt
E(P T

T YT |Ft)

= BTP
T
t .

Now, since BT is assumed to be a constant, the process (St/Bt)0≤t≤T is a martingale with
respect to a certain measure if and only if (St/P

T
t )0≤t≤T is a martingale with respect to the

same measure. �

9. Contingent claim pricing and hedging

The setting of this section is as follows. We find ourselves in a market with prices (Pt)t≥0.
A contingent claim is any cash payment where the size of the payment is contingent on the
prices of other assets or any other variable3 There are two major types of contingent claims
that we will study in these notes: European and American.

European: specified by a time horizon T > 0 and FT -measurable random variable
ξT modelling the payout at the maturity date T .

American: specified by a time horizon T > 0 and an adapted process (ξt)0≤t≤T where
ξt models the payout of the claim if the owner of the claim chooses to exercise at
time t.

We put ourselves in the shoes of an investment bank that would like to market a new
contingent claim. The question are these: what is a ‘good’ initial price for this claim? How
can the seller hedge against the liability of owing the buyer the payout of the claim?

We first consider European options.

Example (Forward contract). Given a market for a traded asset with prices (St)t≥0, a
forward contract initiated at a fixed time t for maturity T is a European claim with payout
ξT = ST − F T

t , where F T
t is the forward price at time t for maturity T . We have discussed

this example in the previous section.

3... such as the weather. In fact, there exist traded contracts called weather derivatives, marketed to
farmers as a hedge against poor growing conditions, energy companies as a hedge against warm winters (and
therefore low demand for heating), etc.
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Example (Call option). A European call option gives the owner of the option the right,
but not the obligation, to buy a given stock at a fixed time T (called the maturity date) at
some fixed price K (called the strike). See the figure for the timing of the payments, where
Ct is the price of the option at time t and ST is the price of the stock at the maturity date
T . There are two cases: If K ≥ ST , then the option is worthless to the owner since there

is no point paying a price above the market price for the underlying stock. On the other
hand, if K < ST , then the owner of the option can buy the stock for the price K from the
counterparty and immediately sell the stock for the price ST to the market, realising a profit
of ST −K. Hence, the payout of the call option is ξT = (ST −K)+, where a+ = max{a, 0}
as usual. The ‘hockey-stick’ graph of the function g(x) = (x−K)+ is below.

We will assume that the original market has no arbitrage, since otherwise it is difficult
to formulate a reasonable answer to the pricing and hedging questions. Therefore, we will
assume that there is at least one martingale deflator.

Proposition. Consider an arbitrage-free market with prices P . Introduce to this market
a European contingent claim with maturity T and payout ξT . Suppose that for t < T , the
price of the claim at time t is ξt. If the augmented market with prices (Pt, ξt)0≤t≤T has no
arbitrage, then

ξ
t
≤ ξt ≤ ξt for all 0 ≤ t ≤ T

where

ξ
t

= ess inf
{ 1

Yt
E(YT ξT |Ft) :Y a martingale deflator for the original market

such that ξTYT is integrable
}
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and ξt is defined similarly in terms of the essential supremum.

Proof. This is just the 1FTAP. Indeed, if the augmented market there must be a mar-
tingale deflator for the augmented market. Such a martingale deflator is necessarily a mar-
tingale deflator for the original market. In particular, if Y is a martingale deflator for the
augmented market, then ξt = 1

Yt
E(YT ξT |Ft). That ξt is in the interval [ξ

t
, ξt] follows directly

from the definition of essential infimum and supremum. �

Remark. We pause briefly to discuss the notions of essential supremum and essential
infimum.. Given a collection of random variables (Xk)k∈K indexed by an arbitrary (possibly
uncountable) set K, a random variable Y is called the essential supremum of the collection,
denoted

Y = ess supk∈KXk

iff it satisfies

• Y ≥ Xk almost surely for all k ∈ K, and
• if another random variable Z is such that Z ≥ Xk almost surely for all k ∈ K, then
Z ≥ Y almost surely.

The essential infimum of the collection is defined similarly. The proof of the existence of the
essential supremum of a family of random variables is on example sheet 2.

Recall, that in contrast, the function Ŷ defined by Ŷ (ω) = supk∈K Xk(ω) has the property

that Ŷ ≥ Xk for all k ∈ K everywhere, and if Z is another function such that Z ≥ Xk for
all k ∈ K everywhere, then Z ≥ Ŷ everywhere.

Here is an example to show that the ordinary notion of supremum is not the correct
notion in certain probabilistic settings. Let the set of outcomes Ω be the interval [0, 1], the
set of events F be the Borel sigma-field and the probability measures P be the Lebesgue
measure. Fix a subset K ⊆ [0, 1] and let Xk = 1{k}. Note that Ŷ = supkXk = 1K . There

are a couple of reasons why Ŷ is not very useful probabilistically.
Firstly, note that Ŷ is a measurable map from Ω to R if and only if K is a Borel set.

Since K was arbitrary, it is not always the case that Ŷ is a random variable.
Secondly, even if K is measurable and Ŷ is a random variable, it is ‘too big’. Indeed, the

smaller random variable Y = 0 has the property that Y ≥ Xk almost surely for all k ∈ K.
Returning to our application for bounding no-arbitrage prices, we don’t know a priori

whether the set of martingale deflators is countable or not. So the ordinary supremum may
not be measurable. Furthermore, we only care about almost sure inequality for each martin-
gale deflator (not inequality simultaneously for all martingale deflators for every outcome4),
the essential supremum and infimum appearing the statement of the result are appropriate.

The above theorem says that the principle of no-arbitrage usually is not enough to
uniquely price a contingent claim. At best, it gives an interval where the no-arbitrage price
may lie. However, there is a special class of contingent claims that can be priced uniquely.

Definition. A European contingent claim with payout ξT is replicable or attainable iff
there exists an initial wealth x and pure investment strategy H such that Xx,H

T = ξT almost

4Indeed, the inequalities we care about involve conditional expectations, which are only really defined
as an equivalence class of random variables that agree on a set of probability one.
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surely. (Recall that X0 = x,Xt = Ht ·Pt for t ≥ 1 and pure investment means Ht+1 ·Pt = Xt

for t ≥ 0.

One of the reasons to single out attainable claims is that there is an unambiguous way
to price them according to the no-arbitrage principle:

Theorem (Characterisation of attainable claims). Suppose that the market model with n-
dimensional price process P has no arbitrage. Let ξT be the payout of a European contingent
claim with maturity date T > 0. The following are equivalent:

(1) The claim is atttainable.
(2) There exists a unique process (ξt)0≤t≤T such that the augmented market (P, ξ) has

no arbitrage.
(3) There exists a number ξ0 such that E[YT ξT ] = Y0ξ0 for all martingale deflators (of

the original market) such that YT ξT is integrable.

Proof. (1)⇒ (2) This is the law of one price from the first example sheet. Indeed, let
ξt be the price of the claim and Xt be the price of the replicating portfolio at time t. Let
τ be the first time ξt 6= Xt. One the event {τ < T} do the following: at time τ buy the
cheaper one, sell the expensive one, and consume the difference; and at time T unwind both
positions for zero cost since ξT = XT by assumption. In notation, let H be the replicating
strategy and let consider the strategy (H̃, h) in the augmented market given by

(H̃t, ht) = 1{τ≤t−1}(Ht,−1)sign(ξτ −Xτ ) for 1 ≤ t ≤ T

and H̃T+1 = 0 and hT+1 = 0. The corresponding consumption stream is

ct = 1{τ=t}|Xt − ξt|

This strategy would be an arbitrage unless P(τ < T ) = 0. Hence, no arbitrage in the
augmented market implies ξt = Xt a.s. for all 0 ≤ t ≤ T and hence the price process is
uniquely determined by the replicating strategy.

(By the way, the same argument shows that if Xx,H
T = Xy,K

T almost surely for possibly

different strategies H and K initial wealths x and y, then Xx,H
t = Xy,K

t almost surely for all
0 ≤ t ≤ T . In particular, two replicating strategies of an attainable claim yield the same no
arbitrage price.) �

Proof. (2)⇒ (3) Suppose that there is no arbitrage in the augmented market. Then
there exists a martingale deflator Y for that market. In particular, this martingale deflator
is a martingale deflator for the original market and also for the new asset. That is, Y ξ is a
martingale and in particular, E(YT ξT ) = Y0ξ0. Now, assuming that the initial price ξ0 of the
claim is uniquely identified yields the result. �

It remains to prove the implication (3) ⇒ (1). We will only prove the T = 1 version.
Recall that in this setting, the martingale deflator: Y0 > 0, Y1 > 0 almost surely and
E(Y1P1) = Y0P0, can be replaced by the pricing kernel: ρ > 0 almost surely and E[ρP1] = P0,
by setting ρ = Y1/Y0.

In what follows, we will assume that the one-period market with prices P0, P1 has no
arbitrage. By the fundamental theorem of asset pricing, there exists a pricing kernel. But,
given an arbitrary random variable ξ1, one may worry whether there must exist a pricing
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kernel ρ such that ρξ1 is integrable. Fortunately, it turns out that if there is no arbitrage,
there does indeed exist at least one pricing kernel ρ such that ρξ1 is integrable. 5

We will proceed by a series of lemmas.

Lemma. Suppose that there exists a number ξ0 such that E(ρξ1) < ξ0 for all pricing
kernels such that ρξ1 is integrable. Then there exists a portfolio H ∈ Rn such that

H · P0 ≤ ξ0 and H · P1 ≥ ξ1 a.s.

and there is positive probability that at least one of the above inequalities is strict.

Proof. By assumption, there does not exist a pricing kernel for the augmented mar-
ket (P, ξ). By the fundamental theorem of asset pricing, there exists an arbitrage in the
augmented market, i.e. a portfolio (H̃, h) ∈ Rn+1 such that

H̃ · P0 + hξ0 ≤ 0 and H̃ · P1 + hξ1 ≥ 0 a.s.

where there is positive probability that at least one of the above inequalities is strict.
Let ρ be a pricing kernel for the original market such that ρP1 is integrable. Note that

we have

0 ≤ E[ρ(H̃ · P1 + hξ1)]

= H̃ · P0 + hE(ρξ1)

≤ h[E(ρξ1)− ξ0]

Since E(ρξ1)− ξ0 < 0, we conclude that h ≤ 0.
We can rule out the case that h = 0. For instance, if h = 0 we would have H̃ being an

arbitrage in the original market - a contradiction.6 We are left with h < 0. This shows that
H = −H̃/h satisfies the conclusion of the lemma. �

Lemma. Suppose that there exists a number ξ0 such that E(ρξ1) ≤ ξ0 for all pricing
kernels such that ρξ1 is integrable. Then there exists a portfolio H ∈ Rn such that

H · P0 ≤ ξ0 and H · P1 ≥ ξ1 a.s.

Proof. For all k > 0, we have E(ρξ1) < ξ0 +1/k and hence by the previous lemma there
exists a portfolio Hk ∈ Rn such that

Hk · P0 ≤ ξ0 + 1/k and Hk · P1 ≥ ξ1 a.s.

5To see why, recall from the proof that we let

F (h) = eh·P0 + E[e−h·P1ζ]

and chose the positive random variable ζ such that F was finite valued, and hence smooth. A good choice is

ζ = e−‖P1‖2/2. We then showed that no arbitrage implied that there exists a minimiser h∗ of F , and hence

ρ =
e−h

∗·P1

eh∗·P0
ζ

is a pricing kernel.
Now, there is a lot of freedom with a our choice of ζ. Given the random variable ξ1, we could, for

instance choose ζ = e−‖P1‖2/2−ξ21/2. With this choice, it is clear that the resulting pricing kernel ρ is such
that ρξ1 is bounded, and hence integrable.

6Alternatively, note that since P(H̃ · P0 + hξ0 = 0 = H̃ · P1 + hξ1) < 1, we have h[E(ρξ1)− ξ0] > 0.
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Case: (Hk)k is bounded. In this case, we can pass to a convergent subsequence such that
Hk → H∗. Note

H∗ · P0 ≤ ξ0 and H∗ · P1 ≥ ξ1 a.s.

as desired.
Case: (Hk)k is unbounded. Recall from the proof of the 1FTAP the notation

U = {u ∈ Rn : u · P0 = 0 = u · P1 a.s. }

and

V = U⊥.
By projecting our given sequence onto V , we can assume that Hk ∈ V for all k and that (Hk)k
is unbounded (otherwise, we are back to the previous case). We can pass to a subsequence

such that ‖Hk‖ → ∞ and to a further subsequence such that Ĥk = Hk/‖Hk‖ converges to a

non-zero7 is limit Ĥ ∈ V . Now dividing the inequalities by ‖Hk‖ and taking the limit yields

Ĥ · P0 ≤ 0 ≤ Ĥ · P1 a.s.

By no arbitrage, we have Ĥ · P0 = 0 = Ĥ · P1 a.s., or in other notation Ĥ ∈ U . Since Ĥ is
in V , we have Ĥ = 0, a contradiction. This shows that this second case is impossible. �

Proof of (3) ⇒ (1) in one period. Suppose that there exists a number ξ0 such that
E(ρξ1) = ξ0 for all pricing kernels such that ρξ1 is integrable. Note that

E(ρξ1) ≤ ξ0 for all ρ

so that there exists a portfolio H+ ∈ Rn such that

H+ · P0 ≤ ξ0 and H+ · P1 ≥ ξ1 a.s.

Similarly,

E[ρ(−ξ1)] ≤ −ξ0 for all ρ

so that there exists a portfolio H− ∈ Rn such that

H− · P0 ≤ −ξ0 and H− · P1 ≥ −ξ1 a.s.

Adding this together yields

(H+ +H−) · P0 ≤ 0 ≤ (H+ +H−) · P1 a.s.

By no arbitrage in the original market, we have

(H+ +H−) · P0 = 0 = (H+ +H−) · P1 a.s.

Hence the portfolios H = H+ and H = −H− satisfy the desired conclusion. �

7We are only considering here the case where V 6= {0}. But let’s think a bit about the case V = {0}. In
this case P0 = 0 = P1 almost surely. So the lemma says that if E(ρξ1) ≤ ξ0 for all positive random variables
ρ, then ξ1 ≤ 0 ≤ ξ0 almost surely. Can you prove this statement?
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Example. (Put-call parity formula) Suppose we start with a market with three assets
with prices (BT

t , St, Ct)0≤t≤T . The first asset is a bond with maturity date T and unit
principal value, so that in particular, BT

T = 1 almost surely. The next asset is a stock. The
last asset is a call option on that stock with strike K and maturity T , so that CT = (ST−K)+.
Suppose that this market is free of arbitrage.

Now we introduce another claim, called a put option. A put option gives the owner of
the option the right, but not the obligation, to sell the stock for a fixed strike price at a fixed
maturity date. If the strike is K and maturity date is T , then a similar argument as we used
for the call option, the payout of a put option is PT = (K − ST )+.

It turns out that the put option is replicable in the market (BT , S, C). Indeed, we have
the identity

PT = (K − ST )+

= K − ST + (ST −K)+

= (K,−1,+1) · (BT
T , ST , CT ).

Hence Ht = (K,−1,+1) for all 1 ≤ t ≤ T is a replicating strategy.
Now, suppose we want to assign prices Pt to the put for 0 ≤ t < T . The above theorem

says there is no arbitrage in the augmented market (BT , S, C, P ) if and only if

Pt − Ct = KBT
t − St

This is the famous put-call parity formula.

Figure 1. A plot of P0−C0 versus K, where t = 0 corresponds to 23 October
2017 and and t = T is 17 November 2017, and the underlying asset is the S&P
500 index with S0 = 2, 573.82. The price of the calls and puts is taken to be
the last traded price on the day (as opposed to the bid or ask price). All data
is taken from https://uk.finance.yahoo.com.

Since attainable claims have unique no-arbitrage prices, we single out the markets for
which every claim is attainable:
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Definition. A market is complete if and only if every European contingent claim is
attainable. A market is incomplete otherwise.

In discrete time models complete markets have a lot (probably too much) structure:

Theorem. If the market model P with n assets is complete, then for each t ≥ 0 the
probability space Ω can be partitioned into no more than nt Ft-measurable events of positive
probability, and in particular, the n-dimensional random vector Pt takes values in a set of at
most nt elements.

Proof. We will proceed by induction. First suppose A1, . . . , Ak are a collection of
disjoint Ft-measurable events with P(Ai) > 0 for all i. Claim: the set {1A1 , . . . ,1Ak

} is
linearly independent, and in particular, the dimension of the span of {1A1 , . . . ,1Ak

} is exactly
k. Indeed, we must show that if

a11A1 + . . . ak1Ak
= 0 a.s.

for some constants a1, . . . , ak, then a1 = · · · = ak = 0. To this end, note that if i 6= j the
sets Ai and Aj are disjoint and hence 1Ai

1Aj
= 0. By multiplying both sides of the equation

by 1Ai
we get ai1Ai

= 0. But since P(Ai) > 0 it must be the case that ai = 0, proving the
claim.

Since the market is complete, each of the 1Ai
is replicable. Hence

span{1A1 , . . . ,1Ak
} ⊆ {Ht · Pt : Ht is Ft−1-meas. }

Now let B1, . . . , BN be a maximal partition of Ω into disjoint Ft−1-measurable sets of
positive measure, where by the induction hypothesis N ≤ nt−1. If a random vector Ht is
Ft−1-measurable, then it takes exactly one value on each of the Bj’s for a total of at most
N values h1, . . . , hN . Hence

{Ht · Pt : Ht is Ft−1-meas. } = {h1 · Pt1B1 + . . .+ hN · Pt1BN
: h1, . . . , hN ∈ Rn}

= span{P i
t1Bj

: 1 ≤ i ≤ n, 1 ≤ j ≤ N}
and the dimension of the space above is at most nN .

Therefore, we have shown k ≤ nN ≤ nt, completing the induction. �

We can characterise complete markets:

Theorem (Second Fundamental Theorem of Asset Pricing). An arbitrage-free market
model is complete if and only if there exists a unique martingale deflator Y such that Y0 = 1.

Proof. (‘if’ direction) Let Y and Y ′ be martingale deflators with Y0 = 1 = Y ′0 . Suppose
the market is complete, fix a non-random time T > 0 and consider the claim with payout
ξT = YT − Y ′T . By completeness, there exists (x,H) such that Xx,H

T = ξT . By completeness,
every FT -measurable random variable is bounded (since it can take at most nT different
values) so both YT ξT and Y ′T ξT are integrable. In particular, we have

E[YT ξT ] = x = E[Y ′T ξT ].

Subtracting the left and right side of the above equation yields E[(YT −Y ′T )2] = 0 from which
the uniqueness of the martingale deflator follows.

(‘only if’ direction) Suppose there is a unique martingale deflator such that Y0 = 1.
Then for every contingent claim with payout ξT there exists a unique number ξ0 such that
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E(YT ξT ) = ξ0 for every (that is, the unique) martingale deflator. By the characterisation of
attainability, we have ξT is attainable, as desired. �

This box summarises the fundamental theorems:

1FTAP: No arbitrage ⇔ Existence of martingale deflator
2FTAP: Completeness + No arb ⇔ Uniqueness of martingale deflator

Finally, we close this section with another useful consequence of completeness:

Proposition. Suppose the arbitrage-free market model in complete. Then there exists a
bank account.

Proof. By completeness, bonds of all maturities can be replicated. Hence a bank ac-
count can be constructing by holding all the wealth during the period (t− 1, t] in the bond
with maturity t. �

10. Replication with calls and puts

We consider a market consisting of a bond, a stock with time-T price ST ≥ 0, and a
family of European calls and puts with strikes in a finite set K = {K1, . . . , KN} ⊆ (0,∞) all
with maturity T .

Theorem. Suppose g is piece-wise linear with kinks precisely at the points K. Then the
European claim with time T payout ξT = g(ST ) can is attainable.

Proof. Note that g is differentiable everywhere except K. For every a 6∈ K, note that
the following identity holds

g(s) =g(a) + g′(a)(s− a) +
∑

K∈K,K<a

∆K(K − s)+ +
∑

K∈K,K>a

∆K(s−K)+

where ∆K = g′(K+)−g′(K−). Hence the replicating strategy is to hold g(a)−ag′(a) shares
of the bond, to hold g′(a) shares of stock, and holding ∆K puts of strike K < a and ∆K

calls of strike K > a for all K ∈ K. �

Remark. To prove the identity, note that

g(x) = g(0) + g′(0)x+ +
∑
K∈K

∆K(x−K)+

for all x ≥ 0 and

g′(x) = g′(0) +
∑

K∈K,K<x

∆K

for x 6∈ K, so that

g(s)− g(a)− g′(a)(s− a) =
∑
K∈K

∆K [(s−K)+ − (a−K)+ − (s− a)1{K<a}]

=
∑

K∈K,K<a

∆K(K − s)+ +
∑

K∈K,K>a

∆K(s−K)+.
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Remark. In fact, when g is twice continuously differentiable, the continuous analogue
of the above identity holds

g(s) = g(a) + g′(a)(S1 − a) +

∫ a

0

g′′(K)(K − s)+dK +

∫ ∞
a

g′′(K)(s−K)+dK

for any a > 0. Note that the integrand of the first integral is zero unless min{s, a} ≤
K ≤ a. Similarly, the integrand of the second integral is zero unless a ≤ K ≤ max{s, a}.
In particular, the ranges of both integrals are bounded intervals on which g′′ is assumed
continuous, so both integrals are ordinary Riemann integrals.

(One way to prove this identity is to fix s and let h(a) equal the right-hand side. By the
standard rules of calculus, we have h′(a) = 0 and hence h(a) is a constant. To evaluate that
constant, let a = s and note that both integrals vanish since the ranges of integration have
zero length.)

Consider the case g(s) = log s. We have the identity

logST = log a+
ST − a
a

−
∫ a

0

(K − ST )+

K2
dK −

∫ ∞
a

(ST −K)+

K2
dK.

This formula is interpreted to mean that a claim with payout ξT = logST can be approxi-
mately replicated by trading in calls and puts over a large number of strikes.

Although in reality there do not exist contingent claims with log payouts, market practi-
tioners often think of this log contract as being traded since it can be manufactured (approx-
imately) by calls and puts in a straight-forward manner. This line of thinking has lead to the
introduction of variance swap contracts which we will consider in the chapter on continuous
time models.

The above result says that given enough call prices, it is possible to replicate any claim
with payout of the form g(ST ), assuming g is piece-wise linear (or at least to replicate
approximately in the case where g is smooth enough to be approximated by a piece-wise
linear function). Assuming we know the initial prices of theses call, we can then calculate
the initial cost of the approximate hedging portfolio.

We now come to a simple result observed by Breeden and Litzenberger in 1978. Our
setting is a market with prices (P T , S) where the first asset is a bond of maturity T , let

Q ∼ P be a T -forward measure, so that EQ(ST ) = S0/P
T
0 . Let CT,K

T = (ST − K)+ be the
payout of a call with strike K ≥ 0, and let the initial prices be

CT,K
0 = P T

0 EQ[(ST −K)+].

Then for any collection of strikes K = {K1, . . . , KN} the augmented market with prices
(P T , S, CT,K)K∈K has no arbitrage by the easy direction of the first fundamental theorem,
since Q is a forward measure for the augmented market.

Note that the function K 7→ CT,K
0 is convex and therefore has right- and left- derivatives

at each point. The following gives meaning to these derivatives:

Proposition (Breeden–Litzenberger formula). For any K ≥ 0 we have

Q(ST > K) =
1

P T
0

D+
KC

T,K
0
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and

Q(ST ≥ K) =
1

P T
0

D−KC
T,K
0 .

If K 7→ CT,K
0 is twice-differentiable then the law of the random variable ST has a density fST

under Q given by

fST
(K) =

1

P T
0

D2
KC

T,K
0 .

Proof. Note that

D+C0(K) = lim
ε↓0

C0(K + ε)− C0(K)

ε

= −P T
0 lim

ε↓0
EQ[gε(ST −K)]

where
gε(x) =

x

ε
1[0,ε) + 1[ε,∞)(x).

Note that gε is bounded and gε → 1(0,∞) pointwise, so the first formula is proven by by the
dominated convergence theorem. The formula for the left-derivative is proven similarly.

Finally, if C0 is twice-differentiable the density is recovered by differentiating once more
with respect to K. �

11. Call prices from moment generating functions

Since a portfolio of calls and puts on a stock can essentially replicate any European
contingent claim, it is important to have models where the call prices can be computed
easily. Unfortunately, there are few models where there exists nice, elementary formulae for
the call prices. However, there are many models (especially when we get to continuous time)
where the moment generating functions can be computed explicitly, and we will now see that
given the moment generating function we can compute call prices by integration:

Consider a market model with a bond of maturity T , a stock with ST ≥ 0 almost surely,
and let Q be a fixed T -forward measure. Let

CT,K
0 = P T

0 EQ[(ST −K)+]

for K > 0, so that if CT,K
0 is the initial price of a call with strike K, then the augmented

market has no arbitrage.
For complex θ in the vertical strip

Θ = {θ = p+ iq : 0 ≤ p ≤ 1, q ∈ R}
define the moment generating function of the log stock price by

M(θ) = EQ(eθ logST1{ST>0}).

Note that we have for θ = p+ iq ∈ Θ,

EQ(|eθ logST1{ST>0}|) = EQ(SpT )

≤ EQ(ST )p

=

(
S0

P T
0

)p
<∞
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by Jensen’s inequality, so the moment generating function is well-defined and finite-valued
– indeed it is analytic on Θ but we do not use this fact below. The following result shows
how to recover call prices from the moment generating function.

Theorem. For any 0 < p < 1 the identity

CT,K
0 = S0 −

K1−pP T
0

2π

∫ ∞
−∞

M(p+ ix)e−ix logK

(x− ip)(x+ i(1− p))
dx

holds.

Essentially, we are inverting the moment generating function via a complex integral.
Variants of this procedure are often called a Bromwich, Fourier or Mellin transform. To
prove this formula, we begin with a lemma:

Lemma. For any 0 < p < 1 the identity

1

2π

∫ ∞
−∞

eiax

(x− ip)(x+ i(1− p))
dx =

{
e−ap if a ≥ 0
ea(1−p) if a < 0

holds.

Proof. This is a standard application of the Cauchy residue theorem. Consider the case
a ≥ 0. Define the semi-circular contour

ΓR = {x+ i0 : −R ≤ x ≤ R} ∪ {Reiφ : 0 ≤ φ ≤ π}
in the upper half-plane. Cauchy’s theorem∫

ΓR

eiaz

(z − ip)(z + i(1− p))
dz = i2π

eiaz

z + i(1− p)

∣∣∣∣
z=ip

= 2πe−ap

since the integrand is meromorphic with a simple pole at z = ip inside the contour, and the
contour integral is evaluated in the anticlockwise sense.

On the other hand,∫
ΓR

eiaz

(z − ip)(z + i(1− p))
dz =

∫ R

−R

eiax

(x− ip)(x+ i(1− p))
dx+

∫ π

0

iRe−aR sinφei(aR cosφ+φ)

(Reiφ − ip)(Reiφ + i(1− p))
dφ

and the second integral vanishes as R→∞ since a ≥ 0.
The case a < 0 is handled in exactly the same way; just integrate around a semi-circular

contour in the lower half-plane enclosing the other pole at −i(1− p). �
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Proof of theorem. From the lemma, we have the identity

(ST −K)+ST − ST ∧K

= ST −
K1−p

2π

∫ ∞
−∞

ep logST +ix log(S1/K)
1{ST>0}

(x− ip)(x+ i(1− p))
dx.

Now multiply by P T
0 and compute expectations. The result follows upon interchanging

expectation and integration on the right-hand side. This is justified by Fubini’s theorem
since ∫ ∞

−∞
EQ
∣∣∣∣ ep logST +ix log(S1/K)

(x− ip)(x+ i(1− p))

∣∣∣∣ dx = M(p)

∫ ∞
−∞

dx√
(x2 + p2)(x2 + (1− p)2)

<∞

�

12. Super-replication of American claims

We now discuss American claims. Here, things are quite different. The canonical example
of an American claim is the American put option– a contract which gives the buyer the right
(but not the obligation) to sell the underlying stock at a fixed strike price K > 0 at any time
between time 0 and a fixed maturity date T . Hence, the payout of the option is (K − Sτ )+

where τ ∈ {0, . . . , T} is a time chosen by the holder of the put to exercise the option.
The payout of an American claim is specified by two ingredients:

• a maturity date T > 0,
• an adapted process (ξt)0≤t≤T .

For instance, in the case of an American put, we may take ξt = (K − St)
+. Unlike the

European claim, the holder of an American claim can choose to exercise the option at any
time τ before or at maturity. However, to rule out clairvoyance, we insist that τ is a stopping
time.

Now, if an American claim matures at T > 0 and is specified by the payout process
(ξt)0≤t≤T , then the actual payout of the claim is modelled by the random variable ξτ , where
τ is any stopping time for the filtration taking values in {0, . . . , T}.

We can think of the American claim then as a family, indexed by the stopping time τ , of
European claims with payouts ξτ . To simplify matters, we make the following assumption
in this subsection:

The market model P = (Pt)0≤t≤T is complete.

Let Y = (Yt)0≤t≤T be the unique martingale deflator such that Y0 = 1.
Intuitively, the seller of such a claim should at time 0 charge at least the amount

sup
τ≤T

E (Yτξτ )

to be sure that he can hedge the option, where the supremum is taken over the set of stopping
times smaller than or equal to T . Indeed, this is the case.

Theorem. Suppose that the adapted process (ξt)0≤t≤T specifies the payout of an American
claim maturing at T > 0.

There exists a self-financing pure-investment trading strategy H such that

• Xt ≥ ξt for all 0 ≤ t ≤ T ,
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• Xτ∗ = ξτ∗ for some stopping time τ ∗, and
• X0 = supτ≤T E (Yτξτ ).

where Xt = Ht · Pt = Ht+1 · Pt.

Remark. The strategy H dominates the payout of the American claim at all times, but
is conservative in the sense that it exactly replicates the optimally exercised claim.

The rest of this subsection is dedicated to proving this theorem.

*****
We will need a result of general interest:

Theorem (Doob decomposition theorem). Let U be a discrete-time supermartingale.
Then there is a unique decomposition

Ut = U0 +Mt − At
where M is a martingale and A is a predictable non-decreasing process with M0 = A0 = 0.

Proof. Let M0 = 0 = A0 and define

Mt+1 = Mt + Ut+1 − E(Ut+1|Ft)
At+1 = At + Ut − E(Ut+1|Ft)

for t ≥ 0. Since U is assumed to be supermartingale, and hence integrable, the processes
M and A are integrable. It is straightforward to check that M is a martingale, and since
U is a supermartingale, that A is non-decreasing. Also by induction, we see that At+1 is
Ft-measurable.

Summing up,

Mt − At = M0 − A0 +
t∑

s=1

(Ms −Ms−1 − As + As−1)

=
t∑

s=1

(Us − Us−1)

= Ut − U0.

To show uniqueness, assume that Ut = U0 + Mt − At = U0 + M ′
t − A′t. Then M −M ′ is a

predictable discrete-time martingale, that is, a constant. �

Now we introduce the key concept in optimal stopping theory:

Definition. Let (Zt)0≤t≤T be a given integrable adapted discrete-time process. Define
an adapted process (Ut)0≤t≤T by the recursion

UT = ZT

Ut = max{Zt,E(Ut+1|Ft)} for 0 ≤ t ≤ T − 1.

The process (Ut)0≤t≤T is called the Snell envelope of (Zt)0≤t≤T .
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Remark. The Snell envelope clearly satisfies both

Ut ≥ Zt and Ut ≥ E(Ut+1|Ft)

almost surely. Thus, another way to describe the Snell envelope of a process is to say it is
the smallest supermartingale dominating that process.

In our application Z will be the process Y ξ, where Y is the martingale deflator and ξ is
the process specifying the payout of the American claim.

Theorem. Let (Zt)0≤t≤T be an integrable adapted process, let (Ut)0≤t≤T be its Snell en-
velope with Doob decomposition Ut = U0 +Mt − At. Let AT+1 = +∞ and

τ ∗ = min{t ∈ {0, . . . , T} : At+1 > 0}.

Then τ ∗ is a stopping time and

Uτ∗ = U0 +Mτ∗ = Zτ∗ .

Proof. That τ ∗ is a stopping time follows from the fact that the non-decreasing process
(At)0≤t≤T+1 is predictable.

Now note that

E(Ut+1|Ft) = E(U0 +Mt+1 − At+1|Ft) = U0 +Mt − At+1

since M is a martingale and A is predictable so that by the definition of Snell envelope

U0 +Mt − At = max{Zt, U0 +Mt − At+1}.

Note that Aτ∗ = 0 and hence

U0 +Mτ∗ = max{Zτ∗ , U0 +Mτ∗ − Aτ∗+1}.

But since Aτ∗+1 > 0 we must conclude

Uτ∗ = U0 +Mτ∗ = Zτ∗ .

�

Theorem. Let Z be an adapted integrable process and let U be its Snell envelope. Then

U0 = sup{E(Zτ ) : stopping time 0 ≤ τ ≤ T}.

Proof. Since U is a supermartingale,

U0 ≥ E(Uτ )

for any stopping time τ by the optional sampling theorem. (See example sheet 1.) But since
Ut ≥ Zt by construction,

U0 ≥ E(Zτ )

for any stopping time τ . But letting τ ∗ = min{t ∈ {0, . . . , T} : At+1 > 0} where U =
U0 +M − A is the Doob decomposition of U , we have

U0 = U0 + E(Mτ∗) = E(Zτ∗).

again by the optional sampling theorem and the previous result. �
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Remark. By a similar argument, one can show that

Ut = ess sup{E(Zτ |Ft) : stopping time t ≤ τ ≤ T}.

for all 0 ≤ t ≤ T . This formula allows us to define the Snell envelope for the infinite horizon
case T =∞ and also in the continuous time case.

Definition. If Z is an integrable adapted process, a stopping time σ such that E(Zσ) =
sup0≤τ≤T E(Zτ ) is called an optimal stopping time. Obviously the stopping time τ ∗ defined
above is an optimal stopping time. Example sheet 2 shows how to find another one.

*****
Returning to finance, let (ξt)0≤t≤T be the process specifying the payout of an American

option, let Y the unique martingale deflator with Y0 = 0 and let (Ut)0≤t≤T be the Snell
envelope of Y ξ with Doob decomposition U = U0 +M − A.

We now will use the assumption that the market is complete: let H be strategy such
that HT · PT = (U0 + MT )/YT . Setting Xt = Ht · Pt note that XY is a martingale since it
is a local martingale from before, and since the market is complete, it is also bounded. By
the martingale property, we have

XtYt = U0 +Mt

for all 0 ≤ t ≤ T . In particular,

• Xt = (U0 +Mt)/Yt ≥ Ut/Yt ≥ ξt for all 0 ≤ t ≤ T ,
• Xτ∗ = (U0 +Mτ∗)/Yτ∗ = Uτ∗/Yτ∗ = ξτ∗ , and
• X0 = U0 = supτ≤T E(Yτξτ ),

completing the proof of the theorem.

13. A dual approach to optimal stopping

The final result in discrete time is the following dual approach to optimal stopping:

Theorem. Let (Zt)0≤t≤T be a discrete-time, integrable adapted process. Then

sup
τ≤T

E(Zτ ) = inf
M

E[ max
0≤t≤T

(Zt −Mt)]

where the supremum on the left-hand side is taken over stopping times τ and the infimum
on the right-hand side is taken over martingales M with M0 = 0.

Proof. Let M be a martingale with M0 = 0. By the optional stopping theorem we have

sup
τ≤T

E(Zτ ) = sup
τ≤T

E(Zτ −Mτ )

≤ E[ max
0≤t≤T

(Zt −Mt)]

Since the inequality holds for any martingale M , it also holds when we take the infimum of
the right-hand side over M .
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For the reverse inequality, let U be the Snell envelope of Z and let U = U0 +M∗ −A be
its Doob decomposition. Since Ut ≤ Zt for all t we have

inf
M

E[ max
0≤t≤T

(Zt −Mt)] ≤ E[ max
0≤t≤T

(Zt −M∗
t )]

≤ E[ max
0≤t≤T

(Ut −M∗
t )]

= E[ max
0≤t≤T

(U0 − At)]

= U0

The conclusion follows from the last section where we proved that

U0 = sup
τ≤T

E(Zτ )

�
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CHAPTER 2

Brownian motion and stochastic calculus

Despite the elegance of discrete-time financial theory, there is at least one glaring problem:
explicit computations are difficult. For instance, the fundamental theorems are stated in
terms of state price densities, but it is very difficult to classify them except in a few simple
examples. The continuous-time theory has the convenient feature that explicit formulae are
easy to find–indeed, one of our first results will be the general formula for a state price
density in a continuous-time market model.

Before we can describe the continuous-time financial theory, we need to first learn about
stochastic integration. Recall that in discrete time, the self-financing condition and budget
constraint imply that for the wealth process X corresponding to a pure investment strategy
H satisfies

XtYt = X0Y0 +
t∑

s=1

Hs · (YsPs − Ys−1Ps−1)

Recall that when Y is a martingale deflator, the process M = Y P is a martingale and the
process XY is a local martingale.

The continuous time analogue ought to be something like

Xt = X0 +

∫ t

0

Hs · dMs

What does the integral on the right mean?
If we assume that the sample paths t 7→ Mt are differentiable, we could interpret the

integral as the Lebesgue integral ∫ t

0

Hs ·
dMs

ds
ds.

Unfortunately, it turns out that life is not that simple. Now, a theorem of stochastic
calculus says that a continuous martingale with everywhere differentiable sample paths is
necessarily constant. So if we insist that our price processes have differentiable sample paths,
we will have a very boring theory.

This chapter is concerned with an integration theory where we use the martingale prop-
erty, rather than the differentiability of the sample paths, as the key ingredient. This theory
is nice, and indeed something like the fundamental theorem of calculus holds. This means
we can do explicit computations.

The most basic example of a continuous martingale is Brownian motion:

1. Brownian motion

In this section, we introduce one of the most fundamental continuous-time stochastic
processes, Brownian motion. As hinted above, our primary interest in this process is that

57



it will be the building block for all of the continuous-time market models studied in these
lectures.

Definition. A Brownian motion W = (Wt)t≥0 is a collection of random variables such
that

• W0(ω) = 0 for all ω ∈ Ω,
• for all 0 ≤ t0 < t1 < ... < tn the increments Wti+1

−Wti are independent, and the
distribution of Wt −Ws is N(0, |t− s|),
• the sample path t 7→ Wt(ω) is continuous for all ω ∈ Ω.

It is not clear that Brownian motion exists. That is, does there exist a probability
space (Ω,F ,P) on which the uncountable collection of random variables (Wt)t≥0 can be
simultaneously defined in such a way that the above definition holds? The answer, of course,
is yes, and the proof of this fact is due to Wiener in 1923. Therefore, the Brownian motion
is also often called the Wiener process , especially in the U.S.

Although the sample paths of Brownian motion are continuous, they are very irregular.
Below is a computer simulation of a one-dimensional Brownian motion:

It will often be useful to talk about a Brownian motion in the context of a filtered
probability space:

Definition. A Brownian motion in a filtration (Ft)t≥0 W = (Wt)t≥0 is a Brownian such
that Ws is Fs-measurable and the increment Wt−Ws is independent of Fs for all 0 ≤ s ≤ t.

Remark. It is a little exercise in measure theory to show that a Brownian motion is
automatically a Brownian motion in its natural filtration.

Here are some useful properties of Brownian motion related to the martingale property:

Proposition. Let W be a Brownian motion in a filtration F . Let Qt = W 2
t − t and

Zt = eαWt−α2t/2 where α ∈ R is constant. Then the process W , Q and Z are all martingales.
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Proof. Since Wt is N(0, t), we have that Wt, Qt and Zt are integrable. Also for 0 ≤ s ≤ t
we have by the measurability of Ws and the independence of Wt −Ws that

E[Wt|Fs] = E[Wt −Ws +Ws|Fs]
= E[Wt −Ws] +Ws

= Ws.

Note that

E[(Wt −Ws)Ws|Fs] = WsE[(Wt −Ws)|Fs] = 0

so

E[W 2
t − t|Fs] = E[(Wt −Ws +Ws)

2|Fs]− t
= E[(Wt −Ws)

2] +W 2
s − t

= W 2
s − s

and finally by the same idea...

E[Zt] = ZsE[eα(Wt−Ws)−α2(t−s)/2|Fs]
= Zs.

�

2. Itô stochastic integration

We now have sufficient motivation to construct a stochastic integral with respect to a
continuous local martingale. What follows is the briefest of sketches of the theory. There
are now plenty of places to turn for a proper treatment of the subject. For instance, see the
lecture notes on my webpage.

For the record, we will assume henceforth that the filtration satisfies what are called the
usual conditions of right-continuity Ft =

⋂
ε>0Ft+ε and that F0 contains all P-null events.

These are technical assumptions that ensure the existence of stopping times with the right
properties.

2.1. Quadratic variation.

Theorem. Let M be a continuous local martingale. There exists a finite-valued non-
decreasing adapted process A such that A0 and for all t ≥ 0 we have

n∑
i=1

(Msni
−Msni−1

)2 → At

where the convergence is in probability, and sni = it/n.

Definition. Given the continuous local martingale M , the non-decreasing process A is
called the quadratic variation of M and is denoted A = 〈M〉.

Theorem. The quadratic variation of a Brownian motion W is given by 〈W 〉t = t a.s.
for all t ≥ 0.
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Proof. By definition, the increments of Brownian motion are Gaussian random variables
so that

E[(Wt −Ws)
2] = t− s

and

Var[(Wt −Ws)
2] = 2(t− s)2

for every 0 ≤ s ≤ t. Fix t and n and let si = it/n.

E

[
n∑
i=1

(Wsi −Wsi−1
)2

]
=

n∑
i=1

(si − si−1) = sn − s0 = t

and, by the independence of the increments of Brownian motion,

Var

[
n∑
i=1

(Wsi −Wsi−1
)2

]
= 2

n∑
i=1

(si − si−1)2 = 2t2/n.

Chebychev’s inequality implies

P

(∣∣∣∣∣
n∑
i=1

(Wsi −Wsi−1
)2 − t

∣∣∣∣∣ ≥ ε

)
≤ 2t2

nε2
→ 0.

�

Remark. For comparison, consider a continuously differentiable function f : [0, 1]→ R.
Recall that for such functions there exists a constant C > 0 such that |f(t)−f(s)| ≤ C|t−s|
for all s, t ∈ [0, 1]. Hence we have

n∑
i=1

[f(si)− f(si−1)]2 ≤
n∑
i=1

C2t2/n2

= C2t2/n→ 0

Since the quadratic variation of a Brownian motion is positive, we can conclude that the
typical Brownian sample path is not a continuously differentiable function of time.

Definition. The previsible sigma-field P is the sigma-field on the product space R+×Ω
generated by sets of the form (s, t]× A where 0 ≤ s < t and A is Fs-measurable.

A previsible process α is a map α : R+ × Ω → R that is P-measurable. Equivalently, a
previsible process α is the (t, ω) pointwise limit of a sequence of simple processes (αn)n of
the form

αnt (ω) =
n∑
i=1

1(si−1,si](t)ai(ω)

where ai is bounded and Fsi−1
-measurable for some non-random 0 ≤ s0 < s1 < ... < sn <∞.

Remark. A continuous adapted process is previsible.

Theorem. Let M be a continuous local martingale, and let α be a previsible processes
such that ∫ t

0

α2
sd〈M〉s <∞ a.s. for all t ≥ 0
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Then there exists a continuous local martingale X such that

n∑
i=1

αnsni (Msni
−Msni−1

)→ Xt

in a sense which we don’t make precise but involves a sequence of stopping times τn localising
M and a sequence of simple previsible processes αn converging to α with respect to a certain
norm.

Definition. Given the continuous local martingale M be and the previsible process α,
the continuous local martingale X is called the stochastic integral of α with respect to M
and is denoted

Xt =

∫ t

0

αsdMs

Remark. The inspired idea of the above definition of the integral is that it compensates
for the roughness of a typical sample path of M by using instead the many cancellations
that occur on average from the uncorrelated increments.

Theorem. Let M , M1 and M2 be continuous local martingales and α, α1 and α2 previsi-
ble processes. Suppose the integrability conditions hold to ensure the existence of the following
stochastic integrals. Then we have

•
〈∫ ·

0
αsdMs

〉
t

=
∫ t

0
α2
sd〈M〉s.

•
∫ t

0
(cαs)dMs =

∫ t
0
αsd(cMs) = c

∫ t
0
αsdMs where c ∈ R is a constant

•
∫ t

0
(α1

s + α2
s)dMs =

∫ t
0
α1
sdMs +

∫ t
0
α2
sdMs

•
∫ t

0
αsd(M1

s +M2
s ) =

∫ t
0
αsdM

1
s +

∫ t
0
αsdM

2
s

•
∫ t

0
βsd

(∫ s
0
αudMu

)
=
∫ t

0
(βsαs)dMs

We end this section with a criterion for knowing when a local martingale is a true mar-
tingale:

Proposition. Let M be a continuous local martingale. If E(〈M〉t) < ∞ for all t ≥ 0
then M is a martingale, and

E(M2
t ) = M2

0 + E(〈M〉t).

In particular if α is previsible and

E
(∫ t

0

α2
sds

)
<∞ for all t ≥ 0

then the stochastic integral Mt =
∫ t

0
αsdWs is a martingale (where W is a Brownian motion).

Remark. Every left-continuous, adapted process is predictable. These are the examples
to keep in mind, since they are the ones that come up most in application.
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3. Itô’s processes and quadratic variation

In the last section, we sketched very quickly the constructed of a stochastic integral with
respect to a continuous local martingale. What makes the Itô stochastic integral useful
is that there is a corresponding stochastic calculus. To describe it, we need a few more
definitions.

As before, let (Wt)t≥0 be a scalar Brownian motion in a filtration (Ft)t≥0 satisfying our
usual conditions.

We can use our stochastic integration theory to define a useful class of stochastic process:

Definition. An Itô process X is an adapted process of the form

Xt = X0 +

∫ t

0

αsdWs +

∫ t

0

βsds.

where X0 is a fixed real number and (αt)t≥0 and (βt)t≥0 be previsible real-valued processes
such that ∫ t

0

α2
sds <∞ and

∫ t

0

|βs|ds <∞

almost surely for all t ≥ 0. For such an Itô process, we use the differential notation

dXt = αtdWt + βtdt

or even

dX = α dW + β dt

as short hand for the integral notation. (The sample paths of the Brownian motion are
nowhere differentiable, so the notation dWt is only formal, and can only be interpreted via
the stochastic integration theory.)

Note that the two integrals appearing the above definition have different meanings: the
first as a stochastic integral and the second as a pathwise Lebesgue integral.

We now introduce a notion which helps with computations involving Itô’s formula.

Theorem. Let X be an Itô process as above. Then

n∑
i=1

(Xsni
−Xsni−1

)2 →
∫ t

0

α2
sds

for each t ≥ 0, where the limit is in probability and sni = it/n.

Definition. The quadratic variation of the Itô process X with decomposition

dXt = αtdWt + βtdt

is given by

〈X〉t =

∫ t

0

α2
sds

or in differential notation

d〈X〉t = α2
tdt.
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4. Itô’s formula

We are now ready for the first version of Itô’s formula:

Theorem (Itô’s formula, scalar version). Let X be an Itô process. If f : R → R twice
continuously differentiable, then f(X) is an Itô process with

df(Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)d〈X〉t .

Or equivalently, if X is of the form

Xt = X0 +

∫ t

0

αsdWs +

∫ t

0

βsds.

then

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)αsdWs +

∫ t

0

[
f ′(Xs)βs +

1

2
f ′′(Xs)α

2
s

]
ds.

Let us highlight a difference between Itô and ordinary calculus, by noting the mysterious
appearance of the f ′′ term in Itô’s formula. This term would not appear in the chain rule of
ordinary calculus. But consider the example f(x) = x2 so that

W 2
t = 2

∫ t

0

WsdWs + t.

Note that since

E
(∫ t

0

W 2
s ds

)
=

∫ t

0

s ds = t2/2 <∞,

the local martingale X given by

Xt =

∫ t

0

WsdWs

is actually a true martingale. (Remember that we also verified, directly from the definition
of Brownian motion, that the process Qt = W 2

t − t is a martingale.)

Example. Consider the Itô process given by

Xt = X0 +

∫ t

0

αsWs +

∫ t

0

βsds

for some predictable processes α, β. Letting

Yt = eXt ,

we would like to show that the process (Yt)t≥0 is an Itô process, and write down its decom-
position in terms of ordinary and stochastic integrals.

Let f(x) = ex. Then f ′(x) = ex and f ′′(x) = ex. Also,

dXt = αt dWt + βt dt and d〈X〉t = α2
t dt

So Itô’s formula says:

df(Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)d〈X〉t

⇒ dYt = Yt[(βt + α2
t/2)dt+ αt dWt]
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Note that

Y is a local martingale ⇔ β = −α2/2.

Idea of proof of Itô’s formula. Fix a partition of [0, t]. By telescoping a sum and
consider the following second order Taylor approximation we have the following:

f(Xt)− f(X0) =
n∑
i=1

f(Xsi)− f(Xsi−1
)

≈
N∑
n=1

f ′(Xsi−1
)(Xsi −Xsi−1

) +
1

2
f ′′(Xsi−1

)(Xsi −Xsi−1
)2

≈
∫ t

0

f ′(Xs)dXs +

∫ t

0

1

2
f ′′(Xs)d〈X〉s.

�

4.1. The multi-dimensional version. We now introduce the vector version of Itô’s
formula. It is basically the same as before, but with worse notation.

An n-dimensional Itô process (Xt)t≥0 defined by

Xt = X0 +

∫ t

0

αsdWs +

∫ t

0

βsds,

interpreted component-wise as

X
(i)
t = X

(i)
0 +

∫ t

0

m∑
k=1

α(i,k)
s dW (k)

s +

∫ t

0

β(i)
s ds

where (Wt)t≥0 is anm-dimensional Brownian motion so thatW (1), . . . ,W (m), are independent
scalar Brownian motions, and the previsible process (αt)t≥0 is valued in the space of n×m
matrices, and the predictable process (βt)t≥0 is valued in Rn. We insist that∫ t

0

n∑
i=1

m∑
k=1

(α(i,k)
s )2ds <∞ and

∫ t

0

n∑
i=1

|β(i)
s |ds <∞

almost surely for all t ≥ 0 so that all of the integrals are defined. The aim of this section is
to give a formula for the Itô decomposition of f(t,Xt).

Now in the scalar case we needed a notion of quadratic variation (dXt)
2 = d〈X〉t. In the

multi-dimensional case, we now introduce the notion of quadratic co-variation (dX
(i)
t )(dX

(j)
t ) =

d〈X(i), X(j)〉t.

Definition. The quadratic co-variation of X(i) and X(j) two Itô processes is defined by

〈X(i), X(j)〉t =
1

2

(
〈X(i) +X(j)〉t − 〈X(i)〉t − 〈X(j)〉t

)
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Theorem. Let X be a multi-dimensional Itô process as above. Then

〈X(i), X(j)〉t = lim
n

s∑
k=1

(X(i)
sk
−X(i)

sk−1
)(X(j)

sk
−X(j)

sk−1
)

=

∫ t

0

m∑
k=1

α(i,k)
s α(j,k)

s ds.

for each t ≥ 0, where sk = kt/n and where the limit is in probability.

The following multiplication table might help you remember how to compute quadratic
co-variation, where W and W⊥ denote independent Brownian motions:

(dt)2 = 0 (dt)(dWt) = 0

(dWt)
2 = dt (dWt)(dW

⊥
t ) = 0

Now we are ready for the statement of the theorem:

Theorem (Itô’s formula, multi-dimensional version). Let f : R+ × Rn → R where
(t, x) 7→ f(t, x) be continuously differentiable in the t variable and twice-continuously differ-
entiable in the x variable. Then

df(t,Xt) =
∂f

∂t
(t,Xt)dt+

n∑
i=1

∂f

∂xi
(t,Xt) dX

(i)
t +

1

2

n∑
i=1

n∑
j=1

∂2f

∂xi∂xj
(t,Xt) d〈X(i), X(j)〉t

5. Girsanov’s theorem

As we have seen in discrete time, the economic notion of an arbitrage-free market model
with a numéraire is tied to the existence of an equivalent measure for which the asset prices,
when discounted by a numéraire, are martingales.

Recall that an equivalent measures is related to a positive random variable via the Radon–
Nikodym theorem. Indeed, let (Ω,F ,P) be our probability space and let Q be equivalent to
P. Then, by the Radon–Nikodym theorem there exists a density

Z =
dQ
dP

such that Z > 0 has unit P-expectation. Conversely, if Z > 0 and EP(Z) = 1, we can define
an equivalent measure Q with density Z.

Motivated by above discussion, we aim to understand how martingales arise within the
context of the Itô stochastic integration theory. Consider the stochastic process (Zt)t≥0 given
by

Zt = e−
1
2

∫ t
0 ‖αs‖2ds+

∫ t
0 αs·dWs

where (Wt)t≥0 is a m-dimensional Brownian motion and (αt)t≥0 is a m-dimensional pre-

dictable process with
∫ t

0
‖αs‖2ds <∞ a.s. for all t ≥ 0.
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This process is clearly positive. Furthermore, notice that by Itô’s formula we have

dZt = Ztαt · dWt

so that (Zt)t≥0 is a local martingale, as it is a stochastic integral with respect to a Brownian
motion.

Recall that since Z is a positive local martingale, it is automatically a supermartingale.
Hence, if

E(ZT ) = 1

for some non-random T > 0, then (Zt)0≤t≤T is a true martingale. In this case, what happens
to the Brownian motion when we change to an equivalent measure with density ZT ?

Theorem (Cameron–Martin–Girsanov Theorem). Let (Ω,F ,P) be a probability space on
which a m-dimensional Brownian motion (Wt)t≥0 is defined, and let (Ft)t≥0 be a filtration
satisfying the usual conditions. Let

Zt = e−
1
2

∫ t
0 ‖αs‖2ds+

∫ t
0 αs·dWs

and suppose (Zt)0≤t≤T is a martingale. Define the equivalent measure Q on (Ω,FT ) by the
density process

dQ
dP

= ZT .

Then the m-dimensional process (Ŵt)0≤t≤T defined by

Ŵt = Wt −
∫ t

0

αsds

is a Brownian motion on (Ω,FT ,Q).

Remark. This isn’t the appropriate place to prove Girsanov’s theorem, but here is a
related result that is completely elementary: Let (Ω,F ,P) be a probability space, and let
W be a random vector with the d-dimensional normal Nd(0, I) distribution, where I is the
d× d identity matrix. Fix a constant vector α ∈ Rd and define an equivalent measure Q on
(Ω,F) by the density

dQ
dP

= eα·W−‖α‖
2/2.

Then the random vector Ŵ = W − α has the Nd(0, I) distribution under Q.
To see why, let f : Rd → R be bounded and measurable. The following computation

proves the claim

EQ[f(W )] = EP[eα·W−‖α‖
2/2f(W − α)]

=

∫
eα·w−‖α‖

2/2f(w − α)
e−‖w‖

2/2

(2π)d/2
dw

=

∫
e−‖w−α‖

2/2

(2π)d/2
f(w − α)dw

=

∫
f(u)

e−‖u‖
2/2

(2π)d/2
du

= EP[f(W )]
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where the second to last line follows from the change of variables u = w − α.

Now, you may be asking yourself: When is the process (Zt)t≥0 not just a local martingale,
but a true martingale?

Theorem (Novikov’s criterion). If

E
(
e+ 1

2

∫ T
0 ‖αs‖2ds

)
<∞

then
E
(
e−

1
2

∫ T
0 ‖αs‖2ds+

∫ T
0 αs·dWs

)
= 1.

6. A martingale representation theorem

In this section we will see that all continuous martingales are essentially stochastic inte-
grals with respect to Brownian motion. This will have applications to our continuous-time
financial models in the next chapter.

Theorem (Itô’s Martingale Representation Theorem). Let (Ω,F ,P) be a probability
space on which a m-dimensional Brownian motion W = (Wt)t≥0 is defined, and let the
filtration (Ft)t≥0 be the filtration generated by W .

Let X = (Xt)t≥0 be a continuous local martingale. Then there exists a unique predictable

m-dimensional process (αt)t>0 such that
∫ t

0
‖αs‖2ds <∞ almost surely for all t ≥ 0 and

Xt = X0 +

∫ t

0

αs · dWs.

Furthermore, if Xt > 0 for all t ≥ 0 then there exists a predictable β such that
∫ t

0
‖βs‖2ds <

∞ and
Xt = X0e

− 1
2

∫ t
0 ‖βs‖

2ds+
∫ t
0 βs·dWs

Proof of the second claim. Assuming that

dXt = αt · dWt

and the positivity of X, apply Itô’s formula to get

d logXt =
αt
Xt

· dWt −
‖αt‖2

2X2
t

dt

so the conclusion follows with βt = αt/Xt. �

Remark. This isn’t the appropriate place to prove the martingale representation the-
orem, but here is an easy, related result: Let W be a simple, symmetric random walk, so
that P(Wt −Wt−1 = ±1|W0, . . . ,Wt−1) = 1/2 for all t ≥ 1. Suppose that the filtration is
generated by W , then for every martingale M there exists a previsible process (θt)t≥1 such
that

Mt = M0 +
t∑

s=1

θs(Ws −Ws−1).

To see why, note that since Mt is Ft-measurable for each t, there exists a function
ft : {0, 1}t → R such that

Mt = ft(ζ1, . . . , ζt).
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where ζs = Ws −Ws−1. We will make use of the identity

ft(ζ1, . . . , ζt) =
1

2
(ζt + 1) ft(ζ1, . . . , ζt−1, 1) + 1

2
(1− ζt) ft(ζ1, . . . , ζt−1,−1).

Indeed, the martingale property implies

Mt−1 = E(Mt|Ft−1)

=
1

2
ft(ζ1, . . . , ζt−1, 1) + 1

2
ft(ζ1, . . . , ζt−1, 0).

so that

Mt −Mt−1 =
1

2
[ft(ζ1, . . . , ζt−1, 1)− ft(ζ1, . . . , ζt−1,−1)]ζt.

The desired representation follows from identifying the Ft−1-measurable random variable
θt = 1

2
[ft(ζ1, . . . , ζt−1, 1)− ft(ζ1, . . . , ζt−1,−1)].

If this example has you thinking about the completeness of the binomial tree model, then
you might not be surprised to learn that the martingale representation theorem plays a role
in studying completeness in continuous time.

We conclude this section with a useful result. It is not directly applicable to finance, but
simplifies several arguments.

Theorem (Lévy’s Characterisation of Brownian Motion). Let (Xt)t≥0 be a continuous
m-dimensional local martingale such that

〈X(i), X(j)〉t =

{
t if i = j
0 if i 6= j.

Then (Xt)t≥0 is a standard m-dimensional Brownian motion.

Proof. Fix a constant vector θ ∈ Rm and let i =
√
−1. Consider

Mt = eiθ·Xt+|θ|2t/2.

By Itô’s formula,

dMt = Mt

(
iθ · dXt +

|θ|2

2
dt

)
− 1

2
Mt

m∑
i=1

m∑
j=1

θ(i)θ(j)d〈X(i), X(j)〉t

= iMtθ · dXt

and so (Mt)t≥0 is a continuous local martingale, as it is the stochastic integral with re-

spect to a continuous local martingale. On the other hand, since |Mt| = e|θ|
2t/2 and hence

E(sups∈[0,t] |Ms|) < ∞ the process (Mt)t≥0 is a true martingale. Thus for all 0 ≤ s ≤ t we
have

E(Mt|Fs) = Ms

which implies
E(ei θ·(Xt−Xs)|Fs) = e−|θ|

2(t−s)/2.

The above equation implies that the increment Xt−Xs has the Nm(0, (t− s)I) distribution
and is independent of Fs. �

68



CHAPTER 3

Continuous-time models

We now return to the main theme of these lecture, models of financial markets. We
now have the tools to discuss the continuous time case, at least when the asset prices are
continuous processes.

1. The set-up

As before, our market model consists of a n-dimensional stochastic processes P =
(P 1

t , . . . , P
n
t )t≥0 representing the asset prices. This process will be defined on a probability

space (Ω,F ,P) with a filtration F = (Ft)t≥0 satisfying the usual conditions. Furthermore, we
will make the following assumption to make use of the Itô calculus developed in the previous
chapter.

Assumption. The stochastic process P is assumed to be is an Itô process adapted to F.

Since continuous-time theory has enough complications, we will make the following sim-
plification:

Assumption. There exists a numéraire asset.

In particular, when we discuss arbitrage theory, there is no need to allow the possibility
of intermediate consumption.

As before, the investor’s controls consist of the n-dimensional processH = (H1
t , . . . , H

n
t )t≥0

where H i
t and corresponds to the number of shares of asset i held at time t. We will assume

that H is self-financing in the continuous time sense:

Definition. A n-dimensional predictable process H such that H is P -integrable1is a
self-financing (pure-investment) strategy iff

d(Ht · Pt) = Ht · dPt
WARNING: THIS DEFINITION IS INCOMPLETE in the sense that it does not give

rise to interesting arbitrage theory. The reason for the above warning is spelled out below.

2. Admissible strategies

In order to make sense of the stochastic integral defining the wealth, we need to impose
a technical integrability condition which holds automatically for continuous processes.

1...this means the stochastic integral
∫ t
0
Hs · dPs is well-defined, i.e. if dPt = btdt+ σtdWt then∫ t

0

|Hs · bs|ds <∞ and

∫ t

0

‖σ>s Hs‖2ds <∞ a.s. for all t ≥ 0
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However, in moving from discrete to continuous time, we have to be careful. We will now
see that this condition isn’t strong enough to make our economic analysis interesting.

Example. Consider a discrete-time market model with two assets P = (1, S) where S
is a simple symmetric random walk:

St = ξ1 + . . .+ ξt

where the random variables ξ1, ξ2, . . . are independent and

P(ξt = 1) = P(ξt = −1) = 1/2.

Obviously this market has no arbitrage as P is a martingale. Nevertheless, let’s explore how
to approximate an arbitrage in some sense. Given a predictable process π, let

φt =
t−1∑
s=1

(πs+1 − πs)Ss

Then the pair (φ, π) defines a self-financing pure investment strategy with associated wealth
process

Xt =
t∑

s=1

πs(Ss − Ss−1).

In particular, X0 = 0.
A simple strategy that resembles an arbitrage is constructed as follows: first define the

stopping time

σ = inf{t ≥ 0 : St > 0}.
and consider the strategy with

πt = 1{t≤σ}

Note that the associated wealth process is Xt = St∧σ. Since σ < ∞ a.s., the conclusion is
that if you are willing to wait a while, investing in this strategy will result in an almost sure
gain Xσ = 1. But the amount of time you have to wait is very long: one can show that
E(σ) = +∞.

One can improve upon the above idea by taking larger and larger bets, effectively ‘speed-
ing up the clock’. Indeed, define the stopping time

τ = inf{t ≥ 0 : ξt = 1}

and consider the strategy

πt = 2t−1
1{t≤τ}.

In this case, the associated wealth process is

Xt = 1− 2t1{t≤τ−1}.

This is the classical ‘martingale’ or doubling strategy. Note that E(τ) = 2, so an investor
following this strategy does not have to wait very long on average to realise the gain Xτ = 1.
But although τ is small on average, it is not bounded, and hence this strategy does not
qualify as an arbitrage.
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Example. A technical problem with continuous time models is that events that will
happen eventually can be made to happen in bounded time by speeding up the clock.

Consider the market with prices P = (1,W ) where W is a Brownian motion. Given
predictable process (πt)t∈[0,T ] on non-random horizon T > 0, such that∫ T

0

π2
sds <∞

we can define

Xt =

∫ t

0

πs dWs

and
φt = Xt − πtWt

for 0 ≤ t ≤ T . Note that the strategy H = (φ, π) that Xt = Ht · Pt is the wealth process
and satisfies the self-financing condition

dXt = πtdWt = Ht · dPt
with initial wealth X0 = 0.

We will now construct a process π such that XT = K a.s. where the constant K > 0 is
arbitrary.

Let f : [0, T ]→ [0,∞] be a strictly increasing, differentiable function such that f(0) = 0
and f(T ) = ∞. In particular we assume that f ′(t) > 0 for t and there exists an inverse
function f−1 : [0,∞]→ [0, T ] such that f ◦ f−1(u) = u. For instance, to be explicit, we may
take f(t) = t

T−t and f−1(u) = uT
1+u

.
Now define (Zu)u≥0 by

Zu =

∫ f−1(u)

0

(f ′(s))1/2dWs

Note that Z is a local martingale in the filtration (Ff−1(u))u≥0 and that the quadratic variation
is

〈Z〉u =

∫ f−1(u)

0

f ′(s)ds

= f(f−1(u))− f(0)

= u

so by Lévy’s characterisation (Zu)u≥0 is a Brownian motion. Define the stopping time τ by

τ = inf{u ≥ 0, Zu = K}.
Since (Zu)u≥0 is a Brownian motion, we have τ < ∞ almost surely since supu≥0 Zu = ∞
almost surely.

Now let
πt = (f ′(t))1/2

1{t≤f−1(τ)}

and note ∫ T

0

π2
sds =

∫ f−1(τ)

0

f ′(s)ds = τ <∞

the stochastic integral defining X makes sense. The strange fact is that (Xt)t∈[0,T ] is a local
martingale with X0 = 0, but XT = Zτ = K almost surely.
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We see that integrand (πs)s∈[0,T ] roughly corresponds to an gambler starting at noon with
£0, employing a doubling strategy (with borrowed money) at a quicker and quicker pace,
until finally he gains £K almost surely before the clock strikes one o’clock. This situation is
rather unrealistic, particularly since the gambler must go arbitrarily far into debt in order to
secure the £K winning. Indeed, if such strategies were a good model for investor behaviour,
we all could be much richer by just spending some time trading over the internet.

The above discussion shows that the integrability necessary to define the stochastic in-
tegral is not really sufficient for our needs.

At this stage, there are several reasonable options. In this course we will insist that
the investor’s portfolio always has non-negative value.

Definition. A trading strategy H is admissible iff

Ht · Pt ≥ 0 for all t ≥ 0 almost surely .

Note that the doubling strategy is not admissible, since the investor now has only a finite
credit line. However, a suicide strategy, that is, a doubling strategy in which the object is to
lose a fixed amount K by time T , is admissible.

3. Arbitrage and local martingale deflators

To see that our restriction to admissible strategies is reasonable, let’s now consider
continuous-time arbitrage theory.

Definition. An admissible strategy H is called an absolute arbitrage iff there is a non-
random time T such that

H0 · P0 = 0 ≤ HT · PT a.s.

and

P (HT · PT > 0) > 0.

An admissible strategy H is called an arbitrage relative to a strategy K iff there is a non-
random time T such that

H0 · P0 = K0 · P0,

and

HT · PT ≥ KT · PT a.s., P (HT · PT > KT · PT ) > 0.

Remark. Note that if H is an absolute arbitrage and K is admissible, then the strategy
H +K is an arbitrage relative to K. On the other hand, if H is an arbitrage relative to K,
then H −K is an absolute arbitrage only if H −K is admissible. In particular, an absolute
arbitrage is an arbitrage relative the strategy K = 0 of holding no assets.

In discrete time, the notions of absolute arbitrage and relative arbitrage are essentially
equivalent since we did not have to worry about admissibility. In continuous time, we will
soon find examples of the surprising fact that

there exist continuous-time markets that have relative arbitrage but no absolute arbitrage.

Such market models are sometimes considered models of price bubbles.
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The point of all of this is to warn you to be careful when making arbitrage arguments in
continuous time, since reasonable people can disagree on what kind of strategies should be
called arbitrages.

As in the discrete-time theory, we now introduce martingale deflators.

Definition. A (local) martingale deflator is a positive Itô process Y such that Y P =
(YtPt)t≥0 is an n-dimensional (local) martingale.

Our continuous-time version of the first fundamental theorem follows. Unfortunately, to
get a clean statement of this result we need to up the technical ante.

Theorem. Suppose there exists a local martingale deflator for the market model P . If
K is a strategy such that the process K · PY is a true martingale, then there is no arbitrage
relative to K. In particular, there is no absolute arbitrage.

The proof of this fact is based on an important lemma:

Lemma. Suppose H is a self-financing pure investment strategy and let

Xt = Ht · Pt = X0 +

∫ t

0

Hs · dPs

Then

d(XtYt) = Ht · d(YtPt).

for any Itô process Y . In particular, if Y is a local martingale deflator and H is admissible
then XY is a supermartingale.

Proof of lemma. . First note

YtdXt = Yt(Ht · dPt)

and

XtdYt = Ht · PtdYt.
Finally, note that

d〈X, Y 〉t = (Ht · dPt)(dYt) =
n∑
i=1

H i
td〈P i, Y 〉t.

Putting this together with Itô’s formula yields

d(XtYt) = YtdPt +XtdYt + d〈X, Y 〉t
=
∑
i

H i
t(YtdP

i
t + P i

t dYt + 〈Y, P i〉t)

= Ht · d(YtPt)

as claimed. Now if Y is a local martingale deflator, then PY is a local martingale. In
particular the process XY can be expressed as the stochastic integral with respect to a
continuous local martingale, and hence is itself a local martingale. Finally, if H is admissible,
then XY is a non-negative local martingale. Non-negative local martingales are super-
martingales by Fatou’s lemma. �
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Proof that existence of a local martingale deflator implies no arbitrage.
Let Y be a local martingale deflator, and let H and K be strategies such that

H0 · P0 = K0 · P0 and HT · PT ≥ KT · PT .
Furthermore, suppose that H is admissible and K ·PY is a martingale. We must show that
HT · PT = KT · PT .

By the above lemma and since Y is non-negative, the processH ·PY is a super-martingale.
Hence

K0 · P0Y0 = H0 · P0Y0

≥ E(HT · PTYT )

≥ E(KT · PTYT )

= K0 · P0Y0.

This shows that HT · PTYT = KT · PTYT . Since Y is strictly positive, the conclusion now
follows. �

Remark. Note that the above theorem doesn’t say that no relative arbitrage implies
the existence of a local martingale deflator. A weaker version notion of relative arbitrage,
called ‘free-lunch-with-vanishing-risk,’ is needed to have the converse implication. See the
recent book of Delbaen and Schachermayer The Mathematics of Arbitrage for an account of
the modern theory.

Remark. Here is an example of a market with a relative arbitrage and no absolute

arbitrage. Fix T > 0 and let (πt)0≤t≤T be a predictable process such that
∫ T

0
π2
sds <∞ and

let St =
∫ t

0
πsdWs where W is a Brownian motion. Suppose St ≤ 1 for all t ≤ T and ST = 1

almost surely. (See the previous section on doubling strategies for an explicit construction
of such a process π.)

Now consider the market with prices P = (1, S). Note that P is a two-dimensional local
martingale, hence there exists a martingale deflator – just set Yt = 1 for all t. Therefore,
there is no absolute arbitrage. However, consider the strategy K = (1,−1). Note that
Kt ·Pt = 1−St ≥ 0 so K is admissible. We will show that there exists an arbitrage relative to
K. Indeed, let H = (1, 0). Note that H0 ·P0 = 1 = K0 ·P0 = 1 but HT ·PT = 1 > KT ·PT = 0.

The point of this example is that the asset with price S seems like a good deal - it costs
nothing at time 0 but pays a positive amount at time 1. However, holding one share of the
asset, corresponding to the strategy (0, 1) = H −K is not admissible.

4. The structure of local martingale deflators

In this section we will parametrise a fairly general Itô market with n = d+ 1 assets. All
assets in this market are numéraires, and we use the notation P = (B, S). We will assume
the dynamics of the prices are given by the following equations

dBt = Btrtdt

dSit = Sit

(
µitdt+

m∑
j=1

σijt dW
j
t

)
for i = 1, . . . , d
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where the processes r, µi, σij are predictable and suitably integrable, and the W j are inde-
pendent Brownian motions.

The first asset can be thought of as a bank account, and the random variable rt is the
spot interest rate at time t. The (random) ordinary differential equation can be solved:

Bt = B0e
∫ t
0 rsds

The d assets can be thought of as risky stocks. The random variable µit is interpreted as the
mean instantaneous return of asset i, while the spot volatility is (

∑
j(σ

ij
t )2)1/2. Note that

Itô’s formula yields

Sit = Si0e
∫ t
0 [µis− 1

2

∑
j(σij

s )2]ds+
∫ t
0

∑
j σ

ij
s dW

j
s .

We will use the notation

µt =

 µ1
t
...
µdt

 and σt =

 σ11
t · · · σ1m

t
...

. . .
...

σd1
t · · · σdmt


for the d× 1 vector of means and d×m matrix of volatilities, respectively.

With this more explicit parametrisation, we can describe the structure of local martingale
deflators:

Theorem. Let λ be a predictable m-dimensional process such that
∫ t

0
‖λs‖2ds <∞ a.s.

for all t ≥ 0 and that

σtλt = µt − rt1 for almost all (t, ω)

where 1 = (1, · · · , 1)> is the d× 1 vector with the constant 1 in each component.
Let

Yt = Y0e
−

∫ t
0 (rs+‖λs‖2/2)ds−

∫ t
0 λs·dWs

for a constant Y0 > 0 – or in equivalent differential form

dYt = Yt(−rtdt− λt · dWt).

Then Y is a local martingale deflator.
Furthermore, if the filtration is generated by the m-dimensional Brownian motion W , all

local martingale deflators have this form.

Remark. Them-dimensional random vector λt appearing the theorem is a generalisation
of the Sharpe ratio. The process λ = (λt)t≥0 is often called the market price of risk, for the
local martingale deflator, since it measures in some sense the excess return of the stocks per
unit of volatility.

Proof. We need to show that Y B and Y S are local martingales. Note that by Itô’s
formula

d(YtBt) = −YtBtλt · dWt

so Y B is a local martingale since it is the stochastic integral with respect to a Brownian
motion W .

75



Also, by Itô’s formula

d(YtS
i
t) = YtS

i
t [−rt + µit − (σtλt)

i] + YtS
i
t(σ

i.
t − λt) · dWt

= YtS
i
t(σ

i.
t − λt) · dWt

where we have used the identity σtλt = µt − rt1 to cancel the dt term.

Conversely, if the filtration is generated by the Brownian motion, the martingale repre-
sentation theorem says that all positive local martingales M are of the form

Mt = M0e
− 1

2

∫ t
0 ‖λs‖

2ds−
∫ t
0 λs·dWs

for some predictable λ, or in differential form

dMt = −Mtλt · dWt.

Hence, if Y B = M is a positive local martingale then

dYt = −Yt(rtdt+ λt · dWt)

by Itô’s formula. Furthermore, if Y S is a local martingale, then Itô’s formula shows that in
order to cancel the drift we must have the identity σtλt = µt − rt1. �

5. Replication of European claims

As before, given a market model P we can introduce a contingent claim. Recall that
a European contingent claim maturing at a time T > 0 is modelled as random variable ξT
that is FT -measurable. We shall assume that there exists at least one martingale deflator,
so that, in particular, there are no absolute arbitrages.

First a simple result:

Proposition. Suppose H is an admissible replication strategy for a European contingent
claim with time T payout ξT , and let Y be a local martingale deflator. Then

Ht · Pt ≥
1

Yt
E(ξTYT |Ft).

Proof. This is the same as the proof of that the existence of a local martingale deflator
implies no arbitrage.

E(ξTYT |Ft) = E(HT · PTYT |Ft)
≤ Ht · PtYt

since H · PY is a supermartingale. �

Now we will impose more structure, by assuming that the market model P = (B, S) has
dynamics

dBt = Btrtdt

dSit = Sit

(
µitdt+

m∑
j=1

σijt dW
j
t

)
for i = 1, . . . , d
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as before, or in vector notation, these equations can be written as

dSt = diag(St)(µtdt+ σtdWt)

where

diag(s1, . . . , sd) =


s1 0 · · · 0

0 s2
. . . 0

...
. . . . . .

...
0 0 · · · sd

 .

We will work in the filtration generated by W , so that all state price densities Y are of
the form

dYt = Yt(−rtdt− λt · dWt).

where

σtλt = µt − rt1.
The following will serve as a version of the second fundamental theorem of asset pricing in
continuous time.

Theorem. Suppose the filtration is generated by W , and suppose m = d and that the
d × d matrix σt is invertible for all (t, ω), so that in particular, there is a unique (up to
scaling) martingale deflator Y of the form

dYt = Yt(−rtdt− λt · dWt).

where

λt = σ−1
t (µt − rt1).

Let ξT be non-negative, FT -measurable and such that ξTYT is integrable. Then there exists
an admissible strategy H such that

Ht · Pt =
1

Yt
E(YT ξT |Ft).

In particular, the strategy H replicates ξT = HT ·PT , and the initial cost E(YT ξT )/Y0 = H0 ·P0

is the minimum cost among admissible replication strategies.

Remark. Clearly, you could also replicate the claim with an admissible strategy by
running a suicide strategy on top of the replication strategy H, but the initial cost of this
strategy is more. On the other hand, if you didn’t care about admissibility, you could employ
a doubling strategy to replicate the claim with strictly smaller initial cost.

Proof. Let

Mt = E(YT ξT |Ft).
Then M is a martingale, and since the filtration is generated by the Brownian motion W
the martingale representation theorem tells us that there exists a d-dimensional predictable
process α such that

dMt = αt · dWt.

We will show that there exists an admissible self-financing strategy H such that X0 = M0/Y0

and

d(XtYt) = αt · dWt.
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where Xt = Ht · Pt is the wealth process. This will show that Xt = Mt/Yt, and hence
XT = ξT as claimed.

Now, let H be a self-financing strategy. By an Itô’s formula calculation, we have

d(XtYt) = Ht · d(YtPt).

Write H = (φ, π), where φ is the number of shares of the bank account and πi is the number
of shares of stock i. We need the following to hold

φtBt + πt · St = Mt/Yt

and

φtd(YtBt) + πt · d(YtSt) = αt · dWt

We can solve for φ in terms of π:

φt =
1

Bt

(
Mt

Yt
− πt · St

)
.

Finally, we know that

d(BtYt) = −BtYtλt · dWt

and

d(SitYt) = SitYt(σ
i.
t − λt) · dWt

Plugging this in, yields

πt = diag(St)
−1(σ>t )−1 (Mtλt + αt)

Yt
.

To sum up, note that φtBt + πt · St = Mt/Yt and that

φtdBt + πt · dSt = d

(
Mt

Yt

)
.

This means H = (φ, π) is a self-financing strategy and

Ht · Pt =
Mt

Yt
for all 0 ≤ t ≤ T.

It is admissible since ξT ≥ 0 and hence Mt ≥ 0.
Now, given the existence of the replication strategy H, the minimality of the replication

cost follows from the proposition at the beginning of this section since Y X is a true martingale
(not just a supermartingale). �

If we consider the equation σtλt = µt − rt1 where σt is an d × m matrix, one expects
from the rules of linear algebra for there to be no solution if m < d, exactly one solution if
m = d, and many solutions if m > d. Of course, this is not a theorem, just a rule of thumb.
Financially, the rule of thumb becomes:

m < d ‘⇒’ The market has arbitrage.
m = d ‘⇒’ The market has no arbitrage and is complete.
m > d ‘⇒’ The market has no arbitrage and is incomplete.
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6. Risk-neutral measures

As before, we have n = 1 + d asset withe prices P = (B, S) where

dBt = Btrtdt

dSt = diag(St)(µtdt+ σtdWt).

In this section we assume that there exists a local martingale deflator Y .

Definition. A risk-neutral measure is an equivalent probability measure Q such that
S/B is a Q-local martingale.

Note that Y B is a local martingale by the definition of a martingale deflator. Assuming
that Y B is a true martingale, then we can construct a risk-neutral measure Q as we have
done previously by fixing T > 0 and setting

dQ
dP

=
BTYT
B0Y0

.

Conversely, if Q is a risk-neutral measure, we have can construct a local martingale deflator
Y by setting

Yt =
1

Bt

E
(
dQ
dP
|Ft
)
.

Note that by this construction Y B is a true martingale. This leads to the following result.
It is just an application of our continuous time version of the 1FTAP:

Proposition. Suppose there exists a risk-neutral measure, then there is no arbitrage
relative to the bank account.

Now let’s explore what the asset prices look like under a risk-neutral measure.

Proposition. Let Q be a risk-neutral measure, and suppose that the filtration is gener-
ated by the Brownian motion. Then the asset prices have dynamics

dBt = Btrtdt

dSt = diag(St)(rt1dt+ σtdŴt).

where Ŵ is a Brownian motion under Q.

Proof. By the structure theorem for local martingale deflators we have that any mar-
tingale deflator Y satisfies

YtBt

Y0B0

= e−
∫ t
0 ‖λs‖

2ds−
∫ t
0 λs·dWs .

where σtλt = µt − rt1.
Now if there exists a risk-neutral measure Q, then Y B is a true martingale. Hence we

may apply Girsanov’s theorem to conclude that the process Ŵ defined by

Ŵt = Wt +

∫ t

0

λsds
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is a Brownian motion under Q. Note

dSt = diag(St)(µtdt+ σtdWt)

= diag(St)[µtdt+ σt(dŴt − λtdt)]

= diag(St)(rt1dt+ σtdŴt)

as claimed. �

We finally connect risk-neutral measures to replication costs. This is just restatement of
the version of the 2FTAP appearing the previous section:

Proposition. Assume that there exists a risk-neutral measure Q, that the filtration is
generated by W , and suppose m = d and that the d× d matrix σt is invertible for all (t, ω).

Let ξT be non-negative, FT -measurable and such that ξT/BT is Q-integrable. Then there
exists an admissible strategy H that replicates the claim ξT = HT · PT , and the initial cost

EQ(e−
∫ T
0 rsdsξT ) = H0 · P0 is minimum among admissible replication strategies.

7. The Black–Scholes model and formula

We will consider the simplest possible model of the type studied introduced above. Con-
sider the case of a market with two assets. We will assume that all coefficients are constant,
so the price dynamics are given by the pair of equations

dBt = Bt r dt

dSt = St(µ dt+ σdWt)

for real constants r, µ, σ where σ > 0. We will assume that the filtration is generate by the
scalar Brownian motion W . This is often called the Black–Scholes model.

We are interested in finding the replication cost of a European contingent claim with
payout ξT = g(ST ), where g is a given function which we assume to be non-negative and
suitably integrable. We know from before that the unique state price density with Y0 = 1 is
given by

Yt = e−(r+λ2/2)t−λWt

where λ = (µ− r)/σ.
Hence, from our existential result there is a trading strategy H which replicates the

payout with time t cost

Xt =
1

Yt
E[YTg(ST )|Ft].

This is where we see the advantage of working with equivalent martingale measures rather
than state price densities. Indeed, define the equivalent martingale measure Q by the density

dQ
dP

= e−λ
2T/2−λWT

and recall that by the Cameron–Martin–Girsanov theorem the process Ŵt = Wt + λt is a
Q-Brownian motion.

The price of the stock can be written explicitly:

St = S0e
(µ−σ2/2)t+σWt = S0e

(r−σ2/2)t+σŴt
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and hence

Ht · Pt = e−r(T−t)EQ
[
g
(
S0e

(r−σ2/2)T+σŴT

)
|Ft
]

= e−r(T−t)EQ
[
g
(
Ste

(r−σ2/2)(T−t)+σ(ŴT−Ŵt)
)
|Ft
]

= e−r(T−t)
∫ ∞
−∞

g
(
Ste

(r−σ2/2)(T−t)+σ
√
T−tz

) e−z2/2√
2π

dz.

A famous example is the case of the European call option where the payout function is of
the form g(S) = (S−K)+. In this case, we have the the Nobel-prize-winning Black–Scholes
formula:

Ct(T,K) =StΦ

(
− log(K/St)

σ
√
T − t

+ (r/σ + σ/2)
√
T − t

)
−Ke−r(T−t)Φ

(
− log(K/St)

σ
√
T − t

+ (r/σ − σ/2)
√
T − t

)
where Φ(x) =

∫ x
−∞

1√
2π
e−y

2/2dy is the standard normal distribution function. (You are asked

to derive this formula on Example Sheet 3.)
We have argued that the martingale representation theorem asserts the existence of

replicating strategy H, but unfortunately, it gives us no information about how to compute
H. This problem will be tackled in the next section.

8. Markovian markets: pricing and hedging by PDE

We now have a sufficient condition that a contingent claim can be replicated. However,
at this stage we can only assert the existence of a replicating strategy for a given claim, but
we do not yet know how to actually compute it. This problem is the subject of this section.

The first step is to pose a model for the asset prices (Bt, St)t≥0. A good model should
give a reasonable statistical fit to the actual market data. Furthermore, a useful model is
one in which the prices and hedges of contingent claims can be computed reasonably easily.
In this section, we will study models in which the asset prices are Markov processes. These
models are useful in the above sense, though there seems to be some controversy over how
well they fit actual market data.

Now suppose that the d+ 1 assets have Itô dynamics which can be expressed as

dBt = Bt r(t, St) dt

dSt = diag(St)(µ(t, St)dt+ σ(t, St)dWt)

where the nonrandom functions r : [0,∞) × Rd → R, µ : [0,∞) × Rd → Rd and σ :
[0,∞) × Rd → Rd×m are given. Notice that this is a special case of the set-up of the last
section, as now (with an abuse notation)

rt(ω) = r(t, St(ω)), µt(ω) = µ(t, St(ω)), and σt(ω) = σ(t, St(ω)).

In this special situation, the asset prices (St)t≥0 are a d-dimensional Markov process.
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The next theorem says how to find a replicating strategy for a contingent claim maturing
at time T with payout

ξT = g(ST )

for some non-random function g : Rd → [0,∞).

Theorem. Suppose the function V : [0, T ]×Rd → [0,∞) satisfies the partial differential
equation

∂V

∂t
+

d∑
i=1

rSi
∂V

∂Si
+

1

2

d∑
i=1

d∑
j=1

ai,jS
iSj

∂2V

∂Si∂Sj
= rV

V (T, S) = g(S)

where a = σσ>, and where all functions in the PDE are evaluated at the same point (t, S) ∈
[0, T )× Rd.

Then there exists an-admissible strategy H such that Ht · Pt = V (t, St). In particular,
this strategy replicates the contingent claim with payout g(ST ).

Furthermore, if H = (φ, π) then the strategy can be calculated as

πt = grad V (t, St) =

(
∂V

∂S1
(t, St), . . . ,

∂V

∂Sd
(t, St)

)
.

and

φt =
V (t, St)− πt · St

Bt

.

The above theorem says that if the market model is Markovian, the price (i.e. replication
cost) of a claim contingent on the future risky asset prices can be written as a deterministic
function V of the current market prices. Furthermore, the pricing function V can be found by
solving a certain linear parabolic partial differential equation2 with terminal data to match
the payout of the claim. Solving this equation may be difficult to do by hand, but it can
usually be done by computer if the dimension d is reasonably small. And most importantly
for the banker selling such a contingent claim: the replicating portfolio πt can be calculated
as the gradient of the pricing function V with respect to the spatial variables, evaluated at
time t and current price St.

Proof. By Itô’s formula we have

dV (t, St) =
∂V

∂t
dt+

∑
i

∂V

∂Si
dSit +

1

2

∑
i,j

∂2V

∂Si∂Sj
d〈Si, Sj〉t

=

(
∂V

∂t
+

1

2

∑
i,j

∂2V

∂Si∂Sj
SiSjaij

)
dt+

∑
i

∂V

∂Si
dSit

= r

(
V −

∑
i

Si
∂V

∂Si

)
dt+

∑
i

∂V

∂Si
dSit

2sometimes called the Feynman–Kac PDE. If r = 0, the PDE reduces to the (backward) Kolmogorov
equation.
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where we have used the assumption that V solves a certain PDE to go from the second to
third line above.

Now letting φ and π be as in the statement of the theorem we have that

V (t, St) = φtBt + πt · St
dV (t, St) = φtdBt + πt · dSt.

Hence H = (φ, π) is a self-financing strategy with associated wealth process Xt = V (t, St)
as claimed. It is admissible since V ≥ 0 by assumption. �

9. Partial differential equations and conditional expectations

We have seen that there are two distinct ways to find a replication cost of a attainable
contingent claim: by computing expectations or by solving a PDE. On the one hand, we
have shown that the minimal replication cost is the expected value of the discounted payout
under a risk-neutral measure. On the other hand, we have seen that if the payout is of the
form g(ST ) and the prices (St)0≤t≤T satisfy a stochastic differential equation (SDE), then
a (not necessarily minimal) replication cost can be found by solving a partial differential
equation, and indeed, the replicating strategy is given by the gradient of the solution of the
PDE.

In this section we consider the connection between stochastic differential equations and
partial differential equations.

The main idea for this section is contained in this result:

Theorem. Let the n-dimensional process Z satisfies the SDE

dZt = b(Zt)dt+ σ(Zt)dWt

where W is a m-dimensional Brownian motion. Given function f and g, suppose v : [0, T ]×
Rn → R is C2, bounded and satisfies the PDE

∂v

∂t
+
∑
i

bi
∂v

∂zi
+

1

2

∑
i,j

aij
∂2v

∂zi∂zj
= fV

where
aij =

∑
k

σikσjk

with terminal condition
v(T, z) = g(z) for all z ∈ Rn.

Let
Mt = e−

∫ t
0 f(Zs)dsv(t, Zt) for 0 ≤ t ≤ T.

Then M is a local martingale. If M is a true martingale (for instance, if M is bounded)
then

v(t, z) = E
[
e−

∫ T
t f(Xs)dsg(ZT )|Zt = z

]
.

Proof. By Itô’s formula and the fact that v satisfies a certain PDE, we have

dMt = e−
∫ t
0 f(Zs)ds

∑
ij

σij
∂v

∂zi
dW j.

Hence M is a local martingale.
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If M is true martingale, we have

Mt = E(MT |Ft)

and hence

v(t, Zt) = e
∫ t
0 f(Zs)dsE

[
e−

∫ T
0 f(Zs)dsg(ZT )|Ft

]
.

By applying slot property to move the exponential inside the expectation on the right-hand
side, then computing the conditional expectation of both sides Zt and applying the tower
and finishes the argument. (Technical note: we have implicitly assumed that all random
variables appearing in the conditional expectations are integrable.) �

There is a certain converse to this result.

Theorem. Let the n-dimensional Markov process Z is a solution of the SDE

dZt = b(Zt)dt+ σ(Zt)dWt

where b and σ are continuous and where W is a m-dimensional Brownian motion. Further,
assume

P(Zt ∈ A|Z0 = z) > 0

for any open set A ⊆ Rn and any starting point z ∈ Rn and any time t > 0. Fix a non-
random time horizon T > 0 and functions f and g and let

v(t, z) = E
[
e−

∫ T
t f(Zs)dsg(ZT )|Zt = z

]
,

assuming sufficient integrability that the conditional expectation is well-defined. If the func-
tion is v is twice-continuously differentiable, then v satisfies the PDE

∂v

∂t
+
∑
i

bi
∂v

∂zi
+

1

2

∑
i,j

aij
∂2v

∂zi∂zj
= fV

where

aij =
∑
k

σikσjk

with terminal condition

v(T, z) = g(z) for all z ∈ Rn.

Proof. By the Markov property

v(t, Zt) = E
[
e−

∫ T
t f(Zs)dsg(ZT )|Zt

]
= E

[
e−

∫ T
t f(Zs)dsg(ZT )|Ft

]
where (Ft)t≥0 is the filtration generated by Z. Hence, the process M defined by

Mt = e−
∫ t
0 f(Zs)dsv(t, Zt)

= E
[
e−

∫ T
0 f(Zs)dsg(XT )|Ft

]
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is a martingale. By assumption, the function v is twice-continuously differentiable, so that
Itô’s formula is applicable:

dMt =e−
∫ t
0 f(Xs)ds

∑
ij

σij
∂v

∂zi
dW j

+ e−
∫ t
0 f(Zs)ds

(
∂v

∂t
+
∑
i

bi
∂v

∂zi
+

1

2

∑
i,j

aij
∂2v

∂zi∂zj
− fV

)
dt

Since M is a martingale, the drift must vanish for almost every (t, ω). And since v is C2 and Z
can hit every open set arbitrarily quickly, we conclude that the drift vanishes identically. �

Remark. The partial differential equation

∂v

∂t
+
∑
i

bi
∂v

∂zi
+

1

2

∑
i,j

aij
∂2v

∂zi∂zj
= fV

is called the Feynman–Kac PDE , whereas the equation

v(t, z) = E
[
e−

∫ T
t f(Zs)dsg(ZT )|Zt = z

]
is called the Feynman–Kac formula . The above theorems say, roughly, that a function
satisfies the Feynmann–Kac PDE if and only if it satisfies the Feynman–Kac formula.

Example (Black–Scholes continued). Let’s return to the Black–Scholes model

dBt = Btrdt

dSt = St(µdt+ σdWt)

with constant coefficients r, σ, µ, with σ > 0. If we would like to replicate a claim with
payout g(ST ), the we know that we should solve the so-called Black–Scholes PDE

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
= rV

V (T, S) = g(S)

But how can we solve this PDE? By the Feynmann–Kac formula!

V (t, S) = EQ[e−r(T−t)g(ST )|St = S]

= e−r(T−t)
∫ ∞
−∞

g
(
Se(r−σ2/2)(T−t)+σ

√
T−tz

) e−z2/2√
2π

dz

where Q is the unique risk-neutral measure under which the process Ŵt = Wt + λt is a
Brownian motion, where λ = (µ− r)/λ. Note that

dSt = Str dt+ Stσ dŴt

so the Feynmann–Kac PDE for the Markov process S (when viewed on the risk-neutral
measure) is exactly the Black–Scholes PDE.
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Now, let’s specialise to the case of the call option where g(S) = (S − K)+. From last
section we have

V (t, S) =SΦ

(
− log(K/S)

σ
√
T − t

+ (r/σ + σ/2)
√
T − t

)
−Ke−r(T−t)Φ

(
− log(K/S)

σ
√
T − t

+ (r/σ − σ/2)
√
T − t

)
.

The delta, i.e. the replicating portfolio, in this case is (by a miracle of algebra)

∂V

∂S
(t, S) = Φ

(
− log(K/S)

σ
√
T − t

+ (r/σ + σ/2)
√
T − t

)
.

Note that an agent attempting to replicate a call option using the Black–Scholes theory will
always hold a fraction of shares of the underlying stock between 0 and 1. Also note that
since the sensitivity of the portfolio to the price of the underlying, is given by the formula

∂2V

∂S2
(t, S) =

1

Sσ
√
T − t

φ

(
− log(K/S)

σ
√
T − t

+ (r/σ + σ/2)
√
T − t

)
where φ(x) = 1√

2π
e−x

2/2. Since the gamma is always positive, the hedger will buy more

shares of the underlying if the price goes up.

10. Risk-neutral pricing and PDEs

In this section, we will build an arbitrage-free market model. By the fundamental theorem
of asset pricing, a sufficient condition for no-arbitrage is the existence of a risk-neutral
measure. Rather than modelling everything under a real-world measure P and then ensuring
that there exists a risk-neutral measure Q, we will simply assume that the measure Q exists
and do all our modelling the on the probability space (Ω,F ,Q).

We specialise to a certain class of models called factor models. We assume there is a
N -dimensional economic factor process Z whose dynamics satisfy a stochastic differential
equation

dZt = b(Zt)dt+ σ(Zt)dWt

where b takes values in RN and σ takes values in the N×m matrices, where W is a Brownian
motion in the risk-neutral measure Q. (In previous section we had used the notation W for

a Brownian motion under the real-world measure P and Ŵ for a Brownian motion under the
risk-neutral measure Q. However, in this section, we do not model anything under P, hence
we simplify things by dropping theˆfrom the notation.)

We assume that the spot interest rate rt = r(Zt) is a deterministic function of the
economic factor. The bank account evolves as

dBt = Btrtdt

as usual. We build the prices of a second as follows. We consider a function V that iss
twice-continuously differentiablea and satisfies the PDE

∂V

∂t
+
∑
i

bi
∂V

∂zi
+

1

2

∑
i,j

aij
∂2V

∂zi∂zj
= rV
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where
aij =

∑
k

σikσjk.

We then set Pt = V (t, Zt). By Itô’s formula, the discounted price Pt/Bt is a local martingale,
and hence there is no arbitrage relative to the bank account.

We now give some examples of risk-neutral pricing in the context of interest rate and
stochastic volatility.

In the following interest rate models, we will set N = 1 and assume that the economic
factor Zt is the spot interest rate rt. Our goal will be to price a zero-coupon bond.

10.1. Vasicek model. In 1977, Vasicek proposed the following model for the short rate:

drt = λ(r̄ − rt)dt+ γdWt

for a parameter r̄ > 0 interpreted as a mean short rate, a mean-reversion parameter λ > 0,
and a volatility parameter γ > 0. This stochastic differential equation can be solved explicitly
to yield

rt = e−λtr0 + (1− e−λt)r̄ +

∫ t

0

e−λ(t−s)γdWs.

Note that the short interest rate in the Vasicek model follows an Ornstein–Uhlenbeck process,
and in particular, that for each t ≥ 0 the random variable rt is Gaussian under the measure
Q with

EQ(rt) = e−λtr0 + (1− e−λt)r̄ and VarQ(rt) =

∫ t

0

e−2λ(t−s)σ2ds =
γ2

2λ
(1− e−2λt).

Moreover, one can show that the process is ergodic and converges to the invariant distri-

bution N
(
r̄, γ

2

2λ

)
. In particular, we have

1

T

∫ T

0

rs ds→ r̄ Q− almost surely.

Please note, however, that in the present framework we can say absolutely nothing about the
distribution of rt for the objective measure P, unless we have a model for the market price
of risk.

Since the short rate rt is Gaussian, the advantage of this type of model is that it is
relatively easy to compute prices, for instance of bonds, explicitly. A disadvantage of this
model is that there is a chance that rt < 0 for some time t > 0. Recall that a normal random
variable can take any real value, both positive and negative. However, for sensible parameter
values, the Q-probability of the event {rt < 0} is pretty small.

We have learned from example sheet 3 that∫ T

0

rtdt =

∫ T

0

[e−λtr0 + (1− e−λt)r̄]dt+

∫ T

0

∫ t

0

e−λ(t−s)γdWs dt

=

∫ T

0

[e−λtr0 + (1− e−λt)r̄]dt+

∫ T

0

[∫ T

s

e−λ(t−s)dt

]
γdWs

∼ N

(∫ T

0

[e−λtr0 + (1− e−λt)r̄]dt, γ
2

λ2

∫ T

0

(1− e−λt)2dt

)
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under Q, so that, using the moment generating function of a Gaussian random variable we
have that an initial zero-coupon price can be calculated via risk-neutral expectation:

P T
0 = EQ[e−

∫ T
0 rtdt]

= exp

(
−
∫ T

0

[
e−λtr0 + (1− e−λt)r̄ − γ2

2λ2
(1− e−λt)2

]
dt

)
.

The initial forward rates are given by

fT0 = − ∂

∂T
logP T

0 = e−λtr0 + (1− e−λt)r̄ − γ2

2λ2
(1− e−λt)2

By the time-homogeneity of the Vasicek model, we can actually deduce the formula

f t+xt = rte
−λx + r̄(1− e−λx)− γ2

2λ2
(1− e−λx)2

This formula says that for the Vasicek model, the forward rates at time t are an affine
function of the short rate at time t. (An affine function is of the form g(x) = ax+ b, that is,
its graph is a line.)

We can also compute bond prices by solving a PDE. We save this calculation for the next
model:

10.2. Cox–Ingersoll-Ross model. In 1985, Cox, Ingersoll, and Ross proposed the
following model for the short rate:

drt = λ(r̄ − rt) + γ
√
rtdWt

for a parameter r̄ > 0 interpreted as a mean short rate, a mean-reversion parameter λ > 0,
and a volatility parameter γ > 0. The process (rt)t≥0 satisfying the above stochastic differ-
ential equation is often called a square-root diffusion or CIR process, though this stochastic
process was studied as early as 1951 by Feller. This process was also used by Heston to
model the spot volatility process in an equity market.

Although the CIR stochastic differential equation cannot be solved explicitly, one can
say quite a lot about this process. For instance, one can show that the process is ergodic
and its invariant distribution is a gamma distribution with mean r̄.

An advantage of this model over the Vasicek model is that the short rate rt is non-negative
for all t ≥ 0. Furthermore, explicit formula are still available for the bond prices.

We can also use the above theorem to compute bond prices. Indeed, fix T > 0 and
consider the PDE

∂V

∂t
(t, r) + λ(r̄ − r)∂V

∂r
(t, r) +

1

2
γ2r

∂2V

∂r2
(t, r) = rV (t, r)

V (T, r) = 1.

We can make the log-affine ansatz

V (t, r) = erR(T−t)+Q(T−t)

for some functions R and Q which satisfy the boundary conditions R(0) = Q(0) = 0.
Substituting this into the PDE yields

(−Ṙr − Q̇) + λ(r̄ − r)R +
σ2

2
rR2 = r
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Matching coefficients of r yields

Ṙ = −λR +
σ2

2
R2 − 1

Q̇ = λr̄R.

The equation for R is a Riccati equation, whose solution is

R(τ) = − 2(eγτ − 1)

(γ + λ)eγτ + (γ − λ)

Q(τ) =

∫ τ

0

λr̄R(s)ds

where γ =
√
λ2 + 2σ2. The bond prices are too messy to write down, but the forward rates

are given by

f t+xt =
4γ2eγx

[(γ + λ)eγx + (γ − λ)]2
rt +

2λr̄(eγx − 1)

(γ + λ)eγx + (γ − λ)
.

In particular, the forward rates for the CIR model are again given by an affine function of
the short rate.

11. Beyond Black–Scholes

Recall that the Black–Scholes model predicts that the initial price (or more properly, the
minimum initial cost of replicating) a European call option of maturity T and strike K is
given by the formula

C0(T,K) = S0F (σ2T,Ke−rT/S0)

where F is an explicit function (calculated in example sheet 3). What made the Black–
Scholes formula so popular after its publication in 1973 is the fact that the right-hand-side
depends only on five quantities: the option’s maturity time T , the option’s strike K, the
interest rate r (assumed constant), the underlying stock’s initial price S0 at time t, and
a volatility parameter σ. Of these five numbers, only the volatility parameter is neither
specified by the option contract nor quoted in the market.

In reality we do not know σ; however we can observe the call prices. So one approach to
find the volatility parameter is to observe the prices of calls from the market, and then try
to work out which σ to put into the Black–Scholes formula to get the right price.

This is called the implied volatility of the option: the unique number Σ(T,K) = σ such
that

Cobs
0 (T,K) = S0F (σ2T,Ke−rT/S0)

If the market was still pricing call options by Black–Scholes formula, then there would
exist one parameter σ such that Σ(T,K) = σ for all T and K. However, in real-world
markets, is is usually the case that the implied volatility surface (T,K) 7→ Σ(T,K) is not
flat.

Indeed, for fixed T , the graph of the function K 7→ Σ(T,K) often resembles a convex
parabola3 at least for strikes K close to the money, i.e. such that Ke−rT/S0 ≈ 1. That is

3...but be careful: for large K, the graph can grow no faster than
√

2 logK/T by a result of Roger Lee.
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Figure 1. Implied volatility vs. log-moneyness log(Ke−rT/S0) for E-mini
S& P Mid-Cap 400 call options for maturity T = 0.7 years, downloaded from
ftp://ftp.cmegroup.com/pub/settle/stleqt on 12 July 2018

why practitioners refer to the function K 7→ Σ(T,K) as the implied volatility smile or smirk.

One could either conclude Black–Scholes model is the true model of the stock price and
that the market is mispricing options, or that the Black–Scholes model does not quite match
reality. The second approach is more prudent. Then, why even consider implied volatility?
As Rebonato famously put it:

Implied volatility is the wrong number to put into wrong formula to obtain
the correct price.

However, thanks to the enormous influence of the Black–Scholes theory, the implied volatility
is now used as a common language to quote option prices.

11.1. Heston model. In order to explain the observed implied volatility smile, we will
then consider a stochastic volatility model. For this model, we will concentrate on the case
where there is d = 1 stock. For simplicity, we will set the interest rate r to be a constant. It
was introduced by Heston in 1993:

dBt = Btrdt

dSt = St(rdt+
√
vtdW

S
t )

dvt = λ(v̄ − vt)dt+ c
√
vtdW

v
t

Here W S and W v are assumed to be correlated Brownian motions in a fixed risk-neutral mea-
sure Q, with correlation ρ. Correlated Brownian motions can be constructed, for instance,
by letting W v and W⊥ be independent Brownian motions and let

W S
t = ρW v

t +
√

1− ρ2W⊥
t .
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In this model the squared volatility v is a mean-reverting process , i.e. an ergodic Markov
process, at least under Q. The interpretation of v̄ is the level of mean reversion, while λ is
the speed of mean reversion. Note that the interest rate is constant r so that the risk-neutral
measure Q is also a forward measure.

Note that Heston’s model is special case of the general factor model we considered before,
where the factor is Zt = (St, vt) has dynamic parameters

b(S, v) = (rS, λ(v̄ − v))

and

σ(S, v) =

(
S
√
vρ S

√
v
√

1− ρ2

c
√
v 0

)
.

The Heston PDE is then

∂F

∂t
+ rS

∂F

∂S
+ λ(v̄ − v)

∂F

∂v
+

1

2
S2v

∂2F

∂S2
+ Svγρ

∂2F

∂S∂v
+

1

2
γ2v

∂2F

∂v2
= rF.

Note that F (t, S, v) = S is a solution of the above PDE, so that the market with the bank
account and stock has no arbitrage.

We would like to compute call prices E[e−rT (ST −K)+] so we could try to solve Heston’s
PDE with terminal condition

F (T, S, v) = (S −K)+.

While this PDE with boundary conditions can be solved numerically, it seems that no explicit
solution is possible, unfortunately.

However, recall that call prices can be calculated via a Fourier integral as long as the
moment generating function of the log stock price is known under the forward measure. It
turns out that in Heston’s model, we can compute the moment generating function reason-
ably explicitly. To do so, we need to solve Heston’s PDE with boundary condition

F (T, v, S; θ) = Sθ

for θ ∈ Θ = {p + iq : 0 < p < 1, q ∈ R} ⊆ C. It turns out that this PDE can be solved
explicitly. The trick is to make the ansatz

F (t, v, S; θ) = SθeR(T−t;θ)v+Q(T−t;θ).

Note that the boundary condition force R(0; θ) = Q(0; θ) = 0. The PDE becomes

−Ṙv − Q̇+ [θr + (θ2 − θ)v/2] + [λv̄ + (θcρ− λ)v]R +
1

2
c2vR2 = r,

where the dot indicates differentiation with respect to the time variable. Notice that the
equation can be written in the form

α(T − t; θ)v + β(T − t; θ) = 0.

Now, the above equation should hold for all v so α(T − t; θ) = 0 = β(T − t; θ), i.e

Ṙ = (θ2 − θ)/2 + (θcρ− λ)R +
1

2
c2R2

Q̇ = (θ − 1)r + λv̄R.
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The equation for R is a Riccati equation which can be solved explicitly. In fact, we do not
even have to make any tricky substitutions, separation of variables and partial fractions work
well enough:

Ṙ =
1

2
c2(R−R+)(R−R−)

⇒ Ṙ

(R−R+)(R−R−)
=

1

2
c2

⇒ 1

R+ −R−

(
1

R−R+

− 1

R−R−

)
Ṙ =

1

2
c2

⇒ log

(
1−R(τ)/R+

1−R(τ)/R−

)
= γτ

⇒ R(τ ; θ) = (θ2 − θ) eγ(θ)τ − 1

(γ(θ)− θcρ+ λ)eγ(θ)τ + (γ(θ) + θcρ− λ)

where γ(θ) =
√

(λ− θcρ)2 − (θ2 − θ)c2 and R±(θ) = [(λ− θcρ)2± γ(θ)]/c2. And the second
equation can be solved

Q(τ ; θ) = θrτ +

∫ τ

0

λv̄R(s; θ)ds

=

(
θr +

(θ2 − θ)λv̄
γ(θ) + θcρ− λ

)
τ − 2λv̄

c2
log

(
(γ(θ)− θcρ+ λ)eγ(θ)τ + (γ(θ) + θcρ− λ)

2γ(θ)

)
It can be shown that for θ ∈ Θ that

EQ(eθ logST ) = erT+θ logS0+R(T ;θ)v0+Q(T ;θ).

What is the point of this calculation? Although the formula for the moment generating
function is hard to call beautiful, it is very explicit. In particular, given the set of model
parameters (v0, λ, v̄, c), the function can be evaluated very quickly on a computer, and hence
the Bromwich integral for call prices can be computed numerically quickly. Hence, it is
possible to calibrate the Heston model to market data in a reasonable amount of time. This
is one of the main reasons for its popularity.

11.2. Local volatility models. In the previous section we have considered a stochastic
volatility model that can match observed call prices reasonably well. However, in this section
we will see that it is possible to find a model that matches all observed call prices exactly:

We consider a model given by

dBt = Bt r dt

dSt = St(r dt+ σ(t, St)dŴt).

That is, the idea is replace the constant volatility parameter in Black–Scholes model with a
local volatility function σ : [0,∞)× (0,∞)→ (0,∞). We will assume that σ is smooth and
bounded from below and above.

The next theorem in the present context is usually attributed to Dupire’s 1994 paper.

Theorem. Suppose that

C0(T,K) = EQ[e−rT (ST −K)+]
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Then
∂C0

∂T
(T,K) + rK

∂C0

∂K
(T,K) =

σ(T,K)2

2
K2∂

2C0

∂K2
(T,K).

Remark. We have already seen a PDE for the replication cost of options in Markovian
models. In that PDE, the solution V (t, St) was the time-t value of a replication strategy for
the given claim, and the derivatives were respect to the calendar time t and the current price
of the underlying asset St. In contrast, Dupire’s PDE is for the initial replication cost of a
call option, and the derivatives are with respect to the maturity date T and the strike K.

Remark. The point of the above theorem is this: Suppose you believe that the stock
price is generated by a local volatility model, but you do not know what the local volatility
function is. If you can observe today’s call price surface {C0(T,K) : T > 0, K > 0} then
you can solve for the local volatility in Dupire’s PDE to arrive at Dupire’s formula

σ(T,K) =

(
2[∂C0

∂T
(T,K) + rK ∂C0

∂K
(T,K)]

K2 ∂2C0

∂K2 (T,K)

)1/2

.

Furthermore, assuming Dupire’s PDE has a unique solution (it will if σ is smooth and
bounded as assumed) then we have found a model that can reproduce the observed call
prices.

Sketch of proof of Dupire’s formula. To outline the argument, we proceed for-
mally

(ST −K)+ = (S0 −K)+ +

∫ T

0

1{St≥K}dSt +
1

2

∫ T

0

δK(St)d〈S〉t

= (S0 −K)+ +

∫ T

0

(
1{St≥K}Str +

1

2
δK(St)S

2
t σ(t, St)

2

)
dt

+

∫ T

0

1{St≥K}Stσ(t, St)dŴt

where we have appealed to Itô’s formula4 with g(x) = (x − K)+, g′(x) = 1[K,∞)(x), and
g′′(x) = δK(x), the Dirac delta ‘function’.

Now, by the assumption of smoothness and the bounds on the volatility function, the
Q-law of the random variable ST has a density function fT . Computing expected values of
both sides

(1) erTC0(T,K) = (S0 −K)+ +

∫ T

0

∫ ∞
K

ft(y)y r dy dt+
1

2

∫ T

0

ft(K)K2σ(t,K)2dt

and then differentiating both sides with respect to T yields

erT
(
∂C0

∂T
(T,K) + rC0(T,K)

)
=

∫ ∞
K

fT (y)y r dy +
1

2
fT (K)K2σ(T,K)2.

4A version of Itô’s formula for non-smooth convex functions, called Tanaka’s formula, can actually be
rigorously stated in terms of a quantity called local time.
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Now we use the following the Breeden–Litzenberger identities

erTC0(T,K) =

∫ ∞
K

fT (y)y dy −K
∫ ∞
K

fT (y) dy

erT
∂C0

∂K
(T,K) = −

∫ ∞
K

fT (y) dy

erT
∂2C0

∂K2
(T,K) = fT (K)

to finish the argument. �
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CHAPTER 4

Crashcourse on probability theory

These notes are a list of many of the definitions and results of probability theory needed
to follow the Advanced Financial Models course. Since they are free from any motivating
exposition or examples, and since no proofs are given for any of the theorems, these notes
should be used only as a reference. A table of notation is in the appendix.

1. Measures

Definition. Let Ω be a set. A sigma-field on Ω is a non-empty set F of subsets of Ω
such that

(1) if A ∈ F then Ac ∈ F ,
(2) if A1, A2, . . . ∈ F then

⋃∞
i=1Ai ∈ F .

The terms sigma-field and sigma-algebra are interchangeable.
The Borel sigma-field B on R is the smallest sigma-field containing every open interval.

More generally, if Ω is a topological space, for instance Rn, the Borel sigma-field on Ω is the
smallest sigma-field containing every open set.

Definition. Let Ω be a set and let F be a sigma-field on Ω. A measure µ on the
measurable space (Ω,F) is a µ : F → [0,∞] such that

(1) µ(∅) = 0
(2) if A1, A2, . . . ∈ F are disjoint then µ(

⋃∞
i=1Ai) =

∑∞
i=1 µ(Ai).

Theorem. There exists a unique measure Leb on (R,B) such that

Leb(a, b] = b− a
for every b > a. This measure is called Lebesgue measure.

Definition. A probability measure P on (Ω,F) is a measure such that P(Ω) = 1.
Let Ω be a set, F a sigma-field on Ω, and P a probability measure on (Ω,F). The triple

(Ω,F ,P) is called a probability space.
The set Ω is called the sample space, and an element of Ω is called an outcome. A subset

of Ω which is an element of F is called an event.
Let A ∈ F be an event. If P(A) = 1 then A is called an almost sure event, and if

P(A) = 0 then A is called a null event. The phrase ‘almost surely’ is often abbreviated a.s.
A sigma-field is called trivial if each of its elements is either almost sure or null.

2. Random variables

Definition. Let (Ω,F ,P) be a probability space. A random variable is a function
X : Ω→ R such that the set {ω ∈ Ω : X(ω) ≤ t} is an element of F for all t ∈ R.
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Let A be a subset of R, and let X be a random variable. We use the notation {X ∈ A}
to denote the set {ω ∈ Ω : X(ω) ∈ A}. For instance, the event {X ≤ t} denotes {ω ∈ Ω :
X(ω) ≤ t}.

The distribution function of X is the function FX : R→ [0, 1] defined by

FX(t) = P(X ≤ t)

for all t ∈ R.
We also use the term random variable to refer to measurable functions X from Ω to more

general spaces. In particular, we call a function X : Ω → Rn a random variable or random
vector if X(ω) = (X1(ω), . . . , Xn(ω)) and Xi is a random variable for each i ∈ {1, . . . , n}.

Definition. Let A be an event in Ω. The indicator function of the event A is the
random variable 1A : Ω→ {0, 1} defined by

1A(ω) =

{
1 if ω ∈ A
0 if ω ∈ Ac

for all ω ∈ Ω.

3. Expectations and variances

Definition. Let X be a random variable on (Ω,F ,P). The expected value of X is
denoted by E(X) and is defined as follows

• X is simple, i.e. takes only a finite number of values x1, . . . , xn.

E(X) =
n∑
i=1

xiP(X = xi).

• X ≥ 0 almost surely.

E(X) = sup{E(Y ) : Y simple and 0 ≤ Y ≤ Xa.s.}
Note that the expected value of a non-negative random variable may take the value
∞.
• Either E(X+) or E(X−) is finite.

E(X) = E(X+)− E(X−)

• X is vector valued and E(|X|) <∞.
E[(X1, . . . , Xd)] = (E[X1], . . . ,E[Xd])

A random variable X is integrable iff E(|X|) <∞ and is square-integrable iff E(X2) <∞.
The terms expected value, expectation, and mean are interchangeable.

The variance of an integrable random variable X, written Var(X), is

Var(X) = E{[X − E(X)]2} = E(X2)− E(X)2.

The covariance of square-integrable random variable X and Y , written Cov(X, Y ), is

Cov(X, Y ) = E{[X − E(X)][Y − E(Y )]} = E(XY )− E(X)E(Y ).

If neither X or Y is almost surely constant, then their correlation, written ρ(X, Y ), is

ρ(X, Y ) =
Cov(X, Y )

Var(X)1/2Var(Y )1/2
.
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Random variables X and Y are called uncorrelated if Cov(X, Y ) = 0.

Theorem. Let X and Y be integrable random variables.

• linearity: E(aX + bY ) = aE(X) + bE(Y ) for constants a, b.
• positivity: Suppose X ≥ 0 almost surely. Then E(X) ≥ 0 with equality if and only

if X = 0 almost surely.

Definition. For p ≥ 1, the space Lp is the collection of random variables such that
E(|X|p) <∞. The space L∞ is the collection of random variables which are bounded almost
surely.

Theorem (Jensen’s inequality). Let X be a random variable and g : R→ R be a convex
function. Then

E[g(X)] ≥ g(E[X])

whenever the expectations exist. If g is strictly convex, the above inequality is strict unless
X is constant.

Theorem (Hölder’s inequality). Let X and Y be random variables and let p, q > 1 with
1
p

+ 1
q

= 1. If X ∈ Lp and Y ∈ Lq then

E(XY ) ≤ E(|X|p)1/pE(|Y |q)1/q

with equality if and only if either X = 0 almost surely or X and Y have the same sign and
|Y | = a|X|p−1 almost surely for some constant a ≥ 0. The case when p = q = 2 is called the
Cauchy–Schwarz inequality.

Definition. A random variable X is called discrete if X takes values in a countable set;
i.e. there is a countable set S such that X ∈ S almost surely. If X is discrete, the function
pX : R→ [0, 1] defined by pX(t) = P(X = t) is called the mass function of X.

The random variable X is absolutely continuous (with respect to Lebesgue measure) if
and only if there exists a function fX : R→ [0,∞) such that

P(X ≤ t) =

∫ t

−∞
fX(x)dx

for all t ∈ R, in which case the function fX is called the density function of X.
If X is a random vector taking values in Rn, then the density of X, if it exists, is the

function fX : Rn → [0,∞) such that

P(X ∈ A) =

∫
A

fX(x)dx

for all Borel subsets A ⊆ Rn.

Theorem. Let the function g : R→ R be such that g(X) is integrable.
If X is a discrete random variable with probability mass function pX taking values in a

countable set S then
E(g(X)) =

∑
t∈S

g(t) pX(t).

If X is an absolutely continuous random variable with density function fX then

E(g(X)) =

∫ ∞
−∞

g(x) fX(x) dx.
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More generally, if X is a random vector valued in Rn with density fX and g : Rn → R then

E(g(X)) =

∫
Rn

g(x) fX(x) dx.

4. Special distributions

Definition. Let X be a discrete random variable taking values in Z+ with mass function
pX .

The random variable X is called

• Bernoulli with parameter p if

pX(0) = 1− p and pX(1) = p.

where 0 < p < 1. Then E(X) = p and Var(X) = p(1− p).
• binomial with parameters n and p, written X ∼ bin(n, p), if

pX(k) =

(
n

k

)
pk(1− p)n−k for all k ∈ {0, 1, . . . , n}

where n ∈ N and 0 < p < 1. Then E(X) = np and Var(X) = np(1− p).
• Poisson with parameter λ if

pX(k) =
λk

k!
e−λ for all k = 0, 1, 2, . . .

where λ > 0. Then E(X) = λ.
• geometric with parameter p if

pX(k) = p(1− p)k−1 for all k = 1, 2, 3, . . .

where 0 < p < 1. Then E(X) = 1/p.

Definition. Let X be a continuous random variable with density function fX .
The random variable X is called

• uniform on the interval (a, b), written X ∼ unif(a, b), if

fX(t) =
1

b− a
for all a < t < b

for some a < b. Then E(X) = a+b
2

.
• normal or Gaussian with mean µ and variance σ2, written X ∼ N(µ, σ2), if

fX(t) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
for all t ∈ R

for some µ ∈ R and σ2 > 0. Then E(X) = µ and Var(X) = σ2.
• exponential with rate λ, if

fX(t) = λe−λt for all t ≥ 0

for some λ > 0. Then E(X) = 1/λ.
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If X is a random vector valued in Rn with density

fX(x) = (2π)−n/2 det(V )−1/2 exp

(
−1

2
(x− µ) · V −1(x− µ)

)
for a positive definite n × n matrix V and vector µ ∈ Rn, then X is said to have the n-
dimensional normal (or Gaussian) distribution with mean µ and variance V , written X ∼
Nn(µ, V ). Then E(Xi) = µi and Cov(Xi, Xj) = Vij.

5. Conditional probability and expectation, independence

Definition. Let B be an event with P(B) > 0. The conditional probability of an event
A given B, written P(A|B), is

P(A|B) =
P(A ∩B)

P(B)
.

The conditional expectation of X given B, written E(X|B), is

E(X|B) =
E(X1B)

P(B)
.

Theorem (The law of total probability). Let B1, B2, . . . be disjoint, non-null events such
that

⋃∞
i=1 Bi = Ω. Then

P(A) =
∞∑
i=1

P(A|Bi)P(Bi)

for all events A.

Definition. Let A1, A2, . . . be events. If

P(
⋂
i∈I

Ai) =
∏
i∈I

P(Ai)

for every finite subset I ⊂ N then the events are said to be independent.
Random variables X1, X2, . . . are called independent if the events {X1 ≤ t1}, {X2 ≤

t2}, . . . are independent. The phrase ‘independent and identically distributed’ is often ab-
breviated i.i.d.

Theorem. If X and Y are independent and integrable, then

E(XY ) = E(X)E(Y ).

6. Probability inequalities

Theorem (Markov’s inequality). Let X be a positive random variable. Then

P(X ≥ ε) ≤ E(X)

ε
for all ε > 0.

Corollary (Chebychev’s inequality). Let X be a random variable with E(X) = µ and
Var(X) = σ2. Then

P(|X − µ| ≥ ε) ≤ σ2

ε2

for all ε > 0.
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7. Characteristic functions

Definition. The characteristic function of a real-valued random variable X is the func-
tion φX : R→ C defined by

φX(t) = E(eitX)

for all t ∈ R, where i =
√
−1. More generally, if X is a random vector valued in Rn then

φX : Rn → C defined by

φX(t) = E(eit·X)

is the characteristic function of X.

Theorem (Uniqueness of characteristic functions). Let X and Y be real-valued ran-
dom variables with distribution functions FX and FY . Let φX and φY be the characteristic
functions of X and Y . Then

φX(t) = φY (t) for all t ∈ R
if and only if

FX(t) = FY (t) for all t ∈ R.

8. Fundamental probability results

Definition (Modes of convergence). Let X1, X2, . . . and X be random variables.

• Xn → X almost surely if P(Xn → X) = 1
• Xn → X in Lp, for p ≥ 1, if E|X|p <∞ and E|Xn −X|p → 0
• Xn → X in probability if P(|Xn −X| > ε)→ 0 for all ε > 0
• Xn → X in distribution if FXn(t)→ FX(t) for all points t ∈ R of continuity of FX

Theorem. The following implications hold:

Xn → X almost surely
or

Xn → X in Lp, p ≥ 1

⇒ Xn → X in probability ⇒ Xn → X in distribution

Furthermore, if r ≥ p ≥ 1 then Xn → X in Lr ⇒ Xn → X in Lp.

Definition. Let A1, A2, . . . be events. The term eventually is defined by

{An eventually} =
⋃
N∈N

⋂
n≥N

An

and infinitely often by

{An infinitely often} =
⋂
N∈N

⋃
n≥N

An.

[The phrase ‘infinitely often’ is often abbreviated i.o.]

Theorem (The first Borel–Cantelli lemma). Let A1, A2, . . . be a sequence of events. If
∞∑
n=1

P(An) <∞

then P(An infinitely often) = 0.
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Theorem (The second Borel-Cantelli lemma). Let A1, A2, . . . be a sequence of indepen-
dent events. If

∞∑
n=1

P(An) =∞

then P(An infinitely often) = 1.

Theorem (Monotone convergence theorem). Let X1, X2, . . . be positive random variables
with Xn ≤ Xn+1 almost surely for all n ≥ 1, and let X = supn∈NXn. Then Xn → X almost
surely and

E(Xn)→ E(X).

Theorem (Fatou’s lemma). Let X1, X2, . . . be positive random variables. Then

E(lim inf
n↑∞

Xn) ≤ lim inf
n↑∞

E(Xn).

Theorem (Dominated convergence theorem). Let X1, X2, . . . and X be random variables
such that Xn → X almost surely. If E(supn≥1 |Xn|) <∞ then

E(Xn)→ E(X).

Theorem (A strong law of large numbers). Let X1, X2, . . . be independent and identically
distributed integrable random variables with common mean E(Xi) = µ. Then

X1 + . . .+Xn

n
→ µ almost surely.

Theorem (Central limit theorem). Let X1, X2, . . . be independent and identically dis-
tributed with E(Xi) = µ and Var(Xi) = σ2 for each i = 1, 2, . . ., and let

Zn =
X1 + . . .+Xn − nµ

σ
√
n

.

Then Zn → Z in distribution, where Z ∼ N(0, 1).
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R the set of real numbers
R+ the set of non-negative real numbers [0,∞)
N the set of natural numbers {1, 2, . . .}
C the set of complex numbers
Z the set of integers {. . . ,−2,−1, 0, 1, 2, . . .}
Z+ the set of non-negative integers {0, 1, 2, . . .}
Ac the complement of a set A, Ac = {ω ∈ Ω, ω /∈ A}

FX the distribution function of a random variable X
pX the mass function of a discrete random variable X
fX the density function of an absolutely continuous random variable X
φX the characteristic function of X

E(X) the expected value of the random variable X
Var(X) the variance of X
Cov(X, Y ) the covariance of X and Y
E(X|B) the conditional expectation of X given the event B

a ∧ b min{a, b}
a ∨ b max{a, b}
a+ max{a, 0}
lim supn↑∞ xn the limit superior of the sequence x1, x2, . . .
lim infn↑∞ xn the limit inferior of the sequence x1, x2, . . .

a · b Euclidean inner (or dot) product in Rn, a · b =
∑n

i=1 aibi
|a| Euclidean norm in Rn, |a| = (a · a)1/2

X ∼ ν the random variable X is distributed as the probability measure ν
1A the indicator function of the event A
N(µ, σ2) the normal distribution with mean µ and variance σ2

Nn(µ, V ) the n-dimensional normal distribution with mean µ ∈ Rn

and variance V ∈ Rn×n

bin(n, p) the binomial distribution with parameters n and p
unif(a, b) the uniform distribution on the interval (a, b)

Lp the set of random variables X with E|X|p <∞
Table 1. Notation
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