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Problem 1. * Consider a three asset market with prices given by

dBt

Bt

= 2 dt

dS
(1)
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(1)
t

= 3 dt+ dW
(1)
t − 2 dW

(2)
t
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(2)
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t + 4 dW
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Construct an absolute arbitrage.

Solution 1. If the pure investment strategy is decomposed as (φ, π) a good choice for the
holding is stock is given by

πt =

(
2

S
(1)
t

,
1

S
(2)
t

)
but, of course, it is not unique. It remains to find the holding in the bank account φ. Note
that the wealth X evolves as

dXt = r(Xt − πt · St)dt+ πt · dSt
= (2Xt + 5)dt

so the unique solution with X0 = 0 is

Xt =
5

2
(e2t − 1).

Since Xt > 0 a.s. for t > 0, this is an arbitrage with the holding in the bank account given
by

φt =
Xt − πt · St

Bt

=
5− 11e−2t

2B0

.

Problem 2. (Black–Scholes formula) Let X ∼ N(0, 1) be a standard normal random vari-
able, and v and m be positive constants. Express the expectation

F (v,m) = E[(e−v/2+
√
vX −m)+]

in terms of Φ, the distribution function of X. Prove the identity

F (v,m) = 1− m1−pep(p−1)v/2√
2π/v

E
[

eiX(p−1/2−logm)/
√
v

(X − ip
√
v)(X + i(1− p)

√
v)

]
holds for all 0 < p < 1 and v,m > 0
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Solution 2.

E[(e−v/2+
√
vX −m)+] =

∫ ∞
−∞

(e−v/2+
√
vx −m)+

e−x
2/2

√
2π

dx

=

∫ ∞
logm/

√
v+
√
v/2

(e−v/2+
√
vx −m)

e−x
2/2

√
2π

dx

=

∫ ∞
logm/

√
v+
√
v/2

e−v/2+
√
vx−x2/2

√
2π

dx−m
∫ ∞
logm/

√
v+
√
v/2

e−x
2/2

√
2π

dx

=

∫ − logm/
√
v+
√
v/2

−∞

e−s
2/2

√
2π

ds−m
∫ − logm/

√
v−
√
v/2

−∞

e−t
2/2

√
2π

dt

= Φ

(
− logm√

v
+

√
v

2

)
−m Φ

(
− logm√

v
−
√
v

2

)
The second identity is consequence of the formula relating call prices to the moment generat-
ing function of a log stock price. To apply the formula, note that M(θ) = E[(e−v/2+

√
vX)θ] =

eθ(θ−1)v/2 hence

F (v,m) = 1− m1−p

2π

∫
ep(p−1)v/2+ix(p−1/2)v−x2v/2e−ix logm

(x− ip)(x+ i(1− p))
dx

Problem 3. (strictly local martingale in finance) Consider a market with zero interest rate
r = 0 and stock price with dynamics

dSt = S2
t dWt.

Consider a European claim with payout ξT = ST .
(a) Show that there exists a trading strategy which replicates the claim with corresponding
wealth ξt = V (t, St) where

V (t, S) = S

[
2Φ

(
1

S
√
T − t

)
− 1

]
.

(b) Consider the strategy of buying S0 claims and selling ξ0 shares. The time 0 wealth is
V0 = 0 and the time T wealth is VT = (S0−ξ0)ST > 0. Is this strategy an absolute arbitrage?

Solution 3. (a) It is straight-forward, if a bit tedious, to verify

∂V

∂t
+

1

2
S4∂

2V

∂S2
= 0

and limt↑T V (t, S) = S. The replication strategy is given by πt = ∂V
∂S

(t, St) as usual.
(b) This candidate arbitrage is not admissible. Indeed, let Vt = S0ξt− ξ0St. Note that V is a
local martingale, as it is the linear combination of two local martingales. Now if the strategy
were admissible, the wealth V would be bounded from below and hence a supermartingale.
Therefore we would have to conclude

0 = V0 ≥ E(VT ) = E(S0ξT − ξ0ST ) = (S0 − ξ0)E(ST )

But this contradicts S0 > ξ0. So in this market it is impossible to lock in the sure future
profit at zero initial cost, because doing so leaves open the possibility that the wealth is goes
negative between times t = 0 and t = T .
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Note, however, that there is an admissible arbitrage relative to the asset with price S.
Indeed, the strategy of holding one share of the claim is a relative arbitrage, since the initial
discounted wealth is ξ0/S0 < 1 and the terminal discounted wealth is ξT/ST = 1. This is
only a relative arbitrage since you do not short S, and hence must start with positive initial
wealth.

Problem 4. (variance swap) Consider a market a stock with price S, where S be a positive
Itô process, and interest rate r = 0. A variance swap is a European contingent claim with
payout

N∑
n=1

(
log

Stn
Stn−1

)2

.

where 0 ≤ t0 < · · · < tN = T are fixed non-random dates. We know from stochastic calculus
that the payout of the variance swap, for large N , is approximately given by

ξT = 〈logS〉T .
The goal of this exercise is to show that ξT can be replicated in an asymptotic sense.
(a) Confirm the identity

log(ST/S0) =

∫ T

0

dSt
St
− 1

2
〈logS〉T .

(b) Confirm the identity

log x = x− 1−
∫ 1

0

(k − x)+

k2
dk −

∫ ∞
1

(x− k)+

k2
dk.

(c) Explain how to approximately replicate ξT by trading in the stock, cash, and a family of
call and put options of different strikes but all with maturity date T . Show that the number
of shares of the stock varies dynamically but the portfolio of calls and puts is static.

Solution 4. (a) Note that by Itô’s formula:

d logSt =
dSt
St
− d〈S〉t

2S2
t

.

and hence

d〈logS〉t =
d〈S〉t
S2
t

.

The conclusion follows.
(b) Since (k − x)+ ≥ 0 only if k ≥ x we have∫ 1

0

(k − x)+

k2
dk =

∫ 1

x∧1

(
1

k
− x

k2

)
dk

= − log(x ∧ 1)− (1− x)+

Similarly, ∫ ∞
1

(x− k)+

k2
dk =

∫ x∨1

1

(
x

k2
− 1

k

)
dk

= (x− 1)+ − log(x ∨ 1)
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(c) By the construction of quadratic variation in lecture, we have

ξT ≈ 〈logS〉T

= 2

∫ T

0

dSt
St
− 2 log(ST/S0)

= 2

∫ T

0

dSt
St
− 2ST + 2(logS0 + 1) + 2

∫ 1

0

PT (T,K)

K2
dK + 2

∫ ∞
1

CT (T,K)

K2
dK

where PT (T,K) = (K − ST )+ is the payout of a put option and CT (T,K) = (ST −K)+ is
the payout of a call. Therefore, a replication strategy is to hold the static position 2

K2dK

puts of strike K ≤ 1 and 2
K2dK calls of strike K > 1, and the dynamic position of 2

St
− 2

shares of the stock at time t.
This replication strategy only requires that S is positive and that Itô’s formula applies, but

is otherwise model-independent. (But don’t forget about notions of admissibility, and even
more fundamentally, that we need to be in a situation where we can safely ignore bid-ask
spread, price impact, transaction costs, etc.)

Problem 5. Consider a market with zero interest rate r = 0 and a stock with price dynamics

dSt = StσtdWt

where σ is independent of the Q-Brownian motion W . Let

C(T,K) = EQ[(ST −K)+].

(a) Show that there is a family of measures µT on [0,∞) such that

C(T,K) = S0

∫
F (v,K/S0)µT (dv)

where F is the function defined in Problem 2.
(b) If there are constants a ≤ b such that a ≤ σt ≤ b a.s., show that the implied volatility
satisfies

a ≤ Σ(T,K) ≤ b.

where the implied volatility Σ(T,K) is defined implicitly as the unique non-negative solution
σ of the equation

F (Tσ2, K/S0) = C(T,K)/S0.

(c) Show the equality Σ(T,K) = Σ(T, S2
0/K), i.e. the function x 7→ Σ(T, S0e

x) is even. Hint:
First prove the identity

F (v,m) = 1−m+mF (v, 1/m).

Solution 5. (a) Notice that conditional on the process σ, the distribution of

logST = logS0 −
1

2

∫ T

0

σ2
sds+

∫ T

0

σsdWs

is normal, since σ and W are independent. Hence

E[(ST −K)+|σ] = S0 F

(∫ T

0

σ2
sds,K/S0

)
.

The conclusion follows from the tower property of conditional expectations, where the mea-

sure µT is the law of the non-negative random variable
∫ T
0
σ2
s ds.
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(b) Since v 7→ F (v,m) is increasing, we have

F (Ta2, K/S0) ≤
∫
[a,b]

F (v,K/S0)µT (dv) ≤ F (Tb2, K/S0).

But since the middle term is just F (TΣ(T,K)2, K/S0), we can conclude

a ≤ Σ(T,K) ≤ b.

(c) Notice the Black–Scholes call price function satisfies the following identity:

F (v,m) = Φ(− logm/
√
v +
√
v/2)−mΦ(− logm/

√
v −
√
v/2)

= 1− Φ(logm/
√
v −
√
v/2)−m

[
1− Φ(logm/

√
v +
√
v/2)

]
= 1−m+m

[
Φ(logm/

√
v +
√
v/2)− (1/m)Φ(logm/

√
v −
√
v/2)

]
= 1−m+m F (v, 1/m)

Now use the above calculation:

S0 F (TΣ(T,K)2, K/S0) =

∫
S0 F (v,K/S0)µT (dv)

=

∫
[S0 −K +K F (v, S0/K)]µT (dv)

= S0 −K +K F (TΣ(T, S2
0/K)2, S0/K)

= S0 F (TΣ(T, S2
0/K)2, K/S0).

In particular, the implied volatility smile in this model (where the volatility is uncorrelated
with the driving Brownian motion) is symmetric as a function of log-moneyness log(K/S0).
This observation is due to Renault and Touzi in 1996.

Problem 6. * (Hull–White extension of Cox–Ingersoll–Ross) Consider the short rate model
given by

drt = λ(r̄(t)− rt) dt+ γ
√
rt dWt

for positive constants λ and γ and a deterministic function r̄ : R+ → R. Find the initial
forward rate curve T 7→ fT0 for this model.

Solution 6. Consider the PDE

∂V

∂t
(t, T, r) + λ(r̄(t)− r)∂V

∂r
(t, T, r) +

1

2
γ2r

∂2V

∂r2
(t, T, r) = rV (t, T, r)

V (T, T, r) = 1.

As usual we can make the ansatz

V (t, T, r) = e−rA(t,T )−B(t,T )

for some functions A and B which satisfy the boundary conditions A(T, T ) = B(T, T ) = 0.
Substituting this into the PDE yields

−∂A
∂t
r − ∂B

∂t
− λ(r̄(t)− r)A+

γ2

2
rA2 = r
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which yields the coupled system

∂A

∂t
(t, T ) = λA(t) +

γ2

2
A(t)2 − 1

∂B

∂t
(t, T ) = −λr̄(t)A(t, T ).

The equation for A is a Riccati equation, whose solution is

A(t, T ) =
2(eβ(T−t) − 1)

(β + λ)eβ(T−t) + (β − λ)

B(t, T ) =

∫ T

t

λr̄(s)A(s, T )ds

where β =
√
λ2 + 2γ2. Hence, the time 0 forward rates are given by

fT0 = − ∂

∂T
logP T

0 =
4β2eβT

[(β + λ)eβT + (β − λ)]2
r0 +

∫ T

0

4β2eβ(T−s)λr̄(s)ds

[(β + λ)eβ(T−s) + (β − λ)]2
.

Problem 7. Let W 1, . . . ,Wm be m independent Brownian motions, and let X1, . . . , Xm

evolve as

dX i
t = aX i

t dt+ b dW i
t

given initial conditions X1
0 , . . . , X

m
0 and fixed constants a, b.

Let

Zt =
m∑
i=1

(X i
t)

2 = ‖Xt‖2.

Show that there exists constants α, β, γ and a scalar Brownian motion Ŵ such that

dZt = (αZt + β)dt+ γ
√
ZtdŴt.

Solution 7. Let f(x) = ‖x‖2 so that ∂f
∂xi

= 2xi and ∂2f
∂xi∂xj

= 2 if i = j and 0 otherwise. By
Itô’s formula

dZt =
n∑
i=1

2X i
tdX

i
t +

n∑
i=1

d〈X i〉t

= (aZt + nb2)dt+
n∑
i=1

2bX i
tdW

i
t

The conclusion now follows with α = a, β = nb2 and γ = 2b, by defining

Ŵt =

∫ t

0

Xs · dWs

‖Xs‖

and noting that Ŵ is a Brownian motion by Lévy’s characterisation theorem, since 〈W 〉t = t.

Problem 8. Given positive constants λ, r̄, γ such that r̄ < γ and λr̄ > γ2/2, and an initial
condition 0 < r0 < γ and a Brownian motion W , it is possible to show that there exists a
process (rt)t≥0 satisfying

drt = λ(r̄ − rt)dt+ (γ − rt)
√
rtdWt
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such that 0 < rt < γ for all t ≥ 0 almost surely. Define the function H : R+× (0, γ)→ (0, 1)
by

E[e−
∫ t
0 rs ds|r0 = r] = H(t, r)

Show that H(t, ·) is a quadratic function for each t ≥ 0.

Solution 8. We will show that there is a function G : R+ × (0, γ) → (0, 1) such that G(t, ·)
is quadratic and furthermore satisfies the PDE

∂G

∂t
= λ(r̄ − r)∂G

∂r
+

1

2
(γ − r)2r∂

2G

∂r2
− rG

with boundary condition G(0, r) = 1 for all r. Assuming for the moment that we have such
a function G, note that for fixed t > 0, the process (Ms)0≤s≤T defined by

Ms = e−
∫ s
0 ru duG(t− s, rs)

is a local martingale by Itô’s formula. Furthermore, since M is bounded (because the process
(rs)0≤s≤t is bounded), the local martingale M is actually true martingale. Hence

G(t, r0) = M0 = E(Mt) = E[e−
∫ t
0 rs ds].

That is to say, G = H.
Now to find G, we make the ansatz that

G(t, r) = g0(t) + g1(t)r + g2(t)r
2

with g0(0) = 1 and g1(0) = g2(0) = 0. Plugging this in yields

g′0 + g′1r + g′2r
2 = λ(r̄ − r)(g1 + 2g2r) + (γ − r)2rg2 − r(g0 + g1r + g2r

2)

= λr̄g1 − r[g0 + λg1 − (2λr̄ + γ2)g2]− r2[g1 + 2(λ+ γ)g2]

(the coefficients are not really important– what one should notice is that the coefficient of
r3 vanishes on the right-hand side). Letting g = (g1, g2, g3)

>, by comparing coefficients, we
need only solve the system of linear ODEs

g′ = Sg, g(0) = (1, 0, 0)>

where

S =

 0 λr̄ 0
−1 −λ 2λr̄ + γ2

0 −1 −2(λ+ γ)

 .
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