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Problem 1. Let Z be a homogeneous Markov process taking values in a finite space E with
transition probabilities

pz,y = P(Z1 = y|Z0 = z) for z, y ∈ E.

Let R : E → (−1,∞) and F : Z+ × E → Rd be functions such that∑
y∈E

F (t+ 1, y)pz,y = (1 +R(z))F (t, z) for all t ≥ 0, z ∈ E.

Consider a market with a bank account with risk-free rate rt = R(Zt−1) and d stocks with
prices Sit = F i(t, Zt) for i = 1, . . . , d.
(a) Show that the market has no arbitrage.

Now suppose that for each z ∈ E that the set

Y(z) = {y ∈ E : pz,y > 0}

has exactly d + 1 elements. Furthermore, suppose that for all t > 0 and z ∈ E, the d + 1
functions {1, F 1(t, ·), . . . , F d(t, ·)} are linearly independent when restricted to Y(z), where
1(y) = 1 for all y ∈ E.
(b) Show that the market is complete.
(c) Define the d× d matrix-valued function for 0 < t ≤ T, z ∈ E, y0 ∈ Y(z) by

∆(t, z, y0) =
(
F i(t, y)− F i(t, y0) : y ∈ Y(z)\{y0}, 1 ≤ i ≤ d

)
.

Show that ∆(t, z, y0) is invertible.
(d) For a function f : E → R consider the d× 1 vector defined for z ∈ E and y0 ∈ Y(z) by

f̃(z, y0) =
(
f(y)− f(y0) : y ∈ Y(z)\{y0}

)
.

Show that the d× 1 vector ∆(t, z, y0)
−1f̃(z, y0) does not depend on y0.

(e) Fix a function g : E → R and let V (T, z) = g(z) and

V (t, z) =
1

1 +R(z)

∑
y∈E

V (t+ 1, y)pz,y for all 0 ≤ t ≤ T − 1, z ∈ E.

Define a Rd-valued function for 0 < t ≤ T, z ∈ E, y0 ∈ Y(z) by

Π(t, z) = ∆(t, z, y0)
−1(V (t, y)− V (t, y0) : y ∈ Y(z)\{y0}

)
for any y0 ∈ Y(z). (The choice of y0 is irrelevant by part (d).) Finally, define a real-valued
function by

Φ(t, z) = V (t− 1, z)− Π(t, z) · F (t− 1, z).

Show that the European claim with time T payout ξT = g(ST ) is with unique no-arbitrage
price ξt = V (t, Zt) and replicating strategy H = (φ, π) where

φt =
Φ(t, Zt−1)

Bt−1
and πt = Φ(t, Zt−1)
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Solution 1. (a) Note by the Markov property that

E
(
St+1

Bt+1

|Ft
)

=
1

Bt+1

E (F (t+ 1, Zt+1)|Zt)

=
1

Bt+1

(1 +R(Zt))F (t, Zt)

=
St
Bt

so the measure P is risk-neutral. This implies that there is no arbitrage.
(b) Claim: for every t ≥ 0 and any Ft measurable random variable ξt, there exists a Ft−1-
measurable random vector Ht valued in R1+d such that Ht · Pt = ξt, where Pt = (Bt, St).

Proof that the claim implies completeness: Given a claim with time T payout ξT , let HT

be FT−1-measurable and such that HT · PT = ξT , and for t < T let Ht be Ft−1-measurable
and such that

Ht · Pt = Ht+1 · Pt.
This strategy is previsible and self-financing by construction, and replicates ξT .

To prove the claim: conditional on Ft−1 = σ(Z1, . . . , Zt−1) the random variable Zt takes
d+1 values, say y1, . . . , yd+1 (by the Markov property). On the other hand, an Ft-measurable
random variable is of the form ξt = G(Z1, . . . , Zt), so conditional on Ft−1, the random
variable ξt can take only d+1 values, say x1, . . . xd+1. So we have to solve the d+1 equations

φtBt +
d∑
i=1

πitF
i(t, yj) = xj

in d+ 1 unknowns φt, π
1
t , . . . , π

d
t . By the assumed linear independence, the (1 + d)× (1 + d)

matrix

A =

 Bt F 1(t, y1) · · · F d(t, y1)
...

...
. . .

...
Bt F 1(t, yd+1) · · · F d(t, yd+1)


has rank d + 1. Hence A is invertible, and there exists a unique solution to the system of
equations.
(c) By linear algebra, we have for any 1 ≤ j ≤ d+ 1 that

detA = det



0 F 1(t, y1)− F 1(t, yj) · · · F d(t, y1)− F d(t, yj)
...

...
. . .

...
0 F 1(t, yj−1)− F 1(t, yj) · · · F d(t, yj−1)− F d(t, yj))
Bt F 1(t, yj) · · · F d(t, yj))
0 F 1(t, yj+1)− F 1(t, yj) · · · F d(t, yj+1 − F d(t, yj))
...

...
. . .

...
0 F 1(t, yd+1)− F 1(t, yj) · · · F d(t, yd+1 − F d(t, yj))


= (−1)j+1Bt det ∆(t, Zt−1, yj)

From part (b), the determinant of A is not zero, and hence neither is the determinant of
∆(t, Zt−1, yj).
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(d) From part (b), the system of equations

a0 +
d∑
i=1

aiF
i(t, yj) = f(yj)

has a unique solution. By subtracting the row corresponding to y0 from every equation yields
the system of d equations in d unknowns

d∑
i=1

ai(F
i(t, yj)− F i(t, y0)) = f(yj)− f(y0)

The unique solution is (a1, . . . , ad)
> = ∆−1f̃ which does not depend on the choice of y0.

(e) Let (φ̂t, π̂t) be the unique Ft−1-measurable solution to

φ̂tBt + π̂t · F (t, Zt) = V (t, Zt)

. From (d) we know that π̂t = πt. Now divide by 1 + rt and compute the expected value of
both sides of the displayed equation conditional on Ft−1. We have

φ̂tBt−1 + π̂t · F (t− t, Zt−1) = V (t− 1, Zt−1)

Hence φ̂t = φt.

Problem 2. Let (ζt,T )1≤t<T be a collection of positive random variables such that ζt,T is
Ft-measurable for all t and that

E

( T∏
u=t+1

ζt,u

)−1
|Ft−1

 = 1

for all 1 ≤ t < T . Now given a non-random sequence f0,T > −1 for T > 0, let

1 + ft,T = (1 + ft−1,T )ζt,T for 1 ≤ t < T.

Let rt = ft−1,t for t ≥ 1 and Pt,T =
(∏T

u=t+1(1 + ft,u)
)−1

for 0 ≤ t < T .

Consider a market with a bank account with time t risk-free interest rate rt and a collection
of bonds such that Pt,T is the time t of the bond of maturity T .
(a) Show that the market has no arbitrage.
(b) Use example sheet 2 problem 6 to show that the forward rate at time t for maturity T
is given by ft,T .
(c) Let ζt,T = exp(σt,T ξt + µt,T ) where σt,T and µt,T are Ft−1 measurable and ξt is N(0, 1)
and independent of Ft−1. Show that

µt,T = σt,T

T−1∑
u=t+1

σt,u +
1

2
σ2
t,T

Solution 2. (a) Note

Pt,T
Bt

=
Pt−1,T
Bt−1

(
T∏

u=t+1

ζt,T

)−1
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and hence (Pt,T/Bt)0≤t≤T is a martingale by example sheet 1 problem 3. Hence P is a
risk-neutral measure and hence their is no arbitrage by the 1FTAP.

(b) We know that the forward rate is
Pt,T−1

Pt,T
− 1 which simplifies to ft,T .

(c) Using the moment generating function of the standard normal we have

1 = E

[
exp

(
−

T∑
u=t+1

(σt,uξt + µt,u)

)
|Ft−1

]

= exp

1

2

(
T∑

u=t+1

σt,u

)2

−
T∑

u=t+1

µt,u


The conclusion follows from solving for ut,T .

Problem 3. Let g be a function on the integers, and define functions g′ and g′′ by the
formulae

g′(x) = 1
2
[g(x+ 1)− g(x− 1)] and g′′(x) = g(x+ 1)− 2g(x) + g(x− 1)

for all integers x.
Let (xt)t be a sequence of integers with xt − xt−1 ∈ {−1, 0, 1} for each t ≥ 1. Show that

for all t ≥ 0 we have

g(xt) = g(x0) +
t∑

s=1

g′(xs−1)(xs − xs−1) +
1

2

t∑
s=1

g′′(xs−1)(xs − xs−1)2.

Solution 3. It is sufficient to check that

g(xt) = g(xt−1) + g′(xt−1)(xt − xt−1) +
1

2
g′′(xt−1)(xt − xt−1)2,

since then the identity would be proven by induction.
Suppose xt − xt−t = ε, so the right-hand side becomes

ε(ε+1)
2

g(xt−1 + 1) + ε(ε−1)
2

g(xt−1 − 1) + (1− ε2)g(xt−1)

It is a simple matter to check that this expression yields g(xt−1 + ε) in the three cases
ε = −1, 0, 1.

Problem 4. * Let (St)t≥0 be a discrete-time martingale such that S0 is an integer and for
all t ≥ 1 the increment St − St−1 is valued in the set {−1, 0, 1}.
(a) Prove the identity

(ST −K − 1)+ − 2(ST −K)+ + (ST −K + 1)+ = 1{ST=K}

for integers K and T ≥ 0.
(b) Prove the identity

(ST −K)+ = (S0 −K)+ +
T∑
t=1

f(St−1 −K)(St − St−1) +
1

2

T∑
t=1

1{St=K}(St − St−1)2

for integers K and T ≥ 1, where f is defined by

f(x) = 1{x>0} +
1

2
1{x=0}.
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Let
C(T,K) = E[(ST −K)+]

for integers K and T ≥ 0 and

σ2(T,K) = Var(ST+1|ST = K)

for integers K and T such that |K − S0| ≤ T .
(c) Using parts (a) and (b), or otherwise, prove the identity

C(T + 1, K)− C(T,K) =
1

2
σ2(T,K)[C(T,K + 1)− 2C(T,K) + C(T,K − 1)]

for integers K and T such that |K − S0| ≤ T .
(d) Comment an application part (c) to finance.

Solution 4. (a) Let g(a) = (a + 1)+ − 2a+ + (a − 1)+. Check: if a ≥ 1 then g(a) =
(a + 1)− 2a + (a− 1) = 0. If a = 0 then g(a) = (a + 1)− 2a + 0 = 1. And if a ≤ −1 then
g(a) = 0− 20 + 0 = 0.
(b) This is follows from Problem 3 above.
(c) Computing expectations of (b) yields

C(T + 1, K)− C(T,K) =
1

2
E[1{ST=K}(ST+1 − ST )2]

using the assumption that S is a martingale to eliminate the first term. Again by the
martingale property E[(ST+1 − ST )2|FT ] = Var(ST+1|FT ) so the right-hand side becomes

1

2
P(ST = K)σ2(T,K)

by using the tower property. Finally, compute the expectation of (a) to yield the identity.
(d) Consider a market consisting of cash, a stock with price process S and a family of call
options of strikes and maturities. There are at least two uses of the equation from part
(c): The first is to compute the initial call prices in terms of the dynamic parameters of
S. Alternatively, given the quoted prices of calls at time 0, use the equation to solve for
σ2(T,K) and thereby work out the dynamics of S.

Problem 5. Let f be a positive continuous (non-random) function and W a Brownian

motion. Use Lévy’s characterisation of Brownian motion to show that
∫ t
0
f(s)dWs is a

normal random variable with mean zero and variance
∫ t
0
f(s)2ds.

Solution 5. Let F (t) =
∫ t
0
f(s)2ds. Note that F is strictly increasing and continuous. Let

Zu =

∫ F−1(u)

0

f(s)dWs.

Note Z is a continuous local martingale in the filtration (FF−1(u))u≥0 with quadratic variation

〈Z〉u =

∫ F−1(u)

0

f(s)2ds = u.

Hence Z is a Brownian motion. Therefore,∫ t

0

f(s)dWs = ZF (t) ∼ N(0, F (t))
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as desired.

Problem 6. * (Ornstein–Uhlenbeck process) Let W be a Brownian motion, and let

Xt = eatx+ b

∫ t

0

ea(t−s)dWs

for some a, b, x ∈ R.
(a) Verify that (Xt)t≥0 satisfies the following stochastic differential equation:

dXt = aXt dt+ b dWt, X0 = x.

(b) Show that

Xt ∼ N

(
eatx,

b2

2a
(e2at − 1)

)
.

(c) What is the distribution of the random variable
∫ T
0
Xt dt?

Solution 6. (a) Since

Xt = eat
(
x+ b

∫ t

0

e−as dWs

)
we can apply Itô’s formula

dXt = eat
(
be−atdWt

)
+

(
x+ b

∫ t

0

e−as dWs

)
aeatdt

= b dWt + aXt dt

(b) Since ∫ t

0

(ea(t−s))2ds =
e2at − 1

2a
this part follows from Problem 2.
(c) Method 1: Note that by rearranging the stochastic differential equation we have∫ T

0

Xt dt =
1

a
(XT − x− bWT )

and hence
∫ T
0
Xt dt is normally distributed with mean (eaT−1)x/a. To compute the variance,

first note that

Cov(XT ,WT ) = Cov

(
b

∫ T

0

ea(T−t), dWt

∫ T

0

dWt

)
= b

∫ T

0

ea(T−t)dt

=
b

a
(eaT − 1)

by Itô’s isometry. Hence

Var

(∫ T

0

Xt dt

)
=

1

a2
(
Var(XT )− 2b Cov(XT ,WT ) + b2Var(WT )

)
=

b2

2a3
(e2aT − 4eaT + 3 + 2aT ).
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Method 2: ∫ T

0

Xt dt =

∫ T

0

eaTx dt+

∫ T

0

∫ t

0

ea(t−s)b dWs dt

=

∫ T

0

eaTx dt+

∫ T

0

∫ T

s

ea(t−s)b dt dWs

=
eaT − 1

a
x+

∫ T

0

ea(T−s) − 1

a
b dWs

Hence
∫ T
0
Xt dt is normally distributed with mean (eaT − 1)x/a and variance

b2

a2

∫ T

0

(ea(T−s) − 1)2ds =
b2

2a3
(e2aT − 4eaT + 3 + 2aT )

This calculation is useful in the study of the Vasicek interest rate model.

Problem 7. Let W be a Brownian motion. Show that if Yt = W 3
t − 3tWt then Y is a

martingale (1) by hand, and (2) by Itô’s formula.

Solution 7. (1) By hand: Since Gaussian random variables have finite moments of all orders,
Y is integrable. Indeed, we have

E(|Yt|) ≤ E(|W 3
t |) + 3tE(|Wt|) = Ct3/2 <∞

where C = 5
√

2/π. Therefore, using the independence of the increments of W we have

E(Yt|Fs) =E(W 3
t − 3tWt|Fs)

=E[(Wt −Ws +Ws)
3 − 3t(Wt −Ws +Ws)|Fs]

=E[(Wt −Ws)
3] + 3E[(Wt −Ws)

2]Ws + 3E(Wt −Ws)W
2
s +W 3

s

− 3tE(Wt −Ws)− tWs

=0 + 3(t− s)Ws + 0 +W 3
s + 0− tWs

=Ys

for 0 ≤ s < t.
(2) By Itô’s rule:

dYt = d(W 3
t − 3tWt)

= (3W 2
t dWt + 3Wt dt)− 3(t dWt +Wt dt)

= 3(W 2
t − t)dWt

and hence Y is a local martingale. Recall that if E
(∫ t

0
α2
s ds

)
< ∞ for all t ≥ 0 then

the process
(∫ t

0
αs dWs

)
t≥0

is a martingale. Again, it’s clear that the integrand is square

integrable in this case since Gaussian random variables have finite moments of all orders.
But, just to be explicit,

E
∫ t

0

[3(W 2
s − s)]2ds = 9

∫ t

0

E(W 4
s − 2W 2

s s+ s2)ds = 9

∫ t

0

2s2 ds = 6t3 <∞

and hence (Yt)t≥0 is a martingale.
7



Problem 8. (Heat equation) Let W be a scalar Brownian motion, and let g : [0, T ]×R→ R
be a smooth function that satisfy the partial differential equation

∂g

∂t
+

1

2

∂2g

∂x2
= 0

with terminal condition
g(T, x) = G(x).

(a) Show that (g(t,Wt))t∈[0,T ] is a local martingale.
(b) If the function g is bounded, deduce the formula

g(t, x) =

∫ ∞
−∞

G(x+
√
T − tz)

e−z
2/2

√
2π

dz.

Solution 8. (a) By Itô’s formula:

dg(t,Wt) =

(
∂g

∂t
+

1

2

∂2g

∂x2

)
dt+

∂g

∂x
dWt

=
∂g

∂x
dWt

and hence (g(t,Wt))t∈[0,T ] is a local martingale.
(b) Recall a bounded local martingale is a true martingale. In particular, by the independence
of the increments of Brownian motion, we have

g(t,Wt) = E[g(T,WT )|Ft]
= E[G(WT )|Ft]
= E[G(Wt +WT −Wt)|Ft]

=

∫ ∞
−∞

G(Wt +
√
T − tz)

e−z
2/2

√
2π

dz

since WT −Wt ∼ N(0, T − t). Since the above formula holds identically, we have the desired
integral representation of the solution of the heat equation.

Problem 9. (Strictly local martingale) This is a technical exercise to exhibit a local martin-
gale that is not a true martingale. Let W = (W 1,W 2,W 3) be a three-dimensional Brownian
motion and let u = (1, 0, 0). It is a fact that P(Wt 6= u for all t ≥ 0) = 1.
(a) Let Xt = |Wt − u|−1. Use Itô’s formula and Lévy’s characterisation of Brownian motion
to show that

dXt = X2
t dZt, X0 = 1

where Z is a Brownian motion. In particular, show that X is a positive local martingale.
(b) By directly evaluating the integral or otherwise, show that

E(Xt) = 2Φ(t−1/2)− 1

for all t > 0, where Φ is the distribution function of a standard normal random variable.
Why does this imply that X is a strictly local martingale?

Solution 9. (a) Let f(x1, x2, x3) = ((x1 − 1)2 + x22 + x23)
−1/2 so that(

∂f

∂x1
,
∂f

∂x2
,
∂f

∂x3

)
= −[f(x1, x2, x3)]

3 (x1 − 1, x2, x3)
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∂2f

∂x21
+
∂2f

∂x22
+
∂2f

∂x23
= −f 3 + 3f 5(x1 − 1)2 +−f 3 + 3f 5x22 − f 3 + 3f 5x23

= 0.

In particular, Itô’s formula yields

dXt = −X3
t [(W 1

t − 1)dW 1
t +W 2

t dW
2
t +W 3

t dW
3
t ].

Since X can be written as a stochastic integral of a three dimensional Brownian motion, it
is a local martingale. Now let Z be the local martingale such that Z0 = 0 and

dZt = −Xt[(W
1
t − 1)dW 1

t +W 2
t dW

2
t +W 3

t dW
3
t ].

Since

d〈Z〉t = X2
t [(W 1

t − 1)2 + (W 2
t )2 + (W 3

t )2]dt

= dt

by construction, the process Z is a Brownian motion by Lévy’s characterisation theorem.
(b) Switch to spherical coordinates:

E(Xt) = (2π)−3/2
∫∫∫

e−x
2
1/2−x22/2−x23/2√

(
√
tx1 − 1)2 + tx22 + tx23

dx1 dx2 dx3

= (2π)−3/2
∫ ∞
r=0

∫ π

θ=0

∫ 2π

φ=0

r2 sin θe−r
2/2√

tr2 − 2
√
t cos θ + 1

dφ dθ dr

= (2π)−1/2
∫ ∞
r=0

∫ π

θ=0

r2 sin θe−r
2/2√

tr2 − 2
√
t cos θ + 1

dθ dr

= (2πt)−1/2
∫ ∞
r=0

re−r
2/2

√
tr2 − 2

√
t cos θ + 1

∣∣∣∣π
θ=0

dr

= (2πt)−1/2
∫ ∞
r=0

2(r1{r>t−1/2} +
√
tr21{r≤t−1/2})e

−r2/2dr

= 2

∫ t−1/2

0

e−r
2/2

√
2π

dr

Note that E(Xt) < X0 for all t > 0, so X is a strictly local martingale.

Problem 10. (strictly local martingales again) (a) Suppose that X is positive martingale
with X0 = 1. Fix T > 0 and let

dQ
dP

= XT .

Let Yt = 1/Xt for all t ≥ 0. Show that (Yt)0≤t≤T is a positive martingale under Q.
(b) Continuing from part (a), now suppose that X has dynamics

dXt = XtσtdWt

where W is a Brownian motion under P. Use Girsanov’s theorem to show that there exists
a Q-Brownian motion Ŵ such that

dYt = YtσtdŴt
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(c) Let X be a positive local martingale with X0 = 1 and dynamics

dXt = X2
t dWt.

Our goal is to show that X is a strictly local martingale. For the sake of finding a contra-
diction, suppose X is a true martingale. In the notation of parts (a) and (b), show that

P(Yt > 0) = 1 but Q(Yt > 0) = Φ(t−1/2).

Why does this contradict the assumption that X is a true martingale?

Solution 10. (a) Since P and Q are equivalent and

P(Xt > 0 for all t) = 1 then Q(Yt > 0 for all t) = 1.

Now to show that Y is a Q-martingale, note that

EQ(YT |Ft) =
EP(XTYT |Ft)
EQ(XT |Ft)

=
1

Xt

(b) By Itô’s formula,

dYt = dX−1t

= −X−2t dXt +X−3t d〈X〉t
= −Ytσt(dWt − σtdt)

Now by Girsanov’s theorem, the process dW̌t = dWt − σtdt defines a Q Brownian motion.
And of course Ŵ = −W̌ is a Brownian motion also.
(c) Now assuming X is a true martingale, then Girsanov’s theorem applies and hence

dYt = YtσtdŴt = dŴt

since σt = Xt. Hence Q(Yt > 0) = Q(Ŵt > −1) = Φ(t−1/2) < 1. But since

P(Yt > 0) = P(Xt > 0) = 1.

Therefore P and Q are not equivalent after all.
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