Advanced Financial Models Michael Tehranchi
Example sheet 2 - Michaelmas 2019

Problem 1. Consider a one-period market model with no dividends. For the sake of this
problem, call an adapted real-valued process Z = (Z;)cf0,13 an ‘anti-martingale deflator’ iff

o Zy >0, Z; > 0 almost surely and P(Zy =0=2;) < 1,
e 7, P, is integrable and E(Z, P)) = —Zy Py
Show that if there exists a numéraire portfolio, then there does not exist an anti-martingale
deflator.

Solution 1. Suppose there exists an numéraire portfolio n and suppose Z; > 0 for t = 0,1
and E(Z,P,) = —ZyPy. Multiplying by 7 yields

(*) —ZyNo = E(Z1Ny)

where Ny = n - P, for t = 0,1. Since N; > 0 a.s. we have Z;N; > 0 for t = 0,1. Combined
with equation (%) we have ZyNy = 0. Since Ny # 0 we conclude that Zy = 0. Equation (x)
also says E(Z;N;) = 0, so by the pigeonhole principle Z;N; = 0 a.s. Again, since Ny # 0
a.s. we have Z; = 0 a.s. In particular, Z,, Z; is not an anti-martingale deflator.

Problem 2. What are the economically appropriate definitions of numéraire portfolio and
equivalent martingale measure in the case where the assets may pay a dividend?

Solution 2. A numéraire is a previsible process 1 such that n; - By > 0 and n4q - P =
ne - (P, +60;,) > 0 as. forall ¢ > 1. An equivalent martingale measure relative to the
numéraire is a measure Q under which

for all t > 0. It remains to explain why these definitions are economically appropriate. First
note that assuming there is a numéraire according to our revised definition, implies that
there is an arbitrage if and only if there is a terminal consumption arbitrage. Next, there is
an equivalent martingale measure according to our revised definition if and only if there is a
martingale deflator.

Problem 3. Consider a one-period market with three assets. The first asset is a riskless
asset with risk-free rate . The second asset is a stock with prices (S¢)icqo,13- The third is a
contingent claim on the stock with time 1 price & = ¢(S), where the function g is convex.
Show that if there is no arbitrage, then & > -g[(1+7)So]. Assuming & < 7g[(1+7)S0],
find an arbitrage explicitly.

Hint: By the convexity of g, there exists a function A such that g(z) > g(y) + A(z)(x — y)
for all z,y € R.

Solution 3. Suppose & < -g[(1 +7)S] and let L = A[(1+ r)Sy]. Consider the portfolio
H = (—15g[(1 +7)So] + LSy, —L,+1). Note

co=—H- (BO> 50750)

_ ﬁg[(l +1)S0] — & > 0
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and
1 = H : (Bbslagl)
= —g[(l + T’)S()] + LS()<1 + ’/’) — LSl + g(Sl) Z 0

Problem 4. (Bayes’s formula) Let P and Q be equivalent probability measures defined on
(Q, F) with density Z = fl%. Let G C F be a sigma-field. Prove the identity:

_ Ef(Zx]9)
E®(X|G) = B (Z10)

for each random variable X such that X is Q-integrable.

Solution 4. Let Y = Egﬂg(zz)‘(‘gg)) Note that Y is G-measurable. Hence, we need only verify

the equation E?(Y1g) = EQ(X 1) for all G € G; equivalently, we must verify EF(ZY1g) =
EF(ZX1g) for all G € G.

EF(1¢Y Z) =EF[E(14Y Z|G)] tower property
=E"[1¢YE(Z|G)] taking out what’s known
=E°[1E" (X Z|G)]
=E*[E* (15X Z|G)] pulling in what’s known
=EF (14X Z) tower property
Problem 5. * Consider a trinomial two-asset model with prices P = (B, S) where By =

By =1 and S is given by
S 3
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2——=2

1/4
N\

1.

Find all risk-neutral measures for this model. Now introduce a call option with payout
& = (S1 — 2)". Show that there is an open interval I such that the augmented market
(B, S, ) has no arbitrage if and only if & € 1.

Solution 5. A risk neutral measure solves E2(S;) = Sp, (no discounting is needed since the
numéraire is cash)

p+2q+r = 2
p+qg+r =1

and hence (p,q,7) = (p,1 — 2p,p) for 0 < p < 1/2, where p = Q{S; = 3}, etc. By the
fundamental theorem of asset pricing, there is no arbitrage if and only if & = E?(&;) = p.
So I =(0,1/2).

Problem 6. Consider an arbitrage-free bond market. Let P! be the price of the bond of
maturity 7" at time ¢, where 1 < t < T. Let the spot rate be r, = 5i— — 1 and the bank

Ptfl
account be B; = [['_,(1 +r,) for all ¢ > 1 as usual.
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a) Le e a risk-neutral measure, i.e. an equivalent martingale measure relative to the
Let @ b isk tral i ivalent tingal lative to th
bank account. Show that

P! = B, E¥(B7'|F)

forall0 <t <T.

(b) Consider a European contingent claim with maturity 7" and payout ry. Show that this
claim can be replicated by trading in bonds.

(c) Consider a forward contract initiated at time ¢ for for the payout at time 7" of rp. The
forward interest rate fI at time ¢ for maturity 7" is defined to be the forward price of this
payout. Show that

PT—l
ftT = tPT
t

-1

(d) Show that if the spot rate is not random, then fI = r.

(e) Let QT be a T-forward measure, i.e. an equivalent martingale measure relative to the
bond of maturity 7. Show that the forward rate process (fI )o<i<r is a QT martingale.

(f) The quantity

vy, =(P/) T 1

is called the yield at time ¢ of the bond maturing at time 7.
Show that the following are equivalent

(1) ff >yl as forall0<t<T
(2) T+ y! is non-decreasing a.s. for all ¢ > 0.

(g) Show that the following are equivalent:

(1) , > 0as. forallt>1

(2) t — B, is non-decreasing a.s.

(3) T — P! is non-increasing a.s. for each t > 0
(4) ffT>0asforall 0 <t <T.

(5) yI >0as. forall 0 <t <T.

(6) each martingale deflator is a supermartingale.

Solution 6. (a) The discounted price PT/B = (P! /B;)o<i<r is a martingale for any risk-
neutral measure. The result follows from PZ = 1 and the martingale property.

(b) Work backwards: Note that the payout rr is Fr_; measurable, and can be realised by
holding r7 bonds of maturity 7' during the period (7' — 1,7]. The time T — 1 cost of this
strategy is rp P | = 1— PL |. Now to replicate this time 7'— 1 payout by holding one bond
of maturity 7' — 1 and selling one bond of maturity 7.

In summary, the replication strategy is at time 0 to buy one bond of maturity 7" — 1 and
to sell one bond of maturity 7. At time T — 1, invest the payout of the bond of maturity
T — 1 into 1/P}_; bonds of maturity 7T'.

(¢) A dual approach: From lectures

I =E% (rr|F)
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where Q7 is a T-forward measure. Since rp = — 1 and by changing to a risk-neutral

1
T
PTI

measure (using part (a)) we have i
B*l
PIEY F; | = B,EV L Fi ) cond on Fpr_; and tower
' (PYT 1’ t t EQ(BEI|7T—1)BT—1‘ t ! "

= BE®(B;!,|F)

A primal approach: Consider the forward claim initiated at time ¢ with time T payout
&0 = rp — fI. From part (b), the cost at time ¢ to replicate 77 is P/ ' — P and the cost
at time ¢ to replicate the F;-measurable payout f/ is ff P. Hence & = PF ' — (14 fI)PT.
But the initial price of a forward is & = 0. Solving for f7 yields the formula.

(d) If the spot rate is not random, then from part (a) we have P! = B;/Br, and hence
PtTfl - BT
PT " Br,
(e) This follows from Doob’s observation that M; = E({|F;) defines a martingale whenever
€ is integrable.

) fF>vf & (B 2 (PO eyl T <y

(g) ) = Bt = (1 + rt)Bt,1 > Bt,1 =4 (2)

(2) = P = BE®(Bry,|F) < BEYBr'|R) = Pl < (3).

(3) = 1= P!> P"" = BEQB_\|F,) = Bi/B:1 since B is predictable < (2).
4) & P/7'> Pl & (3).
(5)

(3)

(

fi =

—]_:’I“T

=P <lern,>0e (1)
= PI'<1& ()

Y

Problem 7. (a) Let X;, Xs,... be a sequence of non-negative random variables such that
E(X,) =1 for all n. Use the Borel-Cantelli lemma to show

lim sup Xé/” <1 a.s.
n—oo
(b) Consider a bond market as in problem 6. The long rate at time t is defined as ¢; =
limy oy whenever the limit exists.

Suppose that bonds are priced according to the formula in 6(a) for a fixed risk-neutral
measure, and that the long rate exists a.s. at all times. Show that the long rate is non-
decreasing, that is

by </l as. forall 0 <s <t

a fact first discovered by Dybvig, Ingersoll & Ross in 1996.

Solution 7. (a) For each € > 0 we have

Z]P’X>1+e i 1+e€) ":1<oo

n=1

by Markov’s inequality. The first BorelfCantelh lemma then says

P(X!/™ > 1 + ¢ infinitely often) = 0
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This shows limsup, _,__ X»" < 1 as claimed. )
(b)Now, let PT be the bond price, B; the bank account, and P! = P!'/B; the discounted
bond price. Suppose the long rate ¢; exists, so that

6, = lim (PF)y~YT=Y — 1 = lim (P")"Y/" — 1
T—o0

n—oo

By assumption, the discounted bond prices are given by
Pl =E%(B;'|F)
each 0 < ¢t < T and a fixed risk-neutral measure Q, and, in particular, PT is a martingale

for each T > 0.
Fix 0 < s <t, and let

S

Note E(X,,) = E[E(X,,|F)] = 1 for each n. The first part implies

ls+1
T lim (X,)Y" <1 a.s.
Et —+ 1 n—oo

as required.

Problem 8. Let S be a positive supermartingale. Show that there is a positive non-
decreasing predictable process A and a positive martingale M such that Ag = My, = 1
and Sy = SoM, /A, for all t > 0.

Solution 8. Let .

szl
A, — s
¢ H E(S,|Fs1)

s=1
so that A is predictable and non-decreasing since A1 = AyS;/E(Si41|F;) > Ay since S is a
supermartingale.
Let

d S
M, = -5
! Hl E(S,|Fs1)
Apply Problem 3 from example sheet 1 to show that M is a martingale. By construction
M/A=S5/S,.

Problem 9. * Let (Y;)o<:<r be a given adapted, integrable process, and let (U;)o<i<r be its
Snell envelope.

(a) Show that if YV is a supermartingale then U; = Y; for all ¢, and if Y is submartingale,
then U, = E(Y7|F).

(b) Let 7 be any stopping time taking values in {0, ..., T}. Show that the process (Uir;)o<t<r
is a supermartingale.

(c) Define the random time 7, by

7. =min{t € {0,...., T} : U, =Y;}.

martingale and, in particular, Uy = E(Y,,). (That is, 7, is an optimal stopping timeJ%ossibly
different than 7* defined in lectures.)
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Solution 9. (a) In both cases we proceed by induction. First suppose that Y is a super-
martingale, and that Uy ; = Y;,1 for some ¢ < T'. Then

Up = max{Y;, E(Up1|F) } = max{Y;, E(Yi1|F)} =Y,

since Y; > E(Y;11]|F;) by assumption, completing the induction. Similarly, suppose that Y
is a submartingale, and that Uy = E(Y7|Fi41). Then

Up = max{Y}, E(Ups1|F)} = max{V, E[E(Y7|Fi1)| Fi]} = E(Yr|F)
by the tower property and the assumption Y; < E(Y7r|F;), and we’re done.
(b) Since U is a supermaringale and the event {7 > ¢+ 1} = {7 < ¢}°is in F;, we have
E[U(H—l)/\r - Ut/\r|ft] = E[]l{t+1§7'}<Ut+l - Ut>|ft]
= lpr1<nE[Ui — Ui F]
0

IN

so the stopped process (Uiar)o<i<r is also supermartingale.
(c¢) Now, the event

{re >t} ={Yo < Uy,...,Y: < U}

is Fi-measurable since both Y and U are adapted, hence 7, is a stopping time.
Since Uy = E(Uy41|F:) on the event {t + 1 < 7.} we have

U(t+1 VAT Ut/\T = :H-{t-i-lg'r*}(Ut—i-l - Ut)
= Lgri<n U1 — E(Uea| 7).
In particular E[Y,,] = E[U,,| = E[Urn..] = Ub.

Problem 10. Let (Xj)rex be a collection of real-valued random variables, where K is an
arbitrary (possibly uncountable) index set. Our aim is to show there exists a random variable
Y taking values in R U {+o00} such that

o Y > X; almost surely for all £ € K, and
o if 7/ > X} almost surely for all £ € K then Z > Y almost surely.

This will show that the Y = ess sup, X}, exists.
(a) Show that there is no loss assuming that |Xj(w)| < 1 for all (k,w). Hint: Consider
Xk = tan_l(Xk).

From now on, assume | X (w)| < 1 for all (k,w). Let C be the collection of all countable
subsets of K. Let

x = sup E[sup Xy
AeC  keA

Let A, € C be such that E[sup,c, Xi] > 2 —1/n and let B = U, A,. Let Y = supycp Xj.
(b) Why is Y a random variable, i.e. measurable? Show that E(Y') = x.
(c) Pick a k € K, and let Y}, = max{Y, X} } = sup,cpy gy Xn. Show that E(Y}) = z. Why
does this imply that X; <Y almost surely?
(d) Let Z be a random variable such that Z > X a.s. for all k € K. Prove that Z > Y a.s.

Solution 10. (a) Suppose we know that every family of uniformly bounded random variables
(indexed by some arbitrary index set) has an essential supremum. So glven the famlly

(Xk)rer let X, = tan~ 1(X%). Then the X, are bounded so there exists ¥ = ess sukak
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Let Y = tanY. Since the function tan is strictly increasing it is easy to see that Y has the
properties characterising the essential supremum of (Xj)y.

(b) Since A, is countable, the function Y, = sup,cc, X} is measurable for each n. Also
UnA, = B is countable and hence Y is also a random variable. For instance, note

{Y > b} = UkeB{Xk: > b}

Now, by replacing A,, with Ul" ;A; we may assume A, ; C A, for all n > 1, and hence we
have Y = sup,, Y,, = lim,, Y,,. The result follows from the bounded convergence theorem.
(c) Since Y, > Y we have E(Y;) > E(Y) = 2. On the other hand,

x = sup E[sup X}
AeC  heA
> E[ sup X}
he BU{k}
=E(Y%).
Since Y — Y} > 0 a.s. and E(Y —Y}) = 0, the pigeonhole principle implies Y = Y} a.s. Since
max{Y, X;} =Y we have X}, <Y.
(d) fP(Z > X;) =1 for all k € K, then

P(Z>Y)=P(Mes{Z > X:}) =1

since B is countable.



