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Problem 1. Consider a one-period market model with no dividends. For the sake of this
problem, call an adapted real-valued process Z = (Zt)t∈{0,1} an ‘anti-martingale deflator’ iff

• Z0 ≥ 0, Z1 ≥ 0 almost surely and P(Z0 = 0 = Z1) < 1,
• Z1P1 is integrable and E(Z1P1) = −Z0P0

Show that if there exists a numéraire portfolio, then there does not exist an anti-martingale
deflator.

Solution 1. Suppose there exists an numéraire portfolio η and suppose Zt ≥ 0 for t = 0, 1
and E(Z1P1) = −Z0P0. Multiplying by η yields

(∗) −Z0N0 = E(Z1N1)

where Nt = η · Pt for t = 0, 1. Since Nt > 0 a.s. we have ZtNt ≥ 0 for t = 0, 1. Combined
with equation (∗) we have Z0N0 = 0. Since N0 6= 0 we conclude that Z0 = 0. Equation (∗)
also says E(Z1N1) = 0, so by the pigeonhole principle Z1N1 = 0 a.s. Again, since N1 6= 0
a.s. we have Z1 = 0 a.s. In particular, Z0, Z1 is not an anti-martingale deflator.

Problem 2. What are the economically appropriate definitions of numéraire portfolio and
equivalent martingale measure in the case where the assets may pay a dividend?

Solution 2. A numéraire is a previsible process η such that η1 · P0 > 0 and ηt+1 · Pt =
ηt · (Pt + δt) > 0 a.s. for all t ≥ 1. An equivalent martingale measure relative to the
numéraire is a measure Q under which

Pt
Nt

= EQ
(
Pt+1 + δt+1

Nt

|Ft
)

for all t ≥ 0. It remains to explain why these definitions are economically appropriate. First
note that assuming there is a numéraire according to our revised definition, implies that
there is an arbitrage if and only if there is a terminal consumption arbitrage. Next, there is
an equivalent martingale measure according to our revised definition if and only if there is a
martingale deflator.

Problem 3. Consider a one-period market with three assets. The first asset is a riskless
asset with risk-free rate r. The second asset is a stock with prices (St)t∈{0,1}. The third is a
contingent claim on the stock with time 1 price ξ1 = g(S1), where the function g is convex.
Show that if there is no arbitrage, then ξ0 ≥ 1

1+r
g[(1 + r)S0]. Assuming ξ0 <

1
1+r

g[(1 + r)S0],
find an arbitrage explicitly.

Hint: By the convexity of g, there exists a function λ such that g(x) ≥ g(y) + λ(x)(x− y)
for all x, y ∈ R.

Solution 3. Suppose ξ0 <
1

1+r
g[(1 + r)S0] and let L = λ[(1 + r)S0]. Consider the portfolio

H = (− 1
1+r

g[(1 + r)S0] + LS0,−L,+1). Note

c0 = −H · (B0, S0, ξ0)

=
1

1 + r
g[(1 + r)S0]− ξ0 > 0
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and

c1 = H · (B1, S1, ξ1)

= −g[(1 + r)S0] + LS0(1 + r)− LS1 + g(S1) ≥ 0

Problem 4. (Bayes’s formula) Let P and Q be equivalent probability measures defined on
(Ω,F) with density Z = dQ

dP . Let G ⊆ F be a sigma-field. Prove the identity:

EQ(X|G) =
EP(ZX|G)

EP(Z|G)

for each random variable X such that X is Q-integrable.

Solution 4. Let Y = EP(ZX|G)
EP(Z|G) . Note that Y is G-measurable. Hence, we need only verify

the equation EQ(Y 1G) = EQ(X1G) for all G ∈ G; equivalently, we must verify EP(ZY 1G) =
EP(ZX1G) for all G ∈ G.

EP(1GY Z) =EP[E(1GY Z|G)] tower property

=EP[1GY E(Z|G)] taking out what’s known

=EP[1GEP(XZ|G)]

=EP[EP(1GXZ|G)] pulling in what’s known

=EP(1GXZ) tower property

Problem 5. * Consider a trinomial two-asset model with prices P = (B, S) where B0 =
B1 = 1 and S is given by

S 3
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1.

Find all risk-neutral measures for this model. Now introduce a call option with payout
ξ1 = (S1 − 2)+. Show that there is an open interval I such that the augmented market
(B, S, ξ) has no arbitrage if and only if ξ0 ∈ I.

Solution 5. A risk neutral measure solves EQ(S1) = S0, (no discounting is needed since the
numéraire is cash)

3p+ 2q + r = 2

p+ q + r = 1

and hence (p, q, r) = (p, 1 − 2p, p) for 0 < p < 1/2, where p = Q{S1 = 3}, etc. By the
fundamental theorem of asset pricing, there is no arbitrage if and only if ξ0 = EQ(ξ1) = p.
So I = (0, 1/2).

Problem 6. Consider an arbitrage-free bond market. Let P T
t be the price of the bond of

maturity T at time t, where 1 ≤ t ≤ T . Let the spot rate be rt = 1
P t
t−1
− 1 and the bank

account be Bt =
∏t

s=1(1 + rs) for all t ≥ 1 as usual.
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(a) Let Q be a risk-neutral measure, i.e. an equivalent martingale measure relative to the
bank account. Show that

P T
t = Bt EQ(B−1T |Ft)

for all 0 ≤ t ≤ T .
(b) Consider a European contingent claim with maturity T and payout rT . Show that this
claim can be replicated by trading in bonds.
(c) Consider a forward contract initiated at time t for for the payout at time T of rT . The
forward interest rate fTt at time t for maturity T is defined to be the forward price of this
payout. Show that

fTt =
P T−1
t

P T
t

− 1

(d) Show that if the spot rate is not random, then fTt = rT .
(e) Let QT be a T -forward measure, i.e. an equivalent martingale measure relative to the
bond of maturity T . Show that the forward rate process (fTt )0≤t<T is a QT martingale.
(f) The quantity

yTt = (P T
t )−

1
T−t − 1

is called the yield at time t of the bond maturing at time T .
Show that the following are equivalent

(1) fTt ≥ yTt a.s. for all 0 ≤ t < T
(2) T 7→ yTt is non-decreasing a.s. for all t ≥ 0.

(g) Show that the following are equivalent:

(1) rt ≥ 0 a.s. for all t ≥ 1
(2) t 7→ Bt is non-decreasing a.s.
(3) T 7→ P T

t is non-increasing a.s. for each t ≥ 0
(4) fTt ≥ 0 a.s for all 0 ≤ t < T .
(5) yTt ≥ 0 a.s. for all 0 ≤ t < T .
(6) each martingale deflator is a supermartingale.

Solution 6. (a) The discounted price P T/B = (P T
t /Bt)0≤t≤T is a martingale for any risk-

neutral measure. The result follows from P T
T = 1 and the martingale property.

(b) Work backwards: Note that the payout rT is FT−1 measurable, and can be realised by
holding rT bonds of maturity T during the period (T − 1, T ]. The time T − 1 cost of this
strategy is rTP

T
T−1 = 1−P T

T−1. Now to replicate this time T −1 payout by holding one bond
of maturity T − 1 and selling one bond of maturity T .

In summary, the replication strategy is at time 0 to buy one bond of maturity T − 1 and
to sell one bond of maturity T . At time T − 1, invest the payout of the bond of maturity
T − 1 into 1/P T

T−1 bonds of maturity T .
(c) A dual approach: From lectures

fTt = EQT

(rT |Ft)
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where QT is a T -forward measure. Since rT = 1
PT
T−1
− 1 and by changing to a risk-neutral

measure (using part (a)) we have

P T
t EQT

(
1

P T
T−1
|Ft
)

= BtEQ
(

B−1T
EQ(B−1T |FT−1)BT−1

|Ft
)

cond on FT−1 and tower

= BtEQ(B−1T−1|Ft)
= P T−1

t

A primal approach: Consider the forward claim initiated at time t with time T payout
ξT = rT − fTt . From part (b), the cost at time t to replicate rT is P T−1

t − P T
t , and the cost

at time t to replicate the Ft-measurable payout fTt is fTt P
T
t . Hence ξt = P T−1

t − (1 + fTt )P T
t .

But the initial price of a forward is ξt = 0. Solving for fTt yields the formula.
(d) If the spot rate is not random, then from part (a) we have P T

t = Bt/BT , and hence

fTt =
P T−1
t

P T
t

− 1 =
BT

BT−1
− 1 = rT

(e) This follows from Doob’s observation that Mt = E(ξ|Ft) defines a martingale whenever
ξ is integrable.
(f) fTt ≥ yTt ⇔ (P T−1

t )T−t ≥ (P T
t )T−t−1 ⇔ yT−1t ≤ yTt

(g) (1) ⇔ Bt = (1 + rt)Bt−1 ≥ Bt−1 ⇔ (2)
(2) ⇒ P T+1

t = BtEQ(B−1T+1|Ft) ≤ BtEQ(B−1T |Ft) = P T
t ⇔ (3).

(3) ⇒ 1 = P t
t ≥ P t+1

t = BtEQ(B−1t+1|Ft) = Bt/Bt+1 since B is predictable ⇔ (2).

(4) ⇔ P T−1
t ≥ P T

t ⇔ (3).
(5) ⇒ P t+1

t ≤ 1⇔ rt+1 ≥ 0⇔ (1)
(3) ⇒ P T

t ≤ 1⇔ (5)

(6) ⇔ rt = Yt−1

E(Yt|Ft−1)
− 1 ≥ 0⇔ (1)

Problem 7. (a) Let X1, X2, . . . be a sequence of non-negative random variables such that
E(Xn) = 1 for all n. Use the Borel–Cantelli lemma to show

lim sup
n→∞

X1/n
n ≤ 1 a.s.

(b) Consider a bond market as in problem 6. The long rate at time t is defined as `t =
limT→∞ y

T
t whenever the limit exists.

Suppose that bonds are priced according to the formula in 6(a) for a fixed risk-neutral
measure, and that the long rate exists a.s. at all times. Show that the long rate is non-
decreasing, that is

`s ≤ `t a.s. for all 0 ≤ s ≤ t,

a fact first discovered by Dybvig, Ingersoll & Ross in 1996.

Solution 7. (a) For each ε > 0 we have
∞∑
n=1

P[Xn > (1 + ε)n] ≤
∞∑
n=1

(1 + ε)−n =
1

ε
<∞

by Markov’s inequality. The first Borel–Cantelli lemma then says

P(X1/n
n > 1 + ε infinitely often) = 0
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This shows lim supn→∞X
1/n
n ≤ 1 as claimed.

(b)Now, let P T
t be the bond price, Bt the bank account, and P̃ T

t = P T
t /Bt the discounted

bond price. Suppose the long rate `t exists, so that

`t = lim
T→∞

(P T
t )−1/(T−t) − 1 = lim

n→∞
(P̃ n

t )−1/n − 1

By assumption, the discounted bond prices are given by

P̃ T
t = EQ(B−1T |Ft)

each 0 ≤ t ≤ T and a fixed risk-neutral measure Q, and, in particular, P̃ T is a martingale
for each T > 0.

Fix 0 ≤ s ≤ t, and let

Xn =
P̃ n
t

P̃ n
s

.

Note E(Xn) = E[E(Xn|Fs)] = 1 for each n. The first part implies

`s + 1

`t + 1
= lim

n→∞
(Xn)1/n ≤ 1 a.s.

as required.

Problem 8. Let S be a positive supermartingale. Show that there is a positive non-
decreasing predictable process A and a positive martingale M such that A0 = M0 = 1
and St = S0Mt/At for all t ≥ 0.

Solution 8. Let

At =
t∏

s=1

Ss−1
E(Ss|Fs−1)

so that A is predictable and non-decreasing since At+1 = AtSt/E(St+1|Ft) ≥ At since S is a
supermartingale.

Let

Mt =
t∏

s=1

Ss
E(Ss|Fs−1)

Apply Problem 3 from example sheet 1 to show that M is a martingale. By construction
M/A = S/S0.

Problem 9. * Let (Yt)0≤t≤T be a given adapted, integrable process, and let (Ut)0≤t≤T be its
Snell envelope.
(a) Show that if Y is a supermartingale then Ut = Yt for all t, and if Y is submartingale,
then Ut = E(YT |Ft).
(b) Let τ be any stopping time taking values in {0, . . . , T}. Show that the process (Ut∧τ )0≤t≤T
is a supermartingale.
(c) Define the random time τ∗ by

τ∗ = min {t ∈ {0, . . . , T} : Ut = Yt} .
Show that τ∗ is a stopping time. Furthermore, show that the process (Ut∧τ∗)t∈{0,...,T} is a
martingale and, in particular, U0 = E(Yτ∗). (That is, τ∗ is an optimal stopping time, possibly
different than τ ∗ defined in lectures.)
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Solution 9. (a) In both cases we proceed by induction. First suppose that Y is a super-
martingale, and that Ut+1 = Yt+1 for some t < T . Then

Ut = max{Yt,E(Ut+1|Ft)} = max{Yt,E(Yt+1|Ft)} = Yt

since Yt ≥ E(Yt+1|Ft) by assumption, completing the induction. Similarly, suppose that Y
is a submartingale, and that Ut+1 = E(YT |Ft+1). Then

Ut = max{Yt,E(Ut+1|Ft)} = max{Yt,E[E(YT |Ft+1)|Ft]} = E(YT |Ft)

by the tower property and the assumption Yt ≤ E(YT |Ft), and we’re done.
(b) Since U is a supermaringale and the event {τ ≥ t+ 1} = {τ ≤ t}c is in Ft, we have

E[U(t+1)∧τ − Ut∧τ |Ft] = E[1{t+1≤τ}(Ut+1 − Ut)|Ft]
= 1{t+1≤τ}E[Ut+1 − Ut|Ft]
≤ 0

so the stopped process (Ut∧τ )0≤t≤T is also supermartingale.
(c) Now, the event

{τ∗ > t} = {Y0 < U0, . . . , Yt < Ut}
is Ft-measurable since both Y and U are adapted, hence τ∗ is a stopping time.

Since Ut = E(Ut+1|Ft) on the event {t+ 1 ≤ τ∗} we have

U(t+1)∧τ∗ − Ut∧τ∗ = 1{t+1≤τ∗}(Ut+1 − Ut)
= 1{t+1≤τ∗}[Ut+1 − E(Ut+1|Ft)].

In particular E[Yτ∗ ] = E[Uτ∗ ] = E[UT∧τ∗ ] = U0.

Problem 10. Let (Xk)k∈K be a collection of real-valued random variables, where K is an
arbitrary (possibly uncountable) index set. Our aim is to show there exists a random variable
Y taking values in R ∪ {+∞} such that

• Y ≥ Xk almost surely for all k ∈ K, and
• if Z ≥ Xk almost surely for all k ∈ K then Z ≥ Y almost surely.

This will show that the Y = ess supkXk exists.
(a) Show that there is no loss assuming that |Xk(ω)| ≤ 1 for all (k, ω). Hint: Consider
X̃k = tan−1(Xk).

From now on, assume |Xk(ω)| ≤ 1 for all (k, ω). Let C be the collection of all countable
subsets of K. Let

x = sup
A∈C

E[sup
k∈A

Xk]

Let An ∈ C be such that E[supk∈An
Xk] > x− 1/n and let B = ∪nAn. Let Y = supk∈BXk.

(b) Why is Y a random variable, i.e. measurable? Show that E(Y ) = x.
(c) Pick a k ∈ K, and let Yk = max{Y,Xk} = suph∈B∪{k}Xh. Show that E(Yk) = x. Why
does this imply that Xk ≤ Y almost surely?
(d) Let Z be a random variable such that Z ≥ Xk a.s. for all k ∈ K. Prove that Z ≥ Y a.s.

Solution 10. (a) Suppose we know that every family of uniformly bounded random variables
(indexed by some arbitrary index set) has an essential supremum. So given the family

(Xk)k∈K let X̂k = tan−1(Xk). Then the X̂k are bounded so there exists Ŷ = ess supkX̂k.
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Let Y = tan Ŷ . Since the function tan is strictly increasing it is easy to see that Y has the
properties characterising the essential supremum of (Xk)k.
(b) Since An is countable, the function Yn = supk∈Cn

Xk is measurable for each n. Also
∪nAn = B is countable and hence Y is also a random variable. For instance, note

{Y > b} = ∪k∈B{Xk > b}.
Now, by replacing An with ∪ni=1Ai we may assume An−1 ⊆ An for all n ≥ 1, and hence we
have Y = supn Yn = limn Yn. The result follows from the bounded convergence theorem.
(c) Since Yk ≥ Y we have E(Yk) ≥ E(Y ) = x. On the other hand,

x = sup
A∈C

E[sup
h∈A

Xh]

≥ E[ sup
h∈B∪{k}

Xh]

= E(Yk).

Since Y −Yk ≥ 0 a.s. and E(Y −Yk) = 0, the pigeonhole principle implies Y = Yk a.s. Since
max{Y,Xk} = Y we have Xk ≤ Y .
(d) If P(Z ≥ Xk) = 1 for all k ∈ K, then

P(Z ≥ Y ) = P(∩k∈B{Z ≥ X̂k}) = 1

since B is countable.
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