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Problem 1. Consider a market with n = 1 asset with prices (Pt)t≥0 and dividends (δt)t≥1.
Suppose there is no arbitrage.
(a) Show that there exists a strictly positive adapted process Y such that

Pt =
1

Yt
E

(
T∑

u=t+1

Yuδu|Ft

)
+

1

Yt
E(YTPT |Ft)

for all 0 ≤ t ≤ T .
(b) Now suppose that Pt ≥ 0 and δt ≥ 0 almost surely for all t. Letting Y be the process in
part (a), show that

Pt ≥
1

Yt
E

(
∞∑

u=t+1

Yuδu|Ft

)
for all t ≥ 0. Find a condition on P, Y and δ such that there is equality in the above
inequality. [The right-hand side of the inequality could be thought of the fundamental value
of the asset - i.e. the present discounted value of the stream of dividend payments. When
there is strict inequality, the price of the asset is strictly greater than its fundamental value,
modelling a price bubble. Note that no arbitrage does not forbid such price bubbles.]

Solution 1. (a) This is just the first fundamental theorem of asset pricing: Assuming no
arbitrage there exists a martingale deflator Y meaning

Pt =
1

Yt
E[Yt+1(Pt+1 + δt+1)|Ft].

In particular, the process

Mt = YtPt +
t∑

s=1

Ysδs

is a martingale. The identity amounts to E(MT −Mt|Ft) = 0.
(b) From part (a) with t = 0, we have

E

(
T∑
u=1

Yuδu|Ft

)
≤ Y0P0

since PT ≥ 0. Taking T →∞ by the monotone convergence theorem shows that
∑∞

u=1 Yuδu
is finite-valued and integrable.

Since PT ≥ 0 we have

Pt ≥
1

Yt
E

(
T∑

u=t+1

Yuδu|Ft

)
→ 1

Yt
E

(
∞∑

u=t+1

Yuδu|Ft

)
by the conditional monotone convergence theorem, where the convergence is a.s. and in L1.

Finally, note that we have

Pt −
1

Yt
E

(
∞∑

u=t+1

Yuδu|Ft

)
=

1

Yt
E(YTPT |Ft)−

1

Yt
E

(
∞∑

u=T+1

Yuδu|Ft

)
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The second term on the right-hand side converges to 0 in L1. Hence, the necessary and
sufficient condition for equality is

E(YTPT |Ft)→ 0

in L1, which is equivalent to YtPt → 0 in L1 by the tower property.

Problem 2. Consider an arbitrage-free market with n = 1 asset with prices (Pt)t≥0 and
dividends (δt)t≥1. Suppose that δt ≥ 0 almost surely for all t ≥ 1, and that there exists a
non-random time T > 0 such that PT ≥ 0 almost surely and P(PT > 0) > 0. Show that
P0 > 0. Must it be the case that Pt > 0 almost surely for all 0 ≤ t < T?

Solution 2. A ‘primal’ solution. Consider the strategy Ht = 1 for 1 ≤ t ≤ T and HT+1 = 0.
Let the initial wealth be x = 0. The associated consumption process is c0 = −P0 and ct = δt
for 1 ≤ t ≤ T − 1 and cT = PT + δT . By assumption, ct ≥ 0 a.s. for 1 ≤ t ≤ T and
P(cT > 0) > 0. So if there is no arbitrage, then c0 < 0, yielding the conclusion.

A ‘dual’ solution. By no arbitrage there exists a martingale deflator Y so that

P0 =
1

Y0
E

(
T∑
u=1

Yuδu

)
+

1

Y0
E(YTPT ).

(Note that we’re using the convention that F0 is trivial.) The first term on the right-hand
side is non-negative, and the second term is strictly positive, yielding the conclusion.

For the final part, no, it is possible for P(Pt = 0) > 0 for some 0 < t < T . For instance,
let (ξi)i be i.i.d. with P(ξi = ±1) = 1

2
. Let S0 = 1 and St = St−1 + ξt. Finally, τ = inf{t ≥

0 : St = 0}. Consider a market with δt = 0 for all t and Pt = St∧τ . Note there is no arbitrage
since P is a martingale (so the constant process Y = 1 is a martingale deflator). Also Pt ≥ 0
a.s. and P(PT > 0) = P(τ > T ) > 0. Nevertheless, P(Pt = 0) = P(τ ≤ t) > 0 for t ≥ 1.

Problem 3. Given a filtration (Ft)t≥0 let (Zt)t≥1 be a non-negative adapted integrable
process such that E(Zt|Ft−1) = 1 for all t ≥ 1. Let

Mt =
t∏

s=1

Zs.

Show that M is a martingale. [Hint: First show that M is a local martingale.]

Solution 3. The problem here is that in this course, conditional expectations are only defined
for integrable random variables and we don’t know a priori that M is integrable. But we do
know that M is non-negative. This leads to two possible solutions.

Following the hint: Let Xt =
∑t

s=1 Zs − t. Note that X is integrable and adapted, and
that

E[Xt −Xt−1|Ft−1] = E[Zt − 1|Ft−1] = 0.

Hence X is a martingale. Finally, note that

Mt −Mt−1 = Mt−1(Zt − 1) = Mt−1(Xt −Xt−1).

This shows that M is a local martingale, being the martingale transform of the previsible
processM·−1 with respect to the martingaleX. From lectures, non-negative local martingales
in DISCRETE TIME are true martingales, so we are done.
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Another solution is to let Zn
t = Zt ∧ n. Since Zn

t ≤ Zt we have E(Zn
t |Ft−1) ≤ 1. Now let

Mn
t =

∏t
s=1 Z

n
s . Note that both Mn

t is integrable (being bounded) and that

E(Mn
t |Ft−1) = Mn

t−1E(Zn
t |Ft−1) ≤Mn

t−1

by the slot property. Thus Mn is a supermartingale and E(Mn
t ) ≤Mn

0 = 1. Since 0 ≤Mn
t ↑

Mt the monotone convergence theorem says E(Mt) ≤ 1. In particular, Mt is integrable. So
we can use the slot property once more:

E(Mt|Ft−1) = Mt−1E(Zt|Ft−1) = Mt−1

as desired.

Problem 4. Consider a discrete time model with a single asset with positive prices (Pt)t≥0
and non-negative dividends (δt)t≥1. Show that there is a self-financing (pure-investment)
trading strategy with corresponding wealth process

Qt = Pt

t∏
s=1

(
1 +

δs
Ps

)
.

Let Y be a positive adapted process. Show that

Mt = YtPt +
t∑

s=1

Ysδs

defines a martingale if and only if
Nt = YtQt

defines a martingale.

Solution 4. Let

Ht =
Qt−1

Pt−1
for t ≥ 1. Notice that H is previsible and self-financing (without consumption), since

Ht(Pt + δt) = Qt = Ht+1Pt.

The strategy H consists of holding one share of the asset initially, and reinvesting the divi-
dend payments.

Note the identity

Yt+1Qt+1 − YtQt = Ht+1[Yt+1(Pt+1 + δt+1)− YtPt].
Letting

Mt = YtPt +
t∑

s=1

Ysδs

we see that

YtQt = Y0P0 +
t∑

s=1

Hs(Ms −Ms−1).

We recognise Y Q as the martingale transform of the predictable process H with respect to
M . If M is a martingale, then Y Q is a local martingale. But non-negative local martingales
in discrete time are true martingales.
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Similarly, writing

Mt = Y0P0 +
t∑

s=1

1

Hs

(YsQs − Ys−1Qs−1)

we see that if Y Q is a martingale, then M is martingale.

Problem 5. Consider a two-asset model with prices given by

(P 1, P 2) (3, 9)

(4, 6)

1/4
;;wwwwwwww

1/4
//

1/2 ##G
GG

GG
GG

G
(6, 8)

(6, 4)

Is there arbitrage in this market? If so, find all arbitrages. If not, find all pricing kernels.

Solution 5. This is a very important problem. To ensure you understand it, below are three
solutions.
(1) Let H ∈ R2 be a candidate absolute arbitrage, such that H · P0 ≤ 0 ≤ H · P1. We will
show H · P0 = 0 = H · P1 and hence there is no arbitrage.

Label the outcomes Ω = {A,B,C} where P1(A) = (3, 9), etc. and let H = (h, k). The
inequalities become

(0): 4h+ 6k ≤ 0
(A): 3h+ 9k ≥ 0
(B): 6h+ 8k ≥ 0
(C): 6h+ 4k ≥ 0

By subtracting appropriate multiples of inequality (0) from the others to eliminate h, we
have

(A′): (9− 3
4
× 6)k = 9k/2 ≥ 0

(B′): (8− 6
4
× 6)k = −k ≥ 0

(C ′): (4− 6
4
× 6)k = −5k ≥ 0

Inequalities (A′) and (B′) together imply k = 0. Plugging this into (0) and (A) above imply
h = 0, as desired.

(2) Since this market has a numéraire asset (in fact, both assets have strictly positive prices),
there is no arbitrage if and only if there is no terminal consumption arbitrage. So, as above,
let H be a candidate terminal consumption arbitrage with H · P0 = 0 and H · P1 ≥ 0. We
will show H · P1 = 0. Labelling the outcomes as before, we have

(0): 4h+ 6k = 0
(A): 3h+ 9k ≥ 0
(B): 6h+ 8k ≥ 0
(C): 6h+ 4k ≥ 0

We then proceed as above.

(3) By the first fundamental theorem of asset pricing there is no arbitrage if and only if there
is a pricing kernel. So we seek a positive random variable ρ such that E(ρP1) = P0. Letting
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ρ(A) = a, ρ(B) = b and ρ(C) = c we have

1

4
(3a) +

1

4
(6b) +

1

2
(6c) = 4

1

4
(9a) +

1

4
(8b) +

1

2
(4c) = 6

All positive solutions of these two equations in three unknowns can be written as

(a, b, c) = u

(
40

21
, 0,

6

7

)
+ (1− u)

(
8

15
,
12

5
, 0

)
, 0 < u < 1.

Problem 6. Consider a three-asset model with asset 1 cash so that P 1
0 = P 1

1 = 1 and assets
2 and 3 given by

(P 2, P 3) (9, 8)

(6, 7)

1/3
;;wwwwwwww

2/3 ##G
GG

GG
GG

G

(3, 5)

Is there arbitrage in this market? If so, find all arbitrages. If not, find all pricing kernels.

Solution 6. Yes, there is an arbitrage. A candidate arbitrage H = (g, h, k) would satisfy

(0): g + 6h+ 7k ≤ 0
(A): g + 9h+ 8k ≥ 0
(B): g + 3h+ 5k ≥ 0

Adding (A) and (B) and subtracting twice (0) yields

−k ≥ 0.

So fix such a k, for instance k = −1 and plot the inequalities in the variables g and h.

g + 6h ≤ 7

g + 9h ≥ 8

g + 3h ≥ 5

See the figure. All solutions are convex combinations of the extreme points
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(g, h) = (5, 1/3); (7/2, 1/2); (3, 2/3)

Hence, all arbitrages are of the form

(g, h, k) = u(15, 1,−3) + v(9, 2,−3) +w(7, 1,−2), min{u, v, w} ≥ 0 and max{u, v, w} > 0.

By the 1FTAP, there are no pricing kernels. But let’s see this directly in this example:
Let Ω = {A,B} and let ρ be a candidate pricing kernel with ρ(A) = a, ρ(B) = b. Then we
have three equations and two unknowns:

(1
3
)a+ (2

3
)b = 1

(1
3
)9a+ (2

3
)3b = 6

(1
3
)8a+ (2

3
)5b = 7.

The above system has no solution.

Problem 7. * Let X be a martingale, K a previsible process, and M0 a constant. Let

Mt = M0 +
t∑

s=1

Ks(Xs −Xs−1).

Show that if MT is integrable for some non-random time T > 0, then (Mt)0≤t≤T is a true
martingale. Hint: Show that MT−1 is integrable.

Solution 7. Here are two solutions. The first uses the same trick as the lectures. Let
τN = inf{t ≥ 0 : |Kt+1| > N}. Note Ms1{t≤τN} is integrable for all 0 ≤ s ≤ t, since X is
integrable by definition of martingale, and Ks is bounded on {t ≤ τN}. Hence we have

E[MT1{τN≤T}|FT−1] = E[MT−11{T≤τN} +KT1{T≤τN}(XT −XT−1)|FT−1]
= MT−11{T≤τN} +KT1{T≤τN}E[XT −XT−1|FT−1]
= MT−11{T≤τN}.

Now, we have assumed that MT is integrable, and since |MT1{τN≤T}| ≤ |MT | we can apply
the dominated convergence theorem

E[MT |FT−1] = E[lim
N
MT1{τN≤T}|FT−1]

= lim
N
MT−11{T≤τN}

= MT−1.

This shows that MT−1 is integrable, and by induction (Mt)0≤t≤T is integrable. An integrable
local martingale in discrete time is a true martingale.

A second solution is similar. Let AN = {|KT | ≤ N} and note that KT1AN
is bounded and

FT−1-measurable. Also MT−11AN
is integrable, since

MT−11AN
= MT1AN

−KT1AN
(XT −XT−1)

Hence

E[MT1AN
|FT−1] = E[MT−11AN

+KT1AN
(XT −XT−1)|FT−1]

= MT−11AN
+KT1AN

E[XT −XT−1|FT−1]
= MT−11AN

.

Send N →∞ as before.
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Problem 8. This problem leads you through an alternative proof of the 1FTAP using the
following version of the separating hyperplane theorem: Let C ⊂ Rn be convex and x ∈ Rn

not contained in C. Then there exists a λ ∈ Rn such that λ · (y−x) ≥ 0 for all y ∈ C, where
the inequality is strict for at least one y ∈ C.

We are given a market model (Pt)t∈{0,1}.
(a) Define a collection of random variables by

Z = {Z : Z > 0 a.s. and E(Z‖P1‖) <∞}.
Show that Z not empty and convex.
(b) Now define a subset of Rn by

P = {E(ZP1) : Z ∈ Z}.
Show that P is not empty and convex. Furthermore, show that if P0 ∈ P there exists a
martingale deflator (Yt)t∈{0,1}.

For the rest of the problem assume P0 6∈ P . We must find an arbitrage.
(c) Use the given separating hyperplane theorem to show that there exists a vector H ∈ Rn

such that E(ZH ·P1) ≥ H ·P0 for all Z ∈ Z with strict inequality for all at least one Z ∈ Z.
(d) Use the conclusion of part (c) to show H · P0 ≤ 0. [Hint: fix an element Z0 ∈ Z, and let
Z = εZ0. Now look at the inequality when ε ↓ 0. ]
(e) Let A = {H · P1 < 0}. By setting Z = (1

ε
1A + 1)Z0, show P(A) = 0.

(f) Finally, by appealing to the conclusion of part (c), show that H is an arbitrage.

Solution 8. (a) The set Z is not empty since Z0 = e−‖P1‖ is an element. Also if Z0, Z1 ∈ Z
and Zθ = (1− θ)Z0 + θZ1 for some 0 ≤ θ ≤ 1 then Zθ > 0 and

E(Zθ‖P1‖) = (1− θ)E(Z0‖P1‖) + θE(Z1‖P1‖) <∞.
So Z is convex.
(b) The non-emptiness and convexity of P follow from (a). If P0 ∈ P then E(ZP1) = P0 for
some Z > 0. Hence Y1 = Z, Y0 = 1 is a martingale deflator.
(c) The separating hyperplane theorem says there is vector H ∈ Rn such that H ·(p−P0) ≥ 0
for all p ∈ Z and H · (p − P0) > 0 for at least one p ∈ P . The required conclusion follows
from noting that every element p ∈ P is of the form p = E(ZP1) for some Z ∈ Z.
(d) Let Z = εZ0 as hinted. From (c) we have H · P0 ≤ εE(Z0H · P1). Now send ε ↓ 0.
(e) From (c) we have

E(Z0H · P01A) ≥ ε[H · P0 − E(Z0H · P0)].

Sending ε ↓ 0 yields E(Z0H · P01A) ≥ 0. But the integrand is non-positive almost surely.
By the pigeon-hole principle, the integrand is zero almost surely. Since Z0 > 0, we have
P(A) = 0.
(f) From (d) we have H · P0 ≤ 0 and from (e) we have H · P1 ≥ 0. But from (c) there exists
a Z ∈ Z such that E(ZH · P1) > H · P0. Hence P(H · P0 = 0 = H · P1) = 0.

Problem 9. (Stiemke’s theorem) Let A be a m × n matrix. Prove that exactly one of the
following statements is true:

• There exists an x ∈ Rn with xi > 0 for all i = 1, . . . , n such that Ax = 0.
• There exists a y ∈ Rm with (A>y)i ≥ 0 for all i = 1, . . . , n such that A>y 6= 0.

What does this have to do with finance?
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Solution 9. Let Ω = {1, . . . , n} and P({j}) = 1/n for all j ∈ Ω. Let P0 = 0, and define a
random vector by P1 : Ω → Rm by the P i

1(j) = ai,j where A = (ai,j)i,j. Consider a m-asset
market model with prices P .

Since H · P0 = 0 for all H, an arbitrage is a vector H such that H · P1 ≥ 0 a.s. and
P(H ·P1 > 0) > 0. Or using the notation of the problem, an arbitrage is a vector y = H ∈ Rm

such that with (ATy)j ≥ 0 for all j = 1, . . . , n such that ATy 6= 0.
A pricing kernel is a positive random variable ρ such that

0 = E(ρP1) =
∑
j

1

n
ρ(j)P1(j).

Or, letting xj = ρ(j)/n a pricing kernel is a vector x ∈ Rn such that Ax = 0 and xj > 0 for
all j.

The result conclusion is just an application of the 1FTAP.

We have now seen one proof of the 1FTAP in lecture and another in the previous problem.
For the sake of developing intuition, here’s yet another one: As before, the easy direction is
to show that the existence of a pricing kernel implies no arbitrage: Suppose that there exists
an x ∈ Rn with xi > 0 for all i = 1, . . . , n such that Ax = 0. If there exists a y ∈ Rm with
(A>y)i ≥ 0 for all i = 1, . . . , n then x · (A>y) = (Ax) · y = 0. Hence A>y = 0.

Now we prove the harder direction using a version of the separating hyperplane theorem.
Suppose that there is no arbitrage: If there exists a y ∈ Rm with (A>y)i ≥ 0 for all
i = 1, . . . , n then A>y = 0. Let

S = {A>y : y ∈ Rm} ⊆ Rn

and let

C =

{
u ∈ Rn : ui ≥ 0 for all i = 1, . . . , n and

n∑
i=1

ui = 1

}
⊂ Rn.

By assumption, the subspace S and the convex compact set C are disjoint. Indeed, if v ∈ S,
then v = ATy for some y. If vi ≥ 0 for all i, then v = 0 by the no-arbitrage assumption.
Hence

∑
i vi = 0 6= 1 and v is not in C.

The situation is illustrated by the figure. A version of the separating hyperplane theorem,
says there exists a vector λ ∈ Rn such that

λ · v = 0 for all v ∈ S
λ · u > 0 for all u ∈ C.

(Try proving this!) We will be done once we show that λj > 0 for all j. So fix a j ∈ {1, . . . , n}
and let e ∈ Rn be given by ej = 1 and ei = 0 for all i 6= j. Then e ∈ C and λ · e = λj > 0 as
desired.

Problem 10. * Consider an arbitrage-free market with at least two assets, where no asset
pays a dividend.
(a) Prove the law of one price: if P 1

T = P 2
T almost surely, where T > 0 is a non-random time,

then P 1
t = P 2

t almost surely for all 0 ≤ t ≤ T .
(b) Find an example of an arbitrage-free market for which there is a stopping time τ such
that P 1

τ = P 2
τ almost surely, and yet P 1

0 6= P 2
0 .
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Solution 10. There is a primal and a dual argument.
(a Primal) Suppose P 1

T = P 2
T a.s. Let τ = inf{t ≥ 0 : P 1

t 6= P 2
t }. Consider the portfolio

Ht+1 = 1{τ≤t}sign(P 1
τ − P 2

τ )(−1, 1) for 0 ≤ t < T and HT+1 = 0. Note the corresponding
consumption is ct ≥ 0 for all 0 ≤ t ≤ T . Since

{ct > 0 for some 0 ≤ t ≤ T} = {τ ≤ T}

there is no arbitrage only if τ > T almost surely.
(a Dual) Suppose P 1

T = P 2
T a.s. By 1FTAP there exists a martingale deflator Y Then

P 1
t =

1

Yt
E(YTP

1
T |Ft) =

1

Yt
E(YTP

2
T |Ft) = P 2

t .

Let P 1
t = 1 for all t ≥ 0 and P 2

t = ξ1 + . . . + ξt where the sequence (ξn)n is IID with
P(ξn = ±1) = 1

2
. This market has no arbitrage since the prices are martingales (so we may

take the martingale deflator to be Yt = 1 for all t ≥ 0.) Now set τ = inf{t ≥ 0 : P 2
t = 1}.

Note τ < ∞ almost surely, and P 1
τ = 1 almost surely. However, P 1

0 = 1 6= 0 = P 2
0 , so the

law of one price does not necessarily hold for unbounded stopping times.

Problem 11. (Tower property of conditional expectation) Let X and Y be identically
distributed random variables taking values in the set {2n : n ≥ 0} such that X/Y ∈ {1/2, 2}
almost surely and

P(X = 2n, Y = 2n+1) =
1

4
2−n = P(X = 2n+1, Y = 2n) for n ≥ 0.

(a) Show that P(X = 1) = 1
4

and

P(X = 2n) =
3

4
2−n for n ≥ 1.
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(b) Show that P(Y = 2|X = 1) = 1 and

P(Y = 2n+1|X = 2n) =
1

3
= 1− P(Y = 2n−1|X = 2n) for n ≥ 1.

(c) Let Z = Y −X. Show that E(Z|X = 1) = 1 and

E(Z|X = 2n) = 0 for n ≥ 1.

(d) From part (c) we have E(Z|X) = 1{X=1} and hence

E(Z) = E[E(Z|X)] =
1

4
> 0.

However, by symmetry we also have E(Z|Y ) = −1{Y=1} and

E(Z) = E[E(Z|Y )] = −1

4
< 0.

What has gone wrong?!

Solution 11. (a)

P(X = 2n) = P(X = 2n, Y = 2n+1) + P(X = 2n, Y = 2n−1)

=
1

4
2−n +

1

4
2−(n−1)1{n≥1}

=
1

4
2−n(1 + 21{n≥1})

(b) By Bayes’ formula

P(Y = 2n+1|X = 2n) =
P(X = 2n, Y = 2n+1)

P(X = 2n)

=
1

1 + 21{n≥1}

by part (a).
(c) Using the formula from part (b) yields

E[Z|X = 2n] = 2n+1P(Y = 2n+1|X = 2n) + 2n−1P(Y = 2n−1|X = 2n)− 2n

= 2n
(

1− 1{n≥1}

1 + 21{n≥1}

)
= 1{n=0}

(d) The problem is that Z is not integrable. Indeed,

E(Z+) =
∞∑
n=0

(2n+1 − 2n)P(X = 2n, Y = 2n+1)

=
∞∑
n=0

1

2

=∞
10



Notice that the conditional expectation (given an event)

E(Z|X = 2n) =
E(Z1{X=2n})

P(X = 2n)

is defined, but the conditional expectation (given a sigma-field) E(Z|X) is not defined1.

1In fact, it is possible to define a generalised notion of conditional expectation so that E(Z|X) = 1{X=1}.

But this definition is fickle, and in particular, it would not obey the tower property of conditional expectation.
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