Paper 1, Section I

6H Statistics

Suppose X_{1}, \ldots, X_{n} are independent with distribution $N(\mu, 1)$. Suppose a prior $\mu \sim N\left(\theta, \tau^{-2}\right)$ is placed on the unknown parameter μ for some given deterministic $\theta \in \mathbb{R}$ and $\tau>0$. Derive the posterior mean.

Find an expression for the mean squared error of this posterior mean when $\theta=0$.

Paper 1, Section II

19H Statistics

Let X_{1}, \ldots, X_{n} be i.i.d. $U[0,2 \theta]$ random variables, where $\theta>0$ is unknown.
(a) Derive the maximum likelihood estimator $\hat{\theta}$ of θ.
(b) What is a sufficient statistic? What is a minimal sufficient statistic? Is $\hat{\theta}$ sufficient for θ ? Is it minimal sufficient? Answer the same questions for the sample mean $\tilde{\theta}:=\sum_{i=1}^{n} X_{i} / n$. Briefly justify your answers.
[You may use any result from the course provided it is stated clearly.]
(c) Show that the mean squared errors of $\hat{\theta}$ and $\tilde{\theta}$ are respectively

$$
\frac{2 \theta^{2}}{(n+1)(n+2)} \quad \text { and } \quad \frac{\theta^{2}}{3 n} .
$$

(d) Show that for each $t \in \mathbb{R}, \lim _{n \rightarrow \infty} \mathbb{P}(n(1-\hat{\theta} / \theta) \geqslant t)=h(t)$ for a function h you should specify. Give, with justification, an approximate $1-\alpha$ confidence interval for θ whose expected length is

$$
\left(\frac{n \theta}{n+1}\right)\left(\frac{\log (1 / \alpha)}{n-\log (1 / \alpha)}\right) .
$$

[Hint: $\lim _{n \rightarrow \infty}\left(1-\frac{t}{n}\right)^{n}=e^{-t}$ for all $t \in \mathbb{R}$.]

Paper 2, Section II

18H Statistics

Consider the general linear model $Y=X \beta^{0}+\varepsilon$ where X is a known $n \times p$ design matrix with $p \geqslant 2, \beta^{0} \in \mathbb{R}^{p}$ is an unknown vector of parameters, and $\varepsilon \in \mathbb{R}^{n}$ is a vector of stochastic errors with $\mathbb{E}\left(\varepsilon_{i}\right)=0, \operatorname{var}\left(\varepsilon_{i}\right)=\sigma^{2}>0$ and $\operatorname{cov}\left(\varepsilon_{i}, \varepsilon_{j}\right)=0$ for all $i, j=1, \ldots, n$ with $i \neq j$. Suppose X has full column rank.
(a) Write down the least squares estimate $\hat{\beta}$ of β^{0} and show that it minimises the least squares objective $S(\beta)=\|Y-X \beta\|^{2}$ over $\beta \in \mathbb{R}^{p}$.
(b) Write down the variance-covariance matrix $\operatorname{cov}(\hat{\beta})$.
(c) Let $\tilde{\beta} \in \mathbb{R}^{p}$ minimise $S(\beta)$ over $\beta \in \mathbb{R}^{p}$ subject to $\beta_{p}=0$. Let Z be the $n \times(p-1)$ submatrix of X that excludes the final column. Write down $\operatorname{cov}(\tilde{\beta})$.
(d) Let P and P_{0} be $n \times n$ orthogonal projections onto the column spaces of X and Z respectively. Show that for all $u \in \mathbb{R}^{n}, u^{T} P u \geqslant u^{T} P_{0} u$.
(e) Show that for all $x \in \mathbb{R}^{p}$,

$$
\operatorname{var}\left(x^{T} \tilde{\beta}\right) \leqslant \operatorname{var}\left(x^{T} \hat{\beta}\right)
$$

[Hint: Argue that $x=X^{T} u$ for some $u \in \mathbb{R}^{n}$.]

