Paper 1, Section I

6H Statistics

Suppose X_1, \ldots, X_n are independent with distribution $N(\mu, 1)$. Suppose a prior $\mu \sim N(\theta, \tau^{-2})$ is placed on the unknown parameter μ for some given deterministic $\theta \in \mathbb{R}$ and $\tau > 0$. Derive the posterior mean.

Find an expression for the mean squared error of this posterior mean when $\theta = 0$.

Paper 1, Section II

19H Statistics

Let X_1, \ldots, X_n be i.i.d. $U[0, 2\theta]$ random variables, where $\theta > 0$ is unknown.

(a) Derive the maximum likelihood estimator $\hat{\theta}$ of θ .

(b) What is a sufficient statistic? What is a minimal sufficient statistic? Is $\hat{\theta}$ sufficient for θ ? Is it minimal sufficient? Answer the same questions for the sample mean $\tilde{\theta} := \sum_{i=1}^{n} X_i/n$. Briefly justify your answers.

[You may use any result from the course provided it is stated clearly.]

(c) Show that the mean squared errors of $\hat{\theta}$ and $\hat{\theta}$ are respectively

$$\frac{2\theta^2}{(n+1)(n+2)}$$
 and $\frac{\theta^2}{3n}$.

(d) Show that for each $t \in \mathbb{R}$, $\lim_{n\to\infty} \mathbb{P}(n(1-\hat{\theta}/\theta) \ge t) = h(t)$ for a function h you should specify. Give, with justification, an approximate $1 - \alpha$ confidence interval for θ whose expected length is

$$\left(\frac{n\theta}{n+1}\right)\left(\frac{\log(1/\alpha)}{n-\log(1/\alpha)}\right).$$

[*Hint:* $\lim_{n\to\infty} (1-\frac{t}{n})^n = e^{-t}$ for all $t \in \mathbb{R}$.]

Part IB, 2020 List of Questions

Paper 2, Section II

18H Statistics

Consider the general linear model $Y = X\beta^0 + \varepsilon$ where X is a known $n \times p$ design matrix with $p \ge 2$, $\beta^0 \in \mathbb{R}^p$ is an unknown vector of parameters, and $\varepsilon \in \mathbb{R}^n$ is a vector of stochastic errors with $\mathbb{E}(\varepsilon_i) = 0$, $\operatorname{var}(\varepsilon_i) = \sigma^2 > 0$ and $\operatorname{cov}(\varepsilon_i, \varepsilon_j) = 0$ for all $i, j = 1, \ldots, n$ with $i \neq j$. Suppose X has full column rank.

23

(a) Write down the least squares estimate $\hat{\beta}$ of β^0 and show that it minimises the least squares objective $S(\beta) = ||Y - X\beta||^2$ over $\beta \in \mathbb{R}^p$.

(b) Write down the variance–covariance matrix $cov(\hat{\beta})$.

(c) Let $\tilde{\beta} \in \mathbb{R}^p$ minimise $S(\beta)$ over $\beta \in \mathbb{R}^p$ subject to $\beta_p = 0$. Let Z be the $n \times (p-1)$ submatrix of X that excludes the final column. Write down $\operatorname{cov}(\tilde{\beta})$.

(d) Let P and P_0 be $n \times n$ orthogonal projections onto the column spaces of X and Z respectively. Show that for all $u \in \mathbb{R}^n$, $u^T P u \ge u^T P_0 u$.

(e) Show that for all $x \in \mathbb{R}^p$,

$$\operatorname{var}(x^T \tilde{\beta}) \leq \operatorname{var}(x^T \hat{\beta}).$$

[*Hint: Argue that* $x = X^T u$ for some $u \in \mathbb{R}^n$.]