Paper 1, Section I

7H Statistics

$X_{1}, X_{2}, \ldots, X_{n}$ form a random sample from a distribution whose probability density function is

$$
f(x ; \theta)= \begin{cases}\frac{2 x}{\theta^{2}} & 0 \leqslant x \leqslant \theta \\ 0 & \text { otherwise }\end{cases}
$$

where the value of the positive parameter θ is unknown. Determine the maximum likelihood estimator of the median of this distribution.

Paper 2, Section I

8H Statistics

Define a simple hypothesis. Define the terms size and power for a test of one simple hypothesis against another. State the Neyman-Pearson lemma.

There is a single observation of a random variable X which has a probability density function $f(x)$. Construct a best test of size 0.05 for the null hypothesis

$$
H_{0}: \quad f(x)=\frac{1}{2}, \quad-1 \leqslant x \leqslant 1
$$

against the alternative hypothesis

$$
H_{1}: \quad f(x)=\frac{3}{4}\left(1-x^{2}\right), \quad-1 \leqslant x \leqslant 1
$$

Calculate the power of your test.

Paper 1, Section II

19H Statistics

(a) Consider the general linear model $Y=X \theta+\varepsilon$ where X is a known $n \times p$ matrix, θ is an unknown $p \times 1$ vector of parameters, and ε is an $n \times 1$ vector of independent $N\left(0, \sigma^{2}\right)$ random variables with unknown variances σ^{2}. Show that, provided the matrix X is of rank p, the least squares estimate of θ is

$$
\hat{\theta}=\left(X^{\mathrm{T}} X\right)^{-1} X^{\mathrm{T}} Y
$$

Let

$$
\hat{\varepsilon}=Y-X \hat{\theta}
$$

What is the distribution of $\hat{\varepsilon}^{\mathrm{T}} \hat{\varepsilon}$? Write down, in terms of $\hat{\varepsilon}^{\mathrm{T}} \hat{\varepsilon}$, an unbiased estimator of σ^{2}.
(b) Four points on the ground form the vertices of a plane quadrilateral with interior angles $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}$, so that $\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}=2 \pi$. Aerial observations $Z_{1}, Z_{2}, Z_{3}, Z_{4}$ are made of these angles, where the observations are subject to independent errors distributed as $N\left(0, \sigma^{2}\right)$ random variables.
(i) Represent the preceding model as a general linear model with observations $\left(Z_{1}, Z_{2}, Z_{3}, Z_{4}-2 \pi\right)$ and unknown parameters $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$.
(ii) Find the least squares estimates $\hat{\theta}_{1}, \hat{\theta}_{2}, \hat{\theta}_{3}$.
(iii) Determine an unbiased estimator of σ^{2}. What is its distribution?

Paper 4, Section II

19H Statistics

There is widespread agreement amongst the managers of the Reliable Motor Company that the number X of faulty cars produced in a month has a binomial distribution

$$
P(X=s)=\binom{n}{s} p^{s}(1-p)^{n-s} \quad(s=0,1, \ldots, n ; \quad 0 \leqslant p \leqslant 1),
$$

where n is the total number of cars produced in a month. There is, however, some dispute about the parameter p. The general manager has a prior distribution for p which is uniform, while the more pessimistic production manager has a prior distribution with density $2 p$, both on the interval $[0,1]$.

In a particular month, s faulty cars are produced. Show that if the general manager's loss function is $(\hat{p}-p)^{2}$, where \hat{p} is her estimate and p the true value, then her best estimate of p is

$$
\hat{p}=\frac{s+1}{n+2} .
$$

The production manager has responsibilities different from those of the general manager, and a different loss function given by $(1-p)(\hat{p}-p)^{2}$. Find his best estimate of p and show that it is greater than that of the general manager unless $s \geqslant \frac{1}{2} n$.
[You may use the fact that for non-negative integers α, β,

$$
\int_{0}^{1} p^{\alpha}(1-p)^{\beta} d p=\frac{\alpha!\beta!}{(\alpha+\beta+1)!}
$$

Paper 3, Section II

20 H Statistics

A treatment is suggested for a particular illness. The results of treating a number of patients chosen at random from those in a hospital suffering from the illness are shown in the following table, in which the entries a, b, c, d are numbers of patients.

	Recovery	Non-recovery
Untreated	a	b
Treated	c	d

Describe the use of Pearson's χ^{2} statistic in testing whether the treatment affects recovery, and outline a justification derived from the generalised likelihood ratio statistic. Show that

$$
\chi^{2}=\frac{(a d-b c)^{2}(a+b+c+d)}{(a+b)(c+d)(a+c)(b+d)}
$$

[Hint: You may find it helpful to observe that $a(a+b+c+d)-(a+b)(a+c)=a d-b c$.]
Comment on the use of this statistical technique when

$$
a=50, \quad b=10, \quad c=15, \quad d=5
$$

