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Paper 1, Section I

7H Statistics
(a) State and prove the Rao–Blackwell theorem.

(b) Let X1, . . . ,Xn be an independent sample from Poisson(λ) with θ = e−λ to be
estimated. Show that Y = 1{0}(X1) is an unbiased estimator of θ and that T =

∑
iXi is

a sufficient statistic.

What is E[Y | T ]?

Paper 2, Section I

8H Statistics
(a) Define a 100γ% confidence interval for an unknown parameter θ.

(b) Let X1, . . . ,Xn be i.i.d. random variables with distribution N(µ, 1) with µ
unknown. Find a 95% confidence interval for µ.

[You may use the fact that Φ(1.96) ≃ 0.975.]

(c) Let U1, U2 be independent U [θ − 1, θ + 1] with θ to be estimated. Find a 50%
confidence interval for θ.

Suppose that we have two observations u1 = 10 and u2 = 11.5. What might be a
better interval to report in this case?

Paper 4, Section II

19H Statistics
(a) State and prove the Neyman–Pearson lemma.

(b) Let X be a real random variable with density f(x) = (2θx+1− θ)1[0,1](x) with
−1 6 θ 6 1.

Find a most powerful test of size α of H0 : θ = 0 versus H1 : θ = 1.

Find a uniformly most powerful test of size α of H0 : θ = 0 versus H1 : θ > 0.
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Paper 1, Section II

19H Statistics
(a) Give the definitions of a sufficient and a minimal sufficient statistic T for an

unknown parameter θ.

Let X1,X2, . . . ,Xn be an independent sample from the geometric distribution with
success probability 1/θ and mean θ > 1, i.e. with probability mass function

p(m) =
1

θ

(
1− 1

θ

)m−1

for m = 1, 2, . . . .

Find a minimal sufficient statistic for θ. Is your statistic a biased estimator of θ?

[You may use results from the course provided you state them clearly.]

(b) Define the bias of an estimator. What does it mean for an estimator to be
unbiased?

Suppose that Y has the truncated Poisson distribution with probability mass
function

p(y) = (eθ − 1)−1 · θ
y

y!
for y = 1, 2, . . . .

Show that the only unbiased estimator T of 1 − e−θ based on Y is obtained by taking
T = 0 if Y is odd and T = 2 if Y is even.

Is this a useful estimator? Justify your answer.
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Paper 3, Section II

20H Statistics
Consider the general linear model

Y = Xβ + ε,

where X is a known n × p matrix of full rank p < n, ε ∼ Nn(0, σ
2I) with σ2 known and

β ∈ Rp is an unknown vector.

(a) State without proof the Gauss–Markov theorem.

Find the maximum likelihood estimator β̂ for β. Is it unbiased?

Let β∗ be any unbiased estimator for β which is linear in (Yi). Show that

var(tT β̂) 6 var(tTβ∗)

for all t ∈ Rp.

(b) Suppose now that p = 1 and that β and σ2 are both unknown. Find the
maximum likelihood estimator for σ2. What is the joint distribution of β̂ and σ̂2 in this
case? Justify your answer.
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