Paper 1, Section I

7H Statistics

Suppose that X_1, \ldots, X_n are independent normally distributed random variables, each with mean μ and variance 1, and consider testing $H_0: \mu = 0$ against $H_1: \mu = 1$. Explain what is meant by the *critical region*, the *size* and the *power* of a test.

For $0 < \alpha < 1$, derive the test that is most powerful among all tests of size at most α . Obtain an expression for the power of your test in terms of the standard normal distribution function $\Phi(\cdot)$.

[Results from the course may be used without proof provided they are clearly stated.]

Paper 2, Section I

8H Statistics

Suppose that, given θ , the random variable X has $\mathbb{P}(X = k) = e^{-\theta}\theta^k/k!$, $k = 0, 1, 2, \ldots$ Suppose that the prior density of θ is $\pi(\theta) = \lambda e^{-\lambda\theta}$, $\theta > 0$, for some known λ (> 0). Derive the posterior density $\pi(\theta \mid x)$ of θ based on the observation X = x.

For a given loss function $L(\theta, a)$, a statistician wants to calculate the value of a that minimises the expected posterior loss

$$\int L(\theta, a) \pi(\theta \mid x) d\theta.$$

Suppose that x = 0. Find a in terms of λ in the following cases:

- (a) $L(\theta, a) = (\theta a)^2;$
- (b) $L(\theta, a) = |\theta a|$.

CAMBRIDGE

Paper 4, Section II

19H Statistics

Consider a linear model $\mathbf{Y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ where \mathbf{Y} is an $n \times 1$ vector of observations, X is a known $n \times p$ matrix, $\boldsymbol{\beta}$ is a $p \times 1$ (p < n) vector of unknown parameters and $\boldsymbol{\varepsilon}$ is an $n \times 1$ vector of independent normally distributed random variables each with mean zero and unknown variance σ^2 . Write down the log-likelihood and show that the maximum likelihood estimators $\hat{\boldsymbol{\beta}}$ and $\hat{\sigma}^2$ of $\boldsymbol{\beta}$ and σ^2 respectively satisfy

42

$$X^T X \hat{\boldsymbol{\beta}} = X^T \mathbf{Y}, \qquad \frac{1}{\hat{\sigma}^4} (\mathbf{Y} - X \hat{\boldsymbol{\beta}})^T (\mathbf{Y} - X \hat{\boldsymbol{\beta}}) = \frac{n}{\hat{\sigma}^2}$$

(^T denotes the transpose). Assuming that $X^T X$ is invertible, find the solutions $\hat{\beta}$ and $\hat{\sigma}^2$ of these equations and write down their distributions.

Prove that $\hat{\boldsymbol{\beta}}$ and $\hat{\sigma}^2$ are independent.

Consider the model $Y_{ij} = \mu_i + \gamma x_{ij} + \varepsilon_{ij}$, i = 1, 2, 3 and j = 1, 2, 3. Suppose that, for all $i, x_{i1} = -1, x_{i2} = 0$ and $x_{i3} = 1$, and that $\varepsilon_{ij}, i, j = 1, 2, 3$, are independent $N(0, \sigma^2)$ random variables where σ^2 is unknown. Show how this model may be written as a linear model and write down $\mathbf{Y}, X, \boldsymbol{\beta}$ and $\boldsymbol{\varepsilon}$. Find the maximum likelihood estimators of μ_i $(i = 1, 2, 3), \gamma$ and σ^2 in terms of the Y_{ij} . Derive a $100(1 - \alpha)\%$ confidence interval for σ^2 and for $\mu_2 - \mu_1$.

[You may assume that, if $\mathbf{W} = (\mathbf{W_1}^T, \mathbf{W_2}^T)^T$ is multivariate normal with $\operatorname{cov}(\mathbf{W_1}, \mathbf{W_2}) = 0$, then $\mathbf{W_1}$ and $\mathbf{W_2}$ are independent.]

Paper 1, Section II

19H Statistics

Suppose X_1, \ldots, X_n are independent identically distributed random variables each with probability mass function $\mathbb{P}(X_i = x_i) = p(x_i; \theta)$, where θ is an unknown parameter. State what is meant by a *sufficient statistic* for θ . State the factorisation criterion for a sufficient statistic. State and prove the Rao-Blackwell theorem.

Suppose that X_1, \ldots, X_n are independent identically distributed random variables with

$$\mathbb{P}(X_i = x_i) = \begin{pmatrix} m \\ x_i \end{pmatrix} \theta^{x_i} (1-\theta)^{m-x_i}, \quad x_i = 0, \dots, m,$$

where m is a known positive integer and θ is unknown. Show that $\tilde{\theta} = X_1/m$ is unbiased for θ .

Show that $T = \sum_{i=1}^{n} X_i$ is sufficient for θ and use the Rao-Blackwell theorem to find another unbiased estimator $\hat{\theta}$ for θ , giving details of your derivation. Calculate the variance of $\hat{\theta}$ and compare it to the variance of $\tilde{\theta}$.

A statistician cannot remember the exact statement of the Rao-Blackwell theorem and calculates $\mathbb{E}(T \mid X_1)$ in an attempt to find an estimator of θ . Comment on the suitability or otherwise of this approach, giving your reasons.

[*Hint:* If a and b are positive integers then, for r = 0, 1, ..., a + b, $\binom{a+b}{r} = \sum_{j=0}^{r} {a \choose j} {b \choose r-j}$.]

Paper 3, Section II 20H Statistics

(a) Suppose that X_1, \ldots, X_n are independent identically distributed random variables, each with density $f(x) = \theta \exp(-\theta x)$, x > 0 for some unknown $\theta > 0$. Use the generalised likelihood ratio to obtain a size α test of $H_0: \theta = 1$ against $H_1: \theta \neq 1$.

(b) A die is loaded so that, if p_i is the probability of face *i*, then $p_1 = p_2 = \theta_1$, $p_3 = p_4 = \theta_2$ and $p_5 = p_6 = \theta_3$. The die is thrown *n* times and face *i* is observed x_i times. Write down the likelihood function for $\theta = (\theta_1, \theta_2, \theta_3)$ and find the maximum likelihood estimate of θ .

Consider testing whether or not $\theta_1 = \theta_2 = \theta_3$ for this die. Find the generalised likelihood ratio statistic Λ and show that

$$2\log_e \Lambda \approx T$$
, where $T = \sum_{i=1}^3 \frac{(o_i - e_i)^2}{e_i}$,

where you should specify o_i and e_i in terms of x_1, \ldots, x_6 . Explain how to obtain an approximate size 0.05 test using the value of T. Explain what you would conclude (and why) if T = 2.03.