Paper 1, Section I

7H Statistics

Consider an estimator $\hat{\theta}$ of an unknown parameter θ, and assume that $\mathbb{E}_{\theta}\left(\hat{\theta}^{2}\right)<\infty$ for all θ. Define the bias and mean squared error of $\hat{\theta}$.

Show that the mean squared error of $\hat{\theta}$ is the sum of its variance and the square of its bias.

Suppose that X_{1}, \ldots, X_{n} are independent identically distributed random variables with mean θ and variance θ^{2}, and consider estimators of θ of the form $k \bar{X}$ where $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.
(i) Find the value of k that gives an unbiased estimator, and show that the mean squared error of this unbiased estimator is θ^{2} / n.
(ii) Find the range of values of k for which the mean squared error of $k \bar{X}$ is smaller than θ^{2} / n.

Paper 2, Section I

8H Statistics

There are 100 patients taking part in a trial of a new surgical procedure for a particular medical condition. Of these, 50 patients are randomly selected to receive the new procedure and the remaining 50 receive the old procedure. Six months later, a doctor assesses whether or not each patient has fully recovered. The results are shown below:

	Fully recovered	Not fully recovered
Old procedure	25	25
New procedure	31	19

The doctor is interested in whether there is a difference in full recovery rates for patients receiving the two procedures. Carry out an appropriate 5% significance level test, stating your hypotheses carefully. [You do not need to derive the test.] What conclusion should be reported to the doctor?
[Hint: Let $\chi_{k}^{2}(\alpha)$ denote the upper 100α percentage point of a χ_{k}^{2} distribution. Then

$$
\left.\chi_{1}^{2}(0.05)=3.84, \chi_{2}^{2}(0.05)=5.99, \chi_{3}^{2}(0.05)=7.82, \chi_{4}^{2}(0.05)=9.49 .\right]
$$

Paper 4, Section II

19H Statistics
Consider a linear model

$$
\mathbf{Y}=X \boldsymbol{\beta}+\boldsymbol{\varepsilon}
$$

where X is a known $n \times p$ matrix, $\boldsymbol{\beta}$ is a $p \times 1(p<n)$ vector of unknown parameters and ε is an $n \times 1$ vector of independent $N\left(0, \sigma^{2}\right)$ random variables with σ^{2} unknown. Assume that X has full rank p. Find the least squares estimator $\hat{\boldsymbol{\beta}}$ of $\boldsymbol{\beta}$ and derive its distribution. Define the residual sum of squares $R S S$ and write down an unbiased estimator $\hat{\sigma}^{2}$ of σ^{2}.

Suppose that $V_{i}=a+b u_{i}+\delta_{i}$ and $Z_{i}=c+d w_{i}+\eta_{i}$, for $i=1, \ldots, m$, where u_{i} and w_{i} are known with $\sum_{i=1}^{m} u_{i}=\sum_{i=1}^{m} w_{i}=0$, and $\delta_{1}, \ldots, \delta_{m}, \eta_{1}, \ldots, \eta_{m}$ are independent $N\left(0, \sigma^{2}\right)$ random variables. Assume that at least two of the u_{i} are distinct and at least two of the w_{i} are distinct. Show that $\mathbf{Y}=\left(V_{1}, \ldots, V_{m}, Z_{1}, \ldots, Z_{m}\right)^{T}$ (where T denotes transpose) may be written as in (\dagger) and identify X and $\boldsymbol{\beta}$. Find $\hat{\boldsymbol{\beta}}$ in terms of the V_{i}, Z_{i}, u_{i} and w_{i}. Find the distribution of $\hat{b}-\hat{d}$ and derive a 95% confidence interval for $b-d$.
[Hint: You may assume that $\frac{R S S}{\sigma^{2}}$ has a χ_{n-p}^{2} distribution, and that $\hat{\beta}$ and the residual sum of squares are independent. Properties of χ^{2} distributions may be used without proof.]

Paper 1, Section II

19H Statistics

Suppose that X_{1}, X_{2}, and X_{3} are independent identically distributed Poisson random variables with expectation θ, so that

$$
\mathbb{P}\left(X_{i}=x\right)=\frac{e^{-\theta} \theta^{x}}{x!} \quad x=0,1, \ldots,
$$

and consider testing $H_{0}: \theta=1$ against $H_{1}: \theta=\theta_{1}$, where θ_{1} is a known value greater than 1. Show that the test with critical region $\left\{\left(x_{1}, x_{2}, x_{3}\right): \sum_{i=1}^{3} x_{i}>5\right\}$ is a likelihood ratio test of H_{0} against H_{1}. What is the size of this test? Write down an expression for its power.

A scientist counts the number of bird territories in n randomly selected sections of a large park. Let Y_{i} be the number of bird territories in the i th section, and suppose that Y_{1}, \ldots, Y_{n} are independent Poisson random variables with expectations $\theta_{1}, \ldots, \theta_{n}$ respectively. Let a_{i} be the area of the i th section. Suppose that $n=2 m$, $a_{1}=\cdots=a_{m}=a(>0)$ and $a_{m+1}=\cdots=a_{2 m}=2 a$. Derive the generalised likelihood ratio Λ for testing

$$
H_{0}: \theta_{i}=\lambda a_{i} \text { against } H_{1}: \theta_{i}= \begin{cases}\lambda_{1} & i=1, \ldots, m \\ \lambda_{2} & i=m+1, \ldots, 2 m\end{cases}
$$

What should the scientist conclude about the number of bird territories if $2 \log _{e}(\Lambda)$ is 15.67 ?
[Hint: Let $F_{\theta}(x)$ be $\mathbb{P}(W \leqslant x)$ where W has a Poisson distribution with expectation θ. Then

$$
\left.F_{1}(3)=0.998, \quad F_{3}(5)=0.916, \quad F_{3}(6)=0.966, \quad F_{5}(3)=0.433 .\right]
$$

Paper 3, Section II

20H Statistics

Suppose that X_{1}, \ldots, X_{n} are independent identically distributed random variables with

$$
\mathbb{P}\left(X_{i}=x\right)=\binom{k}{x} \theta^{x}(1-\theta)^{k-x}, \quad x=0, \ldots, k
$$

where k is known and $\theta(0<\theta<1)$ is an unknown parameter. Find the maximum likelihood estimator $\hat{\theta}$ of θ.

Statistician 1 has prior density for θ given by $\pi_{1}(\theta)=\alpha \theta^{\alpha-1}, 0<\theta<1$, where $\alpha>1$. Find the posterior distribution for θ after observing data $X_{1}=x_{1}, \ldots, X_{n}=x_{n}$. Write down the posterior mean $\hat{\theta}_{1}^{(B)}$, and show that

$$
\hat{\theta}_{1}^{(B)}=c \hat{\theta}+(1-c) \tilde{\theta}_{1}
$$

where $\tilde{\theta}_{1}$ depends only on the prior distribution and c is a constant in $(0,1)$ that is to be specified.

Statistician 2 has prior density for θ given by $\pi_{2}(\theta)=\alpha(1-\theta)^{\alpha-1}, 0<\theta<1$. Briefly describe the prior beliefs that the two statisticians hold about θ. Find the posterior mean $\hat{\theta}_{2}^{(B)}$ and show that $\hat{\theta}_{2}^{(B)}<\hat{\theta}_{1}^{(B)}$.

Suppose that α increases (but n, k and the x_{i} remain unchanged). How do the prior beliefs of the two statisticians change? How does c vary? Explain briefly what happens to $\hat{\theta}_{1}^{(B)}$ and $\hat{\theta}_{2}^{(B)}$.
[Hint: The $\operatorname{Beta}(\alpha, \beta)(\alpha>0, \beta>0)$ distribution has density

$$
f(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}, \quad 0<x<1
$$

with expectation $\frac{\alpha}{\alpha+\beta}$ and variance $\frac{\alpha \beta}{(\alpha+\beta+1)(\alpha+\beta)^{2}}$. Here, $\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x, \alpha>0$, is the Gamma function.]

