Paper 1, Section I

7 H Statistics

Let x_{1}, \ldots, x_{n} be independent and identically distributed observations from a distribution with probability density function

$$
f(x)= \begin{cases}\lambda e^{-\lambda(x-\mu)}, & x \geqslant \mu \\ 0, & x<\mu\end{cases}
$$

where λ and μ are unknown positive parameters. Let $\beta=\mu+1 / \lambda$. Find the maximum likelihood estimators $\hat{\lambda}, \hat{\mu}$ and $\hat{\beta}$.

Determine for each of $\hat{\lambda}, \hat{\mu}$ and $\hat{\beta}$ whether or not it has a positive bias.

Paper 2, Section I

8H Statistics

State and prove the Rao-Blackwell theorem.
Individuals in a population are independently of three types $\{0,1,2\}$, with unknown probabilities p_{0}, p_{1}, p_{2} where $p_{0}+p_{1}+p_{2}=1$. In a random sample of n people the i th person is found to be of type $x_{i} \in\{0,1,2\}$.

Show that an unbiased estimator of $\theta=p_{0} p_{1} p_{2}$ is

$$
\hat{\theta}= \begin{cases}1, & \text { if }\left(x_{1}, x_{2}, x_{3}\right)=(0,1,2) \\ 0, & \text { otherwise }\end{cases}
$$

Suppose that n_{i} of the individuals are of type i. Find an unbiased estimator of θ, say θ^{*}, such that $\operatorname{var}\left(\theta^{*}\right)<\theta(1-\theta)$.

Paper 4, Section II

19H Statistics

Explain the notion of a sufficient statistic.
Suppose X is a random variable with distribution F taking values in $\{1, \ldots, 6\}$, with $P(X=i)=p_{i}$. Let x_{1}, \ldots, x_{n} be a sample from F. Suppose n_{i} is the number of these x_{j} that are equal to i. Use a factorization criterion to explain why $\left(n_{1}, \ldots, n_{6}\right)$ is sufficient for $\theta=\left(p_{1}, \ldots, p_{6}\right)$.

Let H_{0} be the hypothesis that $p_{i}=1 / 6$ for all i. Derive the statistic of the generalized likelihood ratio test of H_{0} against the alternative that this is not a good fit.

Assuming that $n_{i} \approx n / 6$ when H_{0} is true and n is large, show that this test can be approximated by a chi-squared test using a test statistic

$$
T=-n+\frac{6}{n} \sum_{i=1}^{6} n_{i}^{2}
$$

Suppose $n=100$ and $T=8.12$. Would you reject H_{0} ? Explain your answer.

Paper 1, Section II

19H Statistics

Consider the general linear model $Y=X \theta+\epsilon$ where X is a known $n \times p$ matrix, θ is an unknown $p \times 1$ vector of parameters, and ϵ is an $n \times 1$ vector of independent $N\left(0, \sigma^{2}\right)$ random variables with unknown variance σ^{2}. Assume the $p \times p$ matrix $X^{T} X$ is invertible. Let

$$
\begin{aligned}
& \hat{\theta}=\left(X^{T} X\right)^{-1} X^{T} Y \\
& \hat{\epsilon}=Y-X \hat{\theta}
\end{aligned}
$$

What are the distributions of $\hat{\theta}$ and $\hat{\epsilon}$? Show that $\hat{\theta}$ and $\hat{\epsilon}$ are uncorrelated.
Four apple trees stand in a 2×2 rectangular grid. The annual yield of the tree at coordinate (i, j) conforms to the model

$$
y_{i j}=\alpha_{i}+\beta x_{i j}+\epsilon_{i j}, \quad i, j \in\{1,2\}
$$

where $x_{i j}$ is the amount of fertilizer applied to tree $(i, j), \alpha_{1}, \alpha_{2}$ may differ because of varying soil across rows, and the $\epsilon_{i j}$ are $N\left(0, \sigma^{2}\right)$ random variables that are independent of one another and from year to year. The following two possible experiments are to be compared:

$$
\text { I : }\left(x_{i j}\right)=\left(\begin{array}{ll}
0 & 1 \\
2 & 3
\end{array}\right) \quad \text { and } \quad \mathrm{II}:\left(x_{i j}\right)=\left(\begin{array}{ll}
0 & 2 \\
3 & 1
\end{array}\right) .
$$

Represent these as general linear models, with $\theta=\left(\alpha_{1}, \alpha_{2}, \beta\right)$. Compare the variances of estimates of β under I and II.

With II the following yields are observed:

$$
\left(y_{i j}\right)=\left(\begin{array}{ll}
100 & 300 \\
600 & 400
\end{array}\right)
$$

Forecast the total yield that will be obtained next year if no fertilizer is used. What is the 95% predictive interval for this yield?

Paper 3, Section II

20H Statistics

Suppose x_{1} is a single observation from a distribution with density f over $[0,1]$. It is desired to test $H_{0}: f(x)=1$ against $H_{1}: f(x)=2 x$.

Let $\delta:[0,1] \rightarrow\{0,1\}$ define a test by $\delta\left(x_{1}\right)=i \Longleftrightarrow$ 'accept H_{i} '. Let $\alpha_{i}(\delta)=P\left(\delta\left(x_{1}\right)=1-i \mid H_{i}\right)$. State the Neyman-Pearson lemma using this notation.

Let δ be the best test of size 0.10 . Find δ and $\alpha_{1}(\delta)$.
Consider now $\delta:[0,1] \rightarrow\{0,1, \star\}$ where $\delta\left(x_{1}\right)=\star$ means 'declare the test to be inconclusive'. Let $\gamma_{i}(\delta)=P\left(\delta(x)=\star \mid H_{i}\right)$. Given prior probabilities π_{0} for H_{0} and $\pi_{1}=1-\pi_{0}$ for H_{1}, and some w_{0}, w_{1}, let

$$
\operatorname{cost}(\delta)=\pi_{0}\left(w_{0} \alpha_{0}(\delta)+\gamma_{0}(\delta)\right)+\pi_{1}\left(w_{1} \alpha_{1}(\delta)+\gamma_{1}(\delta)\right)
$$

Let $\delta^{*}\left(x_{1}\right)=i \Longleftrightarrow x_{1} \in A_{i}$, where $A_{0}=[0,0.5), A_{\star}=[0.5,0.6), A_{1}=[0.6,1]$. Prove that for each value of $\pi_{0} \in(0,1)$ there exist w_{0}, w_{1} (depending on π_{0}) such that $\operatorname{cost}\left(\delta^{*}\right)=\min _{\delta} \operatorname{cost}(\delta)$. [Hint: $\left.w_{0}=1+2(0.6)\left(\pi_{1} / \pi_{0}\right).\right]$

Hence prove that if δ is any test for which

$$
\alpha_{i}(\delta) \leqslant \alpha_{i}\left(\delta^{*}\right), \quad i=0,1
$$

then $\gamma_{0}(\delta) \geqslant \gamma_{0}\left(\delta^{*}\right)$ and $\gamma_{1}(\delta) \geqslant \gamma_{1}\left(\delta^{*}\right)$.

