Paper 1, Section I

$7 \mathrm{H} \quad$ Statistics

Describe the generalised likelihood ratio test and the type of statistical question for which it is useful.

Suppose that X_{1}, \ldots, X_{n} are independent and identically distributed random variables with the $\operatorname{Gamma}(2, \lambda)$ distribution, having density function $\lambda^{2} x \exp (-\lambda x), x \geqslant 0$. Similarly, Y_{1}, \ldots, Y_{n} are independent and identically distributed with the Gamma $(2, \mu)$ distribution. It is desired to test the hypothesis $H_{0}: \lambda=\mu$ against $H_{1}: \lambda \neq \mu$. Derive the generalised likelihood ratio test and express it in terms of $R=\sum_{i} X_{i} / \sum_{i} Y_{i}$.

Let $F_{\nu_{1}, \nu_{2}}^{(1-\alpha)}$ denote the value that a random variable having the $F_{\nu_{1}, \nu_{2}}$ distribution exceeds with probability α. Explain how to decide the outcome of a size 0.05 test when $n=5$ by knowing only the value of R and the value $F_{\nu_{1}, \nu_{2}}^{(1-\alpha)}$, for some ν_{1}, ν_{2} and α, which you should specify.
[You may use the fact that the χ_{k}^{2} distribution is equivalent to the $\operatorname{Gamma}(k / 2,1 / 2)$ distribution.]

Paper 2, Section I

8H Statistics

Let the sample $x=\left(x_{1}, \ldots, x_{n}\right)$ have likelihood function $f(x ; \theta)$. What does it mean to say $T(x)$ is a sufficient statistic for θ ?

Show that if a certain factorization criterion is satisfied then T is sufficient for θ.
Suppose that T is sufficient for θ and there exist two samples, x and y, for which $T(x) \neq T(y)$ and $f(x ; \theta) / f(y ; \theta)$ does not depend on θ. Let

$$
T_{1}(z)= \begin{cases}T(z) & z \neq y \\ T(x) & z=y\end{cases}
$$

Show that T_{1} is also sufficient for θ.
Explain why T is not minimally sufficient for θ.

Paper 4, Section II

19H Statistics

From each of 3 populations, n data points are sampled and these are believed to obey

$$
y_{i j}=\alpha_{i}+\beta_{i}\left(x_{i j}-\bar{x}_{i}\right)+\epsilon_{i j}, \quad j \in\{1, \ldots, n\}, i \in\{1,2,3\},
$$

where $\bar{x}_{i}=(1 / n) \sum_{j} x_{i j}$, the $\epsilon_{i j}$ are independent and identically distributed as $N\left(0, \sigma^{2}\right)$, and σ^{2} is unknown. Let $\bar{y}_{i}=(1 / n) \sum_{j} y_{i j}$.
(i) Find expressions for $\hat{\alpha}_{i}$ and $\hat{\beta}_{i}$, the least squares estimates of α_{i} and β_{i}.
(ii) What are the distributions of $\hat{\alpha}_{i}$ and $\hat{\beta}_{i}$?
(iii) Show that the residual sum of squares, R_{1}, is given by

$$
R_{1}=\sum_{i=1}^{3}\left[\sum_{j=1}^{n}\left(y_{i j}-\bar{y}_{i}\right)^{2}-\hat{\beta}_{i}^{2} \sum_{j=1}^{n}\left(x_{i j}-\bar{x}_{i}\right)^{2}\right] .
$$

Calculate R_{1} when $n=9,\left\{\hat{\alpha}_{i}\right\}_{i=1}^{3}=\{1.6,0.6,0.8\},\left\{\hat{\beta}_{i}\right\}_{i=1}^{3}=\{2,1,1\}$,

$$
\left\{\sum_{j=1}^{9}\left(y_{i j}-\bar{y}_{i}\right)^{2}\right\}_{i=1}^{3}=\{138,82,63\}, \quad\left\{\sum_{j=1}^{9}\left(x_{i j}-\bar{x}_{i}\right)^{2}\right\}_{i=1}^{3}=\{30,60,40\} .
$$

(iv) H_{0} is the hypothesis that $\alpha_{1}=\alpha_{2}=\alpha_{3}$. Find an expression for the maximum likelihood estimator of α_{1} under the assumption that H_{0} is true. Calculate its value for the above data.
(v) Explain (stating without proof any relevant theory) the rationale for a statistic which can be referred to an F distribution to test H_{0} against the alternative that it is not true. What should be the degrees of freedom of this F distribution? What would be the outcome of a size 0.05 test of H_{0} with the above data?

Paper 1, Section II

19H Statistics

State and prove the Neyman-Pearson lemma.
A sample of two independent observations, $\left(x_{1}, x_{2}\right)$, is taken from a distribution with density $f(x ; \theta)=\theta x^{\theta-1}, 0 \leqslant x \leqslant 1$. It is desired to test $H_{0}: \theta=1$ against $H_{1}: \theta=2$. Show that the best test of size α can be expressed using the number c such that

$$
1-c+c \log c=\alpha
$$

Is this the uniformly most powerful test of size α for testing H_{0} against $H_{1}: \theta>1$?
Suppose that the prior distribution of θ is $P(\theta=1)=4 \gamma /(1+4 \gamma), P(\theta=2)=$ $1 /(1+4 \gamma)$, where $1>\gamma>0$. Find the test of H_{0} against H_{1} that minimizes the probability of error.

Let $w(\theta)$ denote the power function of this test at $\theta(\geqslant 1)$. Show that

$$
w(\theta)=1-\gamma^{\theta}+\gamma^{\theta} \log \gamma^{\theta}
$$

Paper 3, Section II

$\mathbf{2 0 H}$ Statistics

Suppose that X is a single observation drawn from the uniform distribution on the interval $[\theta-10, \theta+10]$, where θ is unknown and might be any real number. Given $\theta_{0} \neq 20$ we wish to test $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=20$. Let $\phi\left(\theta_{0}\right)$ be the test which accepts H_{0} if and only if $X \in A\left(\theta_{0}\right)$, where

$$
A\left(\theta_{0}\right)= \begin{cases}{\left[\theta_{0}-8, \infty\right),} & \theta_{0}>20 \\ \left(-\infty, \theta_{0}+8\right], & \theta_{0}<20\end{cases}
$$

Show that this test has size $\alpha=0.10$.
Now consider

$$
\begin{aligned}
& C_{1}(X)=\{\theta: X \in A(\theta)\} \\
& C_{2}(X)=\{\theta: X-9 \leqslant \theta \leqslant X+9\}
\end{aligned}
$$

Prove that both $C_{1}(X)$ and $C_{2}(X)$ specify 90% confidence intervals for θ. Find the confidence interval specified by $C_{1}(X)$ when $X=0$.

Let $L_{i}(X)$ be the length of the confidence interval specified by $C_{i}(X)$. Let $\beta\left(\theta_{0}\right)$ be the probability of the Type II error of $\phi\left(\theta_{0}\right)$. Show that

$$
E\left[L_{1}(X) \mid \theta=20\right]=E\left[\int_{-\infty}^{\infty} 1_{\left\{\theta_{0} \in C_{1}(X)\right\}} d \theta_{0} \mid \theta=20\right]=\int_{-\infty}^{\infty} \beta\left(\theta_{0}\right) d \theta_{0}
$$

Here $1_{\{B\}}$ is an indicator variable for event B. The expectation is over X. [Orders of integration and expectation can be interchanged.]

Use what you know about constructing best tests to explain which of the two confidence intervals has the smaller expected length when $\theta=20$.

