Paper 1, Section I

$7 \mathrm{H} \quad$ Statistics

Consider the experiment of tossing a coin n times. Assume that the tosses are independent and the coin is biased, with unknown probability p of heads and $1-p$ of tails. A total of X heads is observed.
(i) What is the maximum likelihood estimator \widehat{p} of p ?

Now suppose that a Bayesian statistician has the $\operatorname{Beta}(M, N)$ prior distribution for p.
(ii) What is the posterior distribution for p ?
(iii) Assuming the loss function is $L(p, a)=(p-a)^{2}$, show that the statistician's point estimate for p is given by

$$
\frac{M+X}{M+N+n}
$$

[The $\operatorname{Beta}(M, N)$ distribution has density $\frac{\Gamma(M+N)}{\Gamma(M) \Gamma(N)} x^{M-1}(1-x)^{N-1}$ for $0<x<1$ and mean $\frac{M}{M+N}$.]

Paper 2, Section I

8H Statistics

Let X_{1}, \ldots, X_{n} be random variables with joint density function $f\left(x_{1}, \ldots, x_{n} ; \theta\right)$, where θ is an unknown parameter. The null hypothesis $H_{0}: \theta=\theta_{0}$ is to be tested against the alternative hypothesis $H_{1}: \theta=\theta_{1}$.
(i) Define the following terms: critical region, Type I error, Type II error, size, power.
(ii) State and prove the Neyman-Pearson lemma.

Paper 1, Section II

19H Statistics

Let X_{1}, \ldots, X_{n} be independent random variables with probability mass function $f(x ; \theta)$, where θ is an unknown parameter.
(i) What does it mean to say that T is a sufficient statistic for θ ? State, but do not prove, the factorisation criterion for sufficiency.
(ii) State and prove the Rao-Blackwell theorem.

Now consider the case where $f(x ; \theta)=\frac{1}{x!}(-\log \theta)^{x} \theta$ for non-negative integer x and $0<\theta<1$.
(iii) Find a one-dimensional sufficient statistic T for θ.
(iv) Show that $\widetilde{\theta}=\mathbb{1}_{\left\{X_{1}=0\right\}}$ is an unbiased estimator of θ.
(v) Find another unbiased estimator $\widehat{\theta}$ which is a function of the sufficient statistic T and that has smaller variance than $\widetilde{\theta}$. You may use the following fact without proof: $X_{1}+\cdots+X_{n}$ has the Poisson distribution with parameter $-n \log \theta$.

Paper 3, Section II

20H Statistics

Consider the general linear model

$$
Y=X \beta+\epsilon
$$

where X is a known $n \times p$ matrix, β is an unknown $p \times 1$ vector of parameters, and ϵ is an $n \times 1$ vector of independent $N\left(0, \sigma^{2}\right)$ random variables with unknown variance σ^{2}. Assume the $p \times p$ matrix $X^{T} X$ is invertible.
(i) Derive the least squares estimator $\widehat{\beta}$ of β.
(ii) Derive the distribution of $\widehat{\beta}$. Is $\widehat{\beta}$ an unbiased estimator of β ?
(iii) Show that $\frac{1}{\sigma^{2}}\|Y-X \widehat{\beta}\|^{2}$ has the χ^{2} distribution with k degrees of freedom, where k is to be determined.
(iv) Let $\widetilde{\beta}$ be an unbiased estimator of β of the form $\widetilde{\beta}=C Y$ for some $p \times n$ matrix C. By considering the matrix $\mathbb{E}\left[(\widehat{\beta}-\widetilde{\beta})(\widehat{\beta}-\beta)^{T}\right]$ or otherwise, show that $\widehat{\beta}$ and $\widehat{\beta}-\widetilde{\beta}$ are independent.
[You may use standard facts about the multivariate normal distribution as well as results from linear algebra, including the fact that $I-X\left(X^{T} X\right)^{-1} X^{T}$ is a projection matrix of rank $n-p$, as long as they are carefully stated.]

Paper 4, Section II

19H Statistics

Consider independent random variables X_{1}, \ldots, X_{n} with the $N\left(\mu_{X}, \sigma_{X}^{2}\right)$ distribution and Y_{1}, \ldots, Y_{n} with the $N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$ distribution, where the means μ_{X}, μ_{Y} and variances $\sigma_{X}^{2}, \sigma_{Y}^{2}$ are unknown. Derive the generalised likelihood ratio test of size α of the null hypothesis $H_{0}: \sigma_{X}^{2}=\sigma_{Y}^{2}$ against the alternative $H_{1}: \sigma_{X}^{2} \neq \sigma_{Y}^{2}$. Express the critical region in terms of the statistic $T=\frac{S_{X X}}{S_{X X}+S_{Y Y}}$ and the quantiles of a beta distribution, where

$$
S_{X X}=\sum_{i=1}^{n} X_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} X_{i}\right)^{2} \text { and } S_{Y Y}=\sum_{i=1}^{n} Y_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} Y_{i}\right)^{2}
$$

[You may use the following fact: if $U \sim \Gamma(a, \lambda)$ and $V \sim \Gamma(b, \lambda)$ are independent, then $\frac{U}{U+V} \sim \operatorname{Beta}(a, b)$.]

